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Abstract
A methodology is developed for the numerical solution to the sample-based op-
timal transport and Wasserstein barycenter problems. The procedure is based on
a characterization of the barycenter and of the McCann interpolants that permits
the decomposition of the global problem under consideration into various local
problems where the distance among successive distributions is small. These lo-
cal problems can be formulated in terms of feature functions and shown to have
a unique minimizer that solves a nonlinear system of equations. Both the the-
oretical underpinnings of the methodology and its practical implementation are
developed, and illustrated with synthetic and real data sets. © 2019 Wiley Peri-
odicals, Inc.

1 Introduction
The optimal transport problem, as proposed originally by Monge in 1781 [26],

addresses the displacement of a pile of soil between two locations with minimal
cost. Given the cost c.x; y/ of moving a unit mass from point x to point y, one
seeks the map y D f.x/ that minimizes its integral. After normalizing the two piles
so that each has total mass 1, they can be regarded as probability measures, and the
problem adopts the form

(1.1) inf
f]�D⌫

Z
c.x; f.x//d�.x/;

where� and ⌫ are the source and target measures, and f]� denotes the pushforward
measure of � by the map f.

In the twentieth century, Kantorovich [22] relaxed Monge’s problem, allowing
the movement of soil from one to multiple locations and vice versa. By denoting
the mass transported from x to y by ⇡.x; y/, the minimization problem can be
rewritten as

(1.2) inf
⇡2…�;⌫

Z
c.x; y/⇡.x; y/dx dy;
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where …�;⌫ is the set of all transfer plans ⇡.x; y/ satisfying the marginal con-
straints Z

⇡.x; y/dy D �.x/;
Z
⇡.x; y/dx D ⌫.y/:

Since the second half of the twentieth century, mathematical properties of the opti-
mal transport solution have been studied extensively. Here we introduce only those
developments that are relevant to the methodology of this article. For a compre-
hensive review, we refer the reader to [45].

The optimal transport with Lp cost function has been particularly well-studied.
The induced total transportation cost defines the Wasserstein distance [22],

(1.3) Wp.�; ⌫/ D
✓

inf
⇡2…�;⌫

Z
d.x; y/p d⇡.x; y/

◆ 1
p

:

This distance provides a natural metric in the space of probability measures, which
is important from a theoretical perspective and also because it arises naturally in
many practical problems. A recent development in the field is the Wasserstein
barycenter [2], which extends the concept of barycenter to probability measures.

The depth of the mathematical theory of optimal transport and its natural con-
nection to many practical problems has attracted the attention of researchers in
various fields. In economics, optimal transport is used in optimal assignment
and matching problems (see [15]), for which the Kantorovich dual theorem pro-
vides a direct link between optimality and the equilibrium of matching between
two populations. In image processing, the optimal transport distance is known
as the earth mover’s distance [39], used in many applications such as color trans-
fer [34] and image segmentation [30]. Optimal transport is also used in medical
research. For instance, it was found in [40] that the Ollivier-Ricci curvature com-
puted through 1-Wasserstein distance is a proxy for robustness of gene expression
networks, which can be applied to the characterization of cancer. The Wasserstein
distance also appears in machine learning applications [5,27] as a good measure of
the distance between probability distributions.

Computational algorithms have been proposed to solve optimal transport and
barycenter problems in a variety of settings. We reference below some recent rep-
resentatives of the various approaches taken. Benamou and Brenier [6] introduced
a computational fluid approach to solve the problem with continuous distributions
�1;2, exploiting the structure of the interpolant of the optimal map to solve the PDE
corresponding to the dual optimization problem. Oberman [31] discretized the
given continuous distributions and solved the resulting linear programming prob-
lem in an adaptive way that exploits the sparse nature of the solution (the fact that
the optimal plan has support on a map). In image processing applications, several
approaches have been proposed to regularize the discrete linear optimization prob-
lem of the earth mover’s distance. The entropy regularization approach [42] adds
an entropy term that leads to efficient algorithms to derive new solutions. It was
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proposed in [14] to add a graph regularization term to generate more regular solu-
tions. Data-driven formulations take as input not the distributions �1;2 but sample
sets from both. Methodologies proposed include a fluid-flow-like algorithm [44]
and an adaptive linear programming approach [9].

In this article, we propose a new family of algorithms to solve sample-based
optimal transport and barycenter problems. With finite sample sets as input, the
sample-based optimal transport algorithm (SOT) finds the optimal map from one
sample set to the other, and the sample-based barycenter algorithm (SBC) generates
sample points from the barycenter of multiple sample sets. These algorithms solve
optimization problems directly defined at the level of the sample sets. Instead of
modeling the distributions underlying the data, we model the mapping functions
as gradients of feature functions, where the features capture the structure of the
sample sets and can be customized by the users. These algorithms, grounded on
a necessary and sufficient property that characterizes the barycenter measure and
on the McCann interpolants [25], reduce general optimal transport and barycenter
problems to “local” optimal transport problems.

This article is organized as follows: Section 2 introduces the theoretical formu-
lation of the algorithms. Starting with a key property of barycenter measures and
their connection with the McCann interpolants, we introduce a number of “theoret-
ical” algorithms (theoretical because they assume that the distributions defining the
problem are given and that a “black box” solver is provided for the simpler prob-
lems into which the full problem can be decomposed.) We then develop the con-
cept of L-descending maps to prove the convergence of the proposed algorithms in
a general setting. Section 3 develops the practical version of the algorithms by re-
formulating the continuous version of optimal transport in a sample-based setting.
We propose to model optimal maps using the gradient of feature functions and dis-
cuss their selection in practice. Section 4 is devoted to numerical examples. First
synthetic examples are used to assess the performance of the new algorithms and
draw comparisons with existing ones, and then the sample-based algorithms are
applied to the transfer of multimodal distributions and to color transfer and shape
transformations. Finally, Section 5 summarizes the work, discusses its limitations
and applications, and suggests possible extensions.

2 Solving the Theoretical Optimal Transport
and Barycenter Problems

This section reviews the theoretical formulation of the optimal transport and
barycenter problems, introducing formulas to characterize and derive their solu-
tions. Algorithms are proposed as a bridge from the theoretical continuous formu-
lation to the sample-based discrete formulation, which is the topic of Section 3.
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2.1 Optimal Transport and Barycenter Problems
Let �1 and �2 be in P.X /, the set of Borel probability measures on a Polish

space X . Optimal transport asks how to “optimally” move mass from �1 to �2.
An optimal transport problem requires the following two elements:

DEFINITION 2.1 (Cost function). The cost function c W X ⇥X ! R represents the
cost of moving a unit mass from location x to y. For much of this paper, we will
focus on the quadratic cost on Rd , c.x; y/ D kx � yk2.

DEFINITION 2.2 (Transfer plan). A measure ⇡ 2 P.X ⇥ X / is a transfer plan
between �1 and �2 if for any Borel set E ⇢ X ,

(2.1) ⇡.E ⇥ X / D �1.E/; ⇡.X ⇥E/ D �2.E/:

We denote by …�1;�2 the set of all transfer plans between �1 and �2.

The value of a transfer plan ⇡ at .x; y/ represents the amount of mass moved
from location x to y, so the total cost C.⇡/ of a transfer plan is given by

(2.2) C.⇡/ D
Z

X
c.x; y/d⇡.x; y/:

We call a transfer plan ⇡⇤ optimal if it minimizes the total transportation cost,

(2.3) ⇡⇤ D argmin
⇡2…�1;�2

C.⇡/:

This is the Monge-Kantorovich problem, for which Kantorovich proved the follow-
ing duality theorem (theorem 5.10 in [45]):

If c.x; y/ is a lower-semicontinuous function such that

(2.4) 8x; y 2 X c.x; y/ � a.x/C b.y/

for some real-valued upper-semicontinuous functions a 2 L1.�1/ and b 2 L1.�2/,
then the following duality principle holds:

(2.5) min
⇡2….�1;�2/

Z

X
c.x; y/d⇡.x; y/ D

sup
.�; /2L1.�1/⇥L1.�2/

�C c

Z

X
�.x/d�1.x/C

Z

X
 .y/d�2.y/:

The two dual functions � and  satisfy

(2.6) �.x/ D inf
y
.c.x; y/ �  .y//;  .y/ D inf

x
.c.x; y/ � �.x//:

In 1996, [16] investigated optimal transport problems with cost functions of the
form

(2.7) c.x; y/ D h.x � y/ where h.x/ is a strictly convex function.
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Under minor constraints, they proved that the optimal transfer plan is unique and is
induced by a map s that makes �1’s pushforward measure s] �1 equal to �2. The
optimal transfer plan can then be written as

(2.8) ⇡ D .id ⇥ s/]�1;

where id stands for the identity map. Moreover, the optimal map s is of the form

(2.9) s.x/ D x � rh⇤.r�.x//;
where h⇤ is the Legendre transform of h and � is a c-concave function.

In the special case where h.x/ D kxk2, the statement above adopts the particu-
larly simple form:

The optimal transfer plan of the quadratic optimal transport prob-
lem in Rd is induced by a unique optimal map, given by the gra-
dient of a convex function.

This convex function �.x/ satisfies the Monge-Ampere equation

(2.10) d�2.r�.x//det.r2�.x// D d�1.x/;

a PDE that can be interpreted as

(2.11)
Z

Rd

h.r�.x//d�1.x/ D
Z

Rd

h.y/d�2.y/

for all continuous functions h [12].
For the quadratic cost function, the optimal transfer cost C.⇡/ is the square of

the 2-Wasserstein distance

(2.12) W2.�1;�2/ D
✓

min
⇡2…�1;�2

Z

Rd

kx � yk2 d⇡.x; y/
◆ 1

2

;

which provides a metric in the space of measures

(2.13) P2.Rd / WD
⇢
� 2 P.Rd /W

Z

Rd

kxk2 d�.x/ < C1
�
:

From now on, unless otherwise specified, we will consider the quadratic cost func-
tion and measures in P2.X / with X D Rd .

The McCann interpolant is defined as a continuous family of measures �.t/
(t 2 Œ0; 1ç) between �1 and �2. If s is the optimal map between �1 and �2, we
define the McCann interpolant measure as

(2.14) �.t/ D Œt s C.1 � t /idç]�1:
The induced map from ⌫s to ⌫t (0  s; t  1) is also the optimal map between
them. This property, which parallels similar ones for the barycenter of a set of
measures, is essential to the algorithms that we will propose.

The barycenter problem is a relatively recent development in the field of optimal
transport. Consider first the weighted barycenter of a set of points in X . Given the
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points x1; x2; : : : ; xK and positive weights w1; w2; : : : ; wK (
P
wk D 1), their

weighted barycenter xx D PK
kD1wkxk can be characterized through

(2.15) xx D argmin
x

KX

kD1
wkkxk � xk2:

Moreover, for any y,

(2.16)
KX

kD1
wkkxk � yk2 �

KX

kD1
wkkxk � xxk2 D ky � xxk2:

Similarly, the barycenter of a set of measures �1;�2; : : : ;�K 2 P2.X / with
weights w1; w2; : : : ; wK is the minimizer of the following problem [2]:

(2.17) x� D argmin
⌫2P2.X /

KX

kD1
wkW

2
2 .�k; ⌫/:

A duality result similar to the one for the optimal transport problem holds:

(2.18) min
⌫2P2.X /

KX

kD1
wkW

2
2 .�k; ⌫/ D

sup
PK

kD1 �k.xk/
PK

kD1wkkxk�xxk2

KX

kD1

Z

X
�k.x/d�k.x/;

where xx is the barycenter of the K vectors xk . Still another equivalent form of the
barycenter problem is the multidimensional formulation [2, 17]:

(2.19) min
y⇡2…�1;�2;:::;�K

Z

XK

✓ KX

kD1
wkkxk � xxk2

◆
d y⇡.x1; x2; : : : ; xK/;

where …�1;�2;:::;�K is the set of measures y⇡.x1; x2; : : : ; xK/ with kth marginal
�k . The equivalence of (2.17) and (2.19) is established in [2].

A special case is the two-measure barycenter problem,

(2.20) min
⌫2P2.X /

wW 2
2 .�1; ⌫/C .1 � w/W 2

2 .�2; ⌫/;

whose solution coincides with a McCann interpolant measure between �1 and �2:
if �.t/ is an interpolant measure defined in (2.14), then

(2.21) �.1 � w/ D argmin
⌫2P2.X /

wW 2
2 .�1; ⌫/C .1 � w/W 2

2 .�2; ⌫/:

2.2 A Sequence of Algorithms
This subsection introduces the main theoretical algorithms of this article infor-

mally, without proofs.
In order to address the numerical solution to the optimal transport and barycenter

problems, we start with a simpler question: assuming that we already have a black
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box solver for the optimal transport problem, find an efficient algorithm that uses
it to solve the barycenter problem.

Given an arbitrary initial measure ⌫ 2 P2.X /, we seek to update it so as to
reduce the total cost in the barycenter problem (2.17). Constructing the optimal
transfer maps from ⌫ to the �k , which we denote by sk , we have

KX

kD1
wkW

2
2 .⌫;�k/ D

KX

kD1
wk

Z

X
ky � sk.y/k2 d⌫.y/

D
Z

X

 KX

kD1
wkky � sk.y/k2

�
d⌫.y/:

(2.22)

Comparing the integrand of the last expression with the characterization of the
pointwise barycenter in (2.15) suggests defining a transformation f that maps y to
the barycenter of s1.y/; s2.y/; : : : ; sK.y/:

(2.23) f.y/ WD
KX

kD1
wk sk.y/:

Pushing forward ⌫ via f, we have the following inequality:1

(2.24)

KX

kD1
wkW

2
2 .⌫;�k/ �

Z

X

 KX

kD1
wkkf.y/ � sk.y/k2

�
d⌫.y/

D
Z

X

 KX

kD1
wkkzy � sk.f�1.zy//k2

�
d f]⌫.zy/

�
KX

kD1
wkW

2
2 .f]⌫;�k/:

Applying repeatedly the map f yields Algorithm 1 [3].

Algorithm 1 Basic Theoretical Barycenter Algorithm (BTB)
(1) Set ⌫ D ⌫0 where ⌫0 2 P2.X / is an arbitrary initial measure;
(2) Find the optimal maps sk from ⌫ to �k (k D 1; 2; : : : ; K);
(3) Define f using (2.23);
(4) Set ⌫ D f]⌫ and return to step 2.

Notice that, for the updated measure f]⌫, the map sk.f�1.zy// between f]⌫ and
�k may not be optimal anymore. Hence at every iteration of the BTB algorithm,
one needs to recompute the optimal maps between ⌫ and �k using the black box

1 Even though f is assumed to be invertible for this calculation, we prove in Section 2.5 a general
version for which this assumption is not required.
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optimal transport solver, which can make the complexity of the BTB algorithm
quite high.

The same idea can be used to solve a standard optimal transport problem. In the
last section, we pointed out the connection between the two-measure barycenter
and McCann’s interpolant. Applying BTB to a two-measure barycenter problem,
if the algorithm converges, we will get a McCann interpolant measure, which also
gives us the optimal map s2 ı s�1

1 between �1 and �2.
It may seem unnecessary to use the BTB algorithm for the optimal transport

problem, as this can be solved directly using the black box solver, which BBT
requires. The algorithm’s utility becomes clearer when instead of the barycenter
problem we consider the following alternative:

(2.25) min
⌫0;⌫1;:::;⌫K2P2.X /
⌫0D�1; ⌫KD�2

KX

kD1
wkW

2
2 .⌫k; ⌫k�1/:

Since ⌫0; ⌫1; : : : ; ⌫K form a chain between �1 and �2 and the Wasserstein distance
is a metric on P2.X /, Cauchy’s inequality yields

(2.26)

 KX

kD1
wkW

2
2 .⌫k; ⌫k�1/

� KX

kD1

1

wk

�
�

 KX

kD1
W2.⌫k; ⌫k�1/

�2

� W 2
2 .�1;�2/;

with both equalities attained if and only if ⌫0; ⌫2; : : : ; ⌫K are McCann interpolant
measures with the specific time parameters

(2.27) �k D
kX

iD1

1

wi

,
KX

iD1

1

wi
; ⌫k D �.�k/:

If sk is the optimal map from ⌫k�1 to ⌫k and .⌫0; ⌫1; : : : ; ⌫K/ is the minimizer of
(2.25), the optimal map from �1 to �2 is

(2.28) sc D sK ı sK�1 ı � � � ı s1;

thus leading to the introduction of Algorithm 2 (TOT).

Algorithm 2 Theoretical Optimal Transport Algorithm (TOT)
(1) Let ⌫0 D �1 and ⌫K D �2. Set ⌫k (k D 1; 2; : : : ; K � 1) to arbitrary

initial measures in P2.X /;
(2) Find the optimal maps sk from ⌫k�1 to ⌫k (k D 1; 2; : : : ; K);
(3) Define sc using (2.28) and the weights �k using (2.27);
(4) For k D 1; 2; : : : ; K � 1, update ⌫k to

(2.29) ⌫k D Œ�k sc C.1 � �k/idç]�1
and return to step 2.
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To find the optimal map from �1 to �2, the TOT algorithm approximates not
only the optimal map itself but also the McCann interpolant measures. Notice that
we still need to solve optimal transport problems between ⌫k�1 and ⌫k at every
iteration. However, by choosing enough interpolant measures, TOT can always
make ⌫k�1 and ⌫k as close to each other as needed. The solution to these “local”
optimal transport problems turns out to be far easier to approximate. Hence TOT
provides a feasible way to solve arbitrary optimal transport problems assuming that
one can solve local optimal transport problems.

Next we can merge the TOT algorithm above into the barycenter algorithm,
using it as a black box solver. Moreover, instead of solving an optimal transport
problem at every step, we can simply update the map using one iteration of TOT at
every step, which gives the following composite theoretical barycenter algorithm,
Algorithm 3:

Algorithm 3 Composite Theoretical Barycenter Algorithm (CTB)
(1) Set ⌫ D ⌫0 where ⌫0 2 P2.X / is an arbitrary initial measure;
(2) Run steps 1,2,3 of the TOT Algorithm 2 once to find a map sc

k
from ⌫ to

�k for each k D 1; 2; : : : ; K;
(3) Define the map fc as

(2.30) fc.y/ D
KX

kD1
wk sc

k.y/I

(4) Update ⌫ and sc
k

:

⌫ D fc
]⌫; sc

k D sc
k ı.fc/�1I

(5) Run steps 4, 2, 3 of TOT once for each pair .⌫;�k/ to update sc
k

and return
to step 3.

The CTB algorithm 3 solves the barycenter problem under the single assumption
that one knows how to solve local optimal transport problems, a problem that will
be addressed in Section 3.2.

None of the three theoretical algorithms introduced in this section, BTB, TOT,
and CTB, can be applied to realistic settings directly, since typically in practice
one does not know the continuous distributions that define the problem. Instead,
the input data often consists of sample sets drawn from these distributions. Yet
before discussing how to apply these algorithms in practical scenarios, we prove
below their convergence.

2.3 A Necessary and Sufficient Characterization of the Barycenter
In the BTB algorithm 1, we perform two basic operations: finding the optimal

map between pairs .⌫;�k/ and finding the barycenter of sets of points. The algo-
rithm stops when both of the following conditions are satisfied:
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(1) For any k D 1; 2; : : : ; K, sk is the optimal map from ⌫ to �k;
(2) For any y 2 X ,

(2.31) y D
KX

kD1
wk sk.y/:

The next theorem shows these two conditions are both necessary and sufficient
for ⌫ to be the barycenter of the �k:

THEOREM 2.3 ([2]). Consider the barycenter problem (2.17) with absolutely con-
tinuous measures �1;�2; : : : ;�K and positive weights w1; w2; : : : ; wK , where
(
PK
kD1wk D 1). A measure ⌫ is the barycenter if and only if for almost all

y 2 supp.⌫/,

(2.32) y D
KX

kD1
wk sk.y/

where sk is the optimal map from ⌫ to �k .

PROOF. To start with, the existence of optimal map sk is guaranteed by the
regularity of ⌫ (⌫ will be an absolutely continuous measure), which is proved in [2].

For necessity, we use the inequality in (2.24),

(2.33)
KX

kD1
wkW

2
2 .⌫;�k/ �

KX

kD1
wkW

2
2 .f]⌫;�k/ �

Z

X
ky � f.y/k2 d⌫.y/:

Since ⌫ is the minimizer, it follows that y D f.y/ ⌫-almost everywhere.
For sufficiency, let .�⇤

k
.x/;  ⇤

k
.y// be the optimizer of the dual optimal transport

problem (2.5) between ⌫ and �k . To unify notations, we set the cost function to be
wkkx�yk2 instead of the usual kx�yk2. Then the constraints in the dual problems
can be written as

(2.34) �⇤
k .x/C  ⇤

k .y/  wkkx � yk2:
Equation (2.9) and related properties imply the following relation:

(2.35) sk.y/ D r
kyk2
2

�
 ⇤
k
.y/
wk

�
;

which combined with (2.32) yields

(2.36) y D
KX

kD1
wk sk.x/ D

KX

kD1
wkr

kyk2
2

�
 ⇤
k
.y/
wk

�
D y � r

KX

kD1
 ⇤
k .y/:

This indicates that
PK
kD1  

⇤
k
.y/ D C is a constant, which we can set to zero

without changing the optimal map. Thus

(2.37)
KX

kD1

Z
�⇤
k .x/d�k.x/ D

KX

kD1

Z
�⇤
k .x/d�k.x/C

Z
 ⇤
k .y/d⌫.y/

�
:
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From the strong duality property of the optimal transport problem,

(2.38)
Z
�⇤
k .x/d�k.x/C

Z
 ⇤
k .y/d⌫.y/ D wkW

2
2 .�k; ⌫/;

which summed up over all k yields

(2.39)
KX

kD1

Z
�⇤
k .x/d�k.x/ D

KX

kD1
wkW

2
2 .�k; ⌫/:

Hence f�⇤
k
.x/g and ⌫ satisfy the strong duality of the barycenter problem, implying

that ⌫ is the barycenter of the �k . ⇤

This theorem was first introduced in [2]. We propose the above proof in the
spirit of the barycenter algorithm. The theorem provides an easy check on whether
a measure is the barycenter. A direct consequence of this theorem corresponding
to the TOT algorithm is the following:

THEOREM 2.4. Consider problem (2.25) with absolutely continuous measures �1;
�2 and positive weights w1; w2; : : : ; wK (

PK
kD1wk D 1). Absolutely continu-

ous measures .⌫0; ⌫1; : : : ; ⌫K/ minimize (2.25) if and only if for almost all y 2
supp.�1/ and all k D 1; 2; : : : ; K,

(2.40) sk ı � � � ı s2 ı s1.y/ D .1 � �k/y C �k sc.y/

where sk is the optimal map from ⌫k�1 to ⌫k and sc is defined by (2.28).

PROOF. Necessity follows directly from (2.26): for all inequalities to become
equalities, ⌫k has to be on the geodesics between �1 and �2; therefore the ⌫k
itself must be absolutely continuous. With the existence of sk , the condition in the
theorem must be satisfied.

On the other hand, it follows from the conditions that, for k D 1; 2; : : : ; K � 1,

(2.41) sk ı � � � ı s2 ı s1.y/ D
✓
1 � �k

�kC1

◆
y C �k

�kC1
skC1 ı � � � ı s2 ı s1.y/:

Theorem 2.3 for k D 2; 3; : : : ; K implies that sk ı � � � ı s2 ı s1 is the optimal map
from �1 to ⌫k . Specifically, when k D K, sc is the optimal map between �1 and
�2; thus ⌫k is indeed a McCann interpolant measure with time variable �k , which
proves that .⌫0; ⌫1; : : : ; ⌫K/ is the minimizer of (2.25). ⇤

The above two theorems characterize the barycenter and the McCann interpolant
measures. While necessity is quite straightforward, sufficiency is particularly use-
ful, as it provides a way to define the barycenter and the McCann interpolant. To
prove the convergence of the algorithms proposed in the prior subsection, we will
first prove that they converge to measures that satisfy the above properties. Us-
ing these theorems, it is then guaranteed that these limit measures are indeed the
barycenter and McCann interpolant measures, respectively.
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2.4 A General Convergence Theorem for L-Descending Maps
To prove the convergence of the proposed algorithms, we will first introduce a

set of more general convergence theorems that can be applied to BTB, TOT, CTB
and to a broader class of algorithms. We first define the following concept:

DEFINITION 2.5 (L-descending map). Suppose F is a map between measures:

(2.42) F W P2.X / ! P2.X /

and L W P2.X / ! R is a cost function with a lower bound. We call F an L-
descending map if it satisfies the following conditions:

(1) F is a continuous map with respect to the W2 metric on P2.X /.
(2) For arbitrary ⇡ 2 P2.X /, we have

(2.43) L.F⇡/  L.⇡/

and equality holds if and only if

(2.44) F⇡ D ⇡ D ⇡⇤

where ⇡⇤ is a minimizer of L.

Consider an iterative algorithm seeking the minimizer of a cost function L. If
each iteration updates the current measure through a map, it is natural to require
that the map reduce the value of L. At the same time, a necessary condition for
the algorithm to succeed is that when the algorithm can no longer reduce the value
of L, the minimizer must have been reached. Combining these two conditions and
the continuity of the map, we get exactly the above definition of L-descending
maps. Next we prove a general convergence theorem.

THEOREM 2.6. Let F be anL-descending map. We define a sequence f⇡ngnD1;2;:::
through

(2.45) ⇡nC1 D F⇡n; n D 0; 1; : : : ;

where ⇡0 2 P2.X / is an arbitrary initial measure.
Assume the following two conditions are satisfied:
(1) f⇡ngnD1;2;::: is sequentially compact with respect to the W2 metric.
(2) L is continuous with respect to the W2 metric and it has a unique minimizer

⇡⇤.
Then

(2.46) ⇡n
W2��! ⇡⇤:

PROOF. Because f⇡ngnD1;2;::: is sequentially compact, we can extract a subse-
quence that converges to some measure ⇡ 0:

(2.47) ⇡nj
W2��! ⇡ 0:
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From the continuity of F and L, we have that

F⇡nj
W2��! F⇡ 0;

and

lim
j!C1

L.⇡nj / D L.⇡ 0/

lim
j!C1

L.F⇡nj / D L.F⇡ 0/:

On the other hand, because L.⇡n/ is a nonincreasing sequence,

(2.48) L.F⇡ 0/ D lim
n!C1

L.F⇡nj / D lim
n!C1

L.⇡nj / D L.⇡ 0/:

From the definition of L-descending maps, ⇡ 0 must be the unique minimizer of L.
The W2 convergence of the full sequence follows from the fact that any subse-
quence of f⇡ngnD1;2;::: W2 converges to the same measure ⇡⇤. ⇤
2.5 Convergence of the Optimal Transport and Barycenter Algorithms

The general convergence theorem forL-descending maps helps us prove a series
of convergence results, for which we only need to verify the conditions in Theorem
2.6. Consider first the following general algorithm:

DEFINITION 2.7 (General descending optimal transport algorithm (GDOT)). Con-
sider an iterative algorithm that updates a transfer plan ⇡ 2 …�1;�2 :

(2.49) ⇡nC1 D F⇡n; n D 0; 1; : : : :

We call an algorithm a general descending optimal transport (GDOT) algorithm if
the associated iteration map F is an L-descending map in which the cost function
L.⇡/ is the total transport cost defined in (2.2).

THEOREM 2.8. Assume that the two target measures �1 and �2 are in P2.X / and
the optimal transfer plan is unique. Then the GDOT algorithm converges to the
optimal transfer plan ⇡⇤ in the W2 metric.

PROOF. In order to use Theorem 2.6 to prove the W2 convergence of f⇡ng, we
verify the two conditions in Theorem 2.6.

To prove that f⇡ngnD1;2;::: is sequentially compact with respect to theW2 metric,
we prove that …�1;�2 is tight. First, …�1;�2 ⇢ P2.X 2/, because

(2.50)
Z

X2
.kxk2 C kyk2/d⇡ D

Z

X
kxk2 d�1 C

Z

X
kyk2 d�2 < 1:

Then, for any " > 0, we can choose compact sets K�1
" and K�2

" such that

(2.51) �1.X nK�1
" / <

"

2
; �2.X nK�2

" / <
"

2
:

It follows that, for any ⇡ 2 …�1;�2 ,

(2.52) ⇡.X 2 nK�1
" ⇥K�2

" /  �1.X nK�1
" /C �2.X nK�2

" / < ":
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By Prokhorov’s theorem [35], f⇡ngnD1;2;::: has a subsequence f⇡nj gjD1;2;::: that
converges weakly to a measure ⇡ 0. Since the marginal measures of ⇡nj are the
same as those of ⇡ 0’s,

Z

X2
.kxk2 C kyk2/d⇡nj D

Z

X
kxk2 d�1 C

Z

X
kyk2 d�2

D
Z

X2
.kxk2 C kyk2/d⇡ 0

(2.53)

By theorem 6.9 of [45], the convergence of quadratic functions indicates ⇡nj
W2��!

⇡ 0. Thus ⇡n 2 …�1;�2 indeed has a W2 convergent subsequence.
For condition 2 of Theorem 2.6, we need to prove that the cost function C.⇡/ is

continuous with respect to theW2 metric. Since the quadratic cost can be controlled
by quadratic terms,

(2.54) kx � yk2  2.kxk2 C kyk2/

if ⇡n
W2��! ⇡ , by the definition of W2 convergence, we have that

(2.55) lim
n!1C.⇡n/ D lim

n!1

Z

X2
kx � yk2 d⇡n D

Z

X2
kx � yk2 d⇡ D C.⇡/:

Since both conditions are satisfied, Theorem 2.6 shows that f⇡ngnD1;2;::: converges
to the optimal transfer plan ⇡⇤. ⇤

This theorem provides a general framework for proving convergence for optimal
transport algorithms. As long as one can show that the map in the algorithm is an
L-descending map and that the optimal map is unique, convergence is guaranteed.
Notice that the theorem does not require the transfer plan to be a map.

The simplest L-descending map is the one that maps every transfer plan to the
optimal transfer plan. As we will see later, the map in TOT is also an L-descend-
ing map. Before going into specific cases, we build a general framework for the
barycenter problem.

Since the barycenter measure is not a transfer plan, in order to prove conver-
gence to the barycenter measure ⌫ we need to consider the multimarginal mea-
sure y⇡ . Informally, in every iteration after step 2 of the BTB algorithm, we have a
family of optimal transfer plans between the barycenter and the target measures:

(2.56) ⇡k D law.y; sk.y//; k D 1; 2; : : : ; K:

Combining all the maps together yields the multimarginal measure y⇡ :

(2.57) y⇡ D law.s1.y/; s2.y/; : : : ; sK.y//:

Instead of thinking of the update of ⌫ at every iteration, we will view the barycenter
algorithms as updating the y⇡ measure. Clearly y⇡ stores more information than ⌫,
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which can be derived from y⇡ though

(2.58) ⌫.E/ WD y⇡
✓⇢
.x1; : : : ; xK/

ˇ̌
ˇ
KX

kD1
wkxk 2 E

�◆
for all Borel sets E:

However, when we update general transfer plans ⇡k (not transfer maps), the
multimarginal measure is not fully determined by the transfer plans: when we fix a
point y in measure ⌫, the conditional measure ⇡kjy in general does not concentrate
in one location, as it does when we have a transfer map. Thus for the joint condi-
tional measure y⇡jy, only its marginals are defined by ⇡kjy. To fully define y⇡ , we
need to either only consider transfer maps or specify y⇡ for general ⇡k .

Even if we restrict attention to transfer maps, as in BTB and CTB, we still
need the map f to be invertible in order to fully determine y⇡ . In [3], the authors
proved the invertibility of f in BTB in a similar setting, but we found that this
property might not hold for the CTB algorithm. Moreover, to build a more general
convergence theorem, we would like to consider general transfer plans.

In order to fully define y⇡ , we build the conditional measure y⇡jy as the product
measure of the ⇡kjy:

(2.59) y⇡jy D ⇡1jy ⇥ ⇡2jy ⇥ � � � ⇥ ⇡K jy;
thus making the conditional marginal measures independent of each other. Then
we define a general descending barycenter algorithm:

DEFINITION 2.9 (General descending barycenter algorithm (GDB)). Given an ar-
bitrary L-descending map F for the GDOT algorithms, we define the map

(2.60) G W …�1;:::;�K ! …�1;:::;�K

and use it to update the current multimarginal measure y⇡n:

(2.61) y⇡nC1 D G y⇡n:
We call such an algorithm a general descending barycenter algorithm if G is in-
duced by F through the following steps:

(1) Derive ⌫n from y⇡n using (2.58).
(2) For k D 1; 2; : : : ; K, set the current transfer plan ⇡n

k
to

(2.62)
⇡nk .E⌫ ⇥Ek/ WD ⌫.E⌫/ � y⇡n.f.x1; : : : ; xK/jxk 2 Ekg/

for all Borel sets E⌫ ; Ek :

(3) Apply the map F to all ⇡n
k

,

(2.63) ⇡nC1
k

D F⇡nk ;

and define the conditional measure ⇡nC1
k

jy.
(4) Set y⇡nC1 as the product measure:

(2.64) y⇡nC1.E1 ⇥E2 ⇥ � � � ⇥EK/ D
Z

X

 KY

kD1
⇡nC1
k

jy.Ek/
�
d⌫.y/:
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The general descending barycenter algorithm is a generalization of the BTB and
CTB algorithms that updates transfer plans instead of maps. The optimal trans-
port solver is not specified in GDB: for any L-descending map F for the GDOT
algorithm, we can define a corresponding GDB algorithm.

THEOREM 2.10. The general descending barycenter algorithm has the following
properties:

(I) G is an L-descending map, where the cost function L is the barycenter
cost in the multimarginal formulation (2.19):

(2.65)

L.y⇡/ D
Z

XK

✓ KX

kD1
wkkxk � xxk2

◆
d y⇡.x1; x2; : : : ; xK/; y⇡ 2 …�1;�2;:::;�K :

(II) If the barycenter problem has a unique solution, the GDB algorithm al-
ways converges to the minimizer y⇡⇤ of the L.y⇡/ defined above; the cor-
responding ⌫⇤ is the barycenter.

PROOF OF (I). To prove that G is an L-descending map, we verify the condi-
tions in Definition 2.5.

First, we prove that G is continuous. Let a sequence of measures fy⇡ngnD1;2;:::
converge to some y⇡⇤ in the W2 metric. We would like to show that

(2.66) G y⇡n W2��! G y⇡⇤:

We first show that the corresponding ⌫n converges to ⌫⇤ in W2. By definition
(2.58), ⌫.y/ can be viewed as y⇡’s marginal measure for y D PK

kD1wkxk . For any
continuous function � such that j�.y/j  C.1C kyk2/,

(2.67) j�.y/j  C.1C kyk2/  C

✓
1C

KX

kD1
wkkxkk2

◆
 zC

✓
1C

KX

kD1
kxkk2

◆
:

Since

(2.68)
Z

X
�.y/d⌫.y/ D

Z

XK
�.

KX

kD1
wkxk/d y⇡ ;

the W2 convergence of y⇡n yields

(2.69) lim
n!1

Z

X
�.y/d⌫n.y/ D

Z

X
�.y/d⌫⇤.y/;

the W2 convergence of ⌫n. The joint measure of ⌫n and y⇡n also converges, and so

(2.70) ⇡nk
W2��! ⇡⇤

k :

Since F is an L-descending map,

(2.71) F⇡nk
W2��! F⇡⇤

k :
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Finally, since G y⇡n is defined by the product of the F⇡n
k

’s conditional measures,

(2.72) G y⇡n W2��! G y⇡⇤:

Next we prove that G reduces the cost function L.

L.y⇡n/ D
Z

XK

 KX

kD1
wkkxk � xxk2

�
d y⇡n.x1; x2; : : : ; xK/

D
KX

kD1
wk

Z

X2
kxk � yk2 d⇡nk .xk; y/

�
KX

kD1
wk

Z

X2
kxk � yk2 d⇡nC1

k
.xk; y/(2.73)

D
KX

kD1
wk

Z

X

Z

X
kxk � yk2 d

�
⇡nC1
k

jy
�
.xk/d⌫n.y/

D
Z

X

Z

XK

 KX

kD1
wkkxk � yk2

�
d.y⇡nC1jy/.x1; x2; : : : ; xK/ d⌫n.y/

�
Z

X

Z

XK

 KX

kD1
wkkxk � xxk2

�
d.y⇡nC1jy/.x1; x2; : : : ; xK/d⌫n.y/(2.74)

D
Z

XK

 KX

kD1
wkkxk � xxk2

�
d y⇡nC1.x1; x2; : : : ; xK/

D L.y⇡nC1/:

If L.y⇡n/ D L.y⇡nC1/, from the inequality turned equality in (2.73), we have that

(2.75)
Z

X2
kxk � yk2 d⇡nk .xk; y/ D

Z

X2
kxk � yk2 d⇡nC1

k
.xk; y/:

Since F is an L-descending map, it follows that ⇡n
k

must be the optimal transfer
plan between �k and ⌫n. The difference between the two sides of the inequality
turned equality in (2.74) yields

(2.76)
Z

X

Z

XK
kxx � yk2 d y⇡nC1jy.x1; x2; : : : ; xK/d⌫n.y/ D 0;

implying that xx D y almost everywhere. So ⌫n D ⌫nC1 and y⇡n D y⇡nC1.
Now using Theorem 2.3, we have that this fixed point ⌫n must be the barycenter

of ⌫. Moreover, y⇡n must be the minimizer of L.y⇡n/. This concludes the proof that
G is an L-descending map. ⇤
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PROOF OF (II). Having shown that G is an L-descending map, the proof of the
second part follows the same steps as the proof of Theorem 2.8. ⇤

With the above general convergence theorems 2.8 and 2.10 for the GDOT and
GDB algorithms, the convergence of the specific algorithms proposed in the previ-
ous section are simple corollaries: the proofs boil down to showing that the asso-
ciated maps in the iterative algorithm are L-descending maps.

When the BTB, TOT, and CTB algorithms were introduced, the transfer plans
were limited to transfer maps. As we have discussed, a more accurate and general
definition should be made in terms of general transfer plans, which we do here for
completeness:

Algorithm 4 Basic Theoretical Barycenter Algorithm (BTB)
(1) Set ⌫ D ⌫0 where ⌫0 2 P2.X / is an arbitrary initial measure;
(2) Find the optimal transfer plan ⇡k between ⌫ and �k (k D 1; 2; : : : ; K);
(3) Define the multimarginal measure y⇡ from ⇡k;
(4) Derive ⌫ from y⇡ using (2.58) and go to step 2.

Algorithm 5 Theoretical Optimal Transport Algorithm (TOT)
(1) Let ⌫0 D �1 and ⌫K D �2. Set ⌫k (k D 1; 2; : : : ; K � 1) to arbitrary

initial measures in P2.X /;
(2) Find the optimal transfer plan ⇡k between ⌫k�1 to ⌫k (k D 1; 2; : : : ; K);
(3) Derive the transfer plan y⇡ between�1 and�2 from ⇡k by (2.78) and define

�k by (2.27);
(4) For k D 1; 2; : : : ; K � 1, update ⌫k to

(2.77) ⌫k.E/ WD y⇡.f.x; y/j�ky C .1 � �k/x 2 Eg/ for all Borel sets E

and go to step 2.

Algorithm 6 Composite Theoretical Barycenter Algorithm (CTB)
(1) Set ⌫ D ⌫0 where ⌫0 2 P2.X / is an arbitrary initial measure;
(2) Run step 1,2,3 of TOT once to find a transfer map ⇡k from ⌫ to �k for

each k D 1; 2; : : : ; K;
(3) Define the multimarginal measure y⇡ from ⇡k;
(4) Update ⌫ using (2.58) and derive new ⇡k from y⇡ ;
(5) Run step 4, 2, 3 of TOT once for each pair .⌫;�k/ to update ⇡k and go to

step 3.

One crucial step in the TOT algorithm is the derivation of the transfer plan y⇡
from the local transfer plans ⇡k . As for the barycenter multimarginal measure
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case, with transfer plans more general than maps, we need to specify how to cou-
ple the transfer plans together. As in the barycenter case, we couple the condi-
tional measures together independently. Consider the process from x to y through
x1; x2; : : : ; xK�1. For each k, the conditional measure ⇡kjxk�1 can be thought of
as a Markov kernel from ⌫k�1 to ⌫k . Then one can derive the Markov kernel from
�1 to �2 by compositing all the conditional measures:

(2.78) y⇡.Ex; Ey/ WD
Z

Ex

Z

X
� � �

Z

X

Z

Ey

 KY

kD1
d⇡kjxk�1.xk/

�
d�1.x/

Now we prove the convergence theorems for all the algorithms proposed:

THEOREM 2.11 (Convergence of theoretical optimal transport algorithm). Con-
sider the quadratic optimal transport problem with measures �1 and �2. The map
FTOT associated with the TOT algorithm is anL-descending map, and TOT always
converges to the optimal transfer plan.

PROOF. To show that FTOT is anL-descending map, we verify all the conditions
in Definition 2.5.

We first show the continuity of FTOT. Suppose we have a sequence of transfer
plans f⇡ngnD1;2;::: converging to ⇡⇤. For all k, ⌫n

k
will also converge to ⌫⇤

k
in the

W2 metric. By theorem 5.20 in [45] and the uniqueness of the optimal transfer plan
in our case, we have, for the local transfer plans ⇡n

k
:

(2.79) ⇡nk
W2��! ⇡⇤

k :

By the construction of FTOT y⇡n from ⇡n
k

(2.78), we have

(2.80) FTOT y⇡n W2��! FTOT y⇡⇤;

proving continuity. For the descending property of FTOT, we directly compute the
cost function. Defining

(2.81) xk D �ky C .1 � �k/x;
we have that

(2.82) xk�1 � xk D .�k � �k�1/.x � y/;
and thus

Z

X2
kx � yk2 d y⇡n.x; y/ D

KX

kD1

Z

X2
.�k � �k�1/kx � yk2 d y⇡n.x; y/

D
KX

kD1

Z

X2

kxk�1 � xkk2
�k � �k�1

d⇡nk .xk�1; xk/

�
KX

kD1

Z

X2

kxk�1 � xkk2
�k � �k�1

d⇡nC1
k

.xk�1; xk/:
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Following the definition of y⇡nC1, we can write the summation of integrals above
as one integral over the joint measure z⇡nC1.x; x1; : : : ; xK�1; y/,

Z

X2
kx � yk2 d y⇡n.x; y/

�
KX

kD1

Z

X2

kxk�1 � xkk2
�k � �k�1

d⇡nC1
k

.xk�1; xk/(2.83)

D
Z

XK

KX

kD1

kxk�1 � xkk2
�k � �k�1

d z⇡nC1
k

.x; x1; : : : ; xK�1; y/

�
Z

XK

k PK
kD1 xk�1 � xkk2

PK
kD1 �k � �k�1

d z⇡nC1
k

.x; x1; : : : ; xK�1; y/(2.84)

D
Z

XK
kx � yk2 d z⇡nC1

k
.x; x1; : : : ; xK�1; y/

D
Z

X2
kx � yk2 d y⇡nC1.x; y/

This shows the transport cost is not increasing. If it is not decreasing either,
we check the inequalities turned into equalities in the above calculation for the
conditions that y⇡n must satisfy. From (2.83), we have that ⇡n

k
must be the optimal

transfer plan between ⌫k�1 and ⌫k . From (2.84) and Cauchy’s inequality, we have
that

(2.85)
xk�1 � xk
�k � �k�1

D x � y;

a relation equivalent to (2.41). By Theorem 2.4, we have that y⇡n must be the
optimal transfer plan between �1 and �2.

This concludes the proof that FTOT is an L-descending map. Then Theorem 2.8
shows that the TOT algorithm converges to the optimal transfer plan. ⇤

THEOREM 2.12 (Convergence of the Theoretical Barycenter Algorithms). Con-
sider the barycenter problem (2.17) with measures �1;�2; : : : ;�K and positive
weights w1; w2; : : : ; wK (

PK
kD1wk D 1). We have the following:

(I) The BTB algorithm is a special case of the GDB algorithm with the L-
descending map that maps all the transfer plan to the corresponding op-
timal transfer plan. Thus it converges to the barycenter measure.

(II) The CTB Algorithm is a special case of the GDB algorithm with the L-
descending map FTOT. Thus it converges to the barycenter measure.

PROOF. It follows straightforwardly from the definitions of BTB and CTB that
both are special cases of GDB. ⇤
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2.6 Conclusions of Section 2
This section proposed three theoretical algorithms to solve the optimal transport

and barycenter problems. These algorithms perform iterations that reduce the cor-
responding cost function. The iterations are L-descending maps, so the general
convergence theorem, Theorem 2.6, provides the basic framework to show their
convergence.

For the optimal transport problem, the TOT algorithm approximates the Mc-
Cann interpolant measures and updates the transfer plans for each of its segments.
For the barycenter problem, both the BTB and CTB algorithms alternate between
updating the barycenter measure via pointwise barycenter problems and updating
the transfer plans between the barycenter and each target measure. A shared fea-
ture of these algorithms is that they both alternate between two different operations
to reduce the cost function. The sufficiency conditions proved in Theorem 2.3 and
Theorem 2.4 guarantee that these algorithms converge to the optimal transfer plan
and barycenter measure, respectively.

The convergence theorems Theorem 2.8 and Theorem 2.10 show the conver-
gence of a broad family of optimal transport and barycenter algorithms. To apply
these theorems, one only needs to verify that the associated map in an algorithm is
an L-descending map.

Using the TOT and CBC algorithms, one can solve optimal transport and barycen-
ter problems defined by arbitrary P2.X / measures, assuming that one can solve
“local” optimal transport problems. In many cases, these local optimal transport
problems are relatively easy to solve. For instance, when two measures are close
to each other, the gradient flow [4] offers a good approximation to the optimal
transfer plan. Local optimal transport problems also play an important role in the
sample-based formulation described below.

3 The Sample-Based Optimal Transport and Barycenter Problems
The prior section discussed optimal transport and barycenter problems when

the data is provided as a set of measures. This setting, which connects with the
classical theory of optimal transport, enabled us to propose theoretical algorithms.
However, the classical setting is not enough for practical data analysis, since more
often than not one has access not to the actual conditional distributions of the data
but only to samples drawn from these distributions.

The plan of this section is as follows. In the first subsection, we discuss dif-
ferent practical formulations of the optimal transport problem and introduce the
sample-based Monge-Ampere equation and the sample-based optimal transport
and barycenter problems. In the second subsection, we prove a local solution theo-
rem for the sample-based formulation. Then we adapt all the theoretical algorithms
to their sample-based forms using the new local solver in the third subsection. Fi-
nally, we discuss the selection of the feature functions that the solver requires.
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3.1 The Sample-Based Formulation
The starting point of statistics/data analysis is data, which can be modeled as

a set of independent realizations of random variables from unknown underlying
distributions. Hence, in order to use optimal transport as a tool for data analysis,
one must reformulate the problem in terms of datasets in Rd instead of known
distributions.

Let fxigNx

iD1 and fyigNy

iD1 be i.i.d. samples from the unknown distributions�1 and
�2 in Rd , respectively. We would like to define a quadratic optimal map between
the two sample sets and develop practical algorithms to find it.

We will focus our attention on optimal maps rather than on general transfer
plans. On the one hand, the solution to the classical quadratic optimal transport
problem is a map. On the other, when transferring a finite sample set, one would
expect the result to also be a finite sample set. The simplest such transform consists
of moving each sample point to a new sample point, as maps do.

To formulate the optimal transport problem in this setting, we need to give the
sample-based version of the following two statements:

(1) A map f pushes measure �1 to �2:

(3.1) f]�1 D �2:

(2) A map f minimizes the transport cost:

(3.2)
Z
c.x; f.x//d�1.x/:

One relevant setting is the assignment problem in combinatorial optimization,
which seeks a one-to-one mapping between fxigNiD1 and fyigNiD1 minimizing

(3.3)
NX

iD1
kxi � y�.i/k2;

where � is a permutation of f1; 2; : : : ; N g. There are broad applications of the
assignment problem [8] and various practical algorithms [29] to solve it. Yet the
assignment problem has significant differences with the scenario we are interested
in. The most important one is that we do not restrict the images of fxigNiD1 to
be among the fyigNiD1: since the sample points are random variables drawn from
some continuous distributions, the range of the map should be the whole support
of the continuous distribution, not a finite subset of points. Another limitation of
the assignment problem is that it requires both sets to have the same number of
elements, which is not a requirement of our problem.

Heuristically, the optimal map between fxigNx

iD1 and fyigNy

iD1 should be similar to
the classical optimal map between the two measures �1 and �2. One possible way
to proceed would define the sample-based optimal map in two steps: one would
obtain density estimates z�1 and z�2 from sample the sets fxigNx

iD1 and fyigNy

iD1 and
then solve the classical optimal transport problem between z�1 and z�2.
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If one knows which parametric classes are well-suited to approximate �1 and
�2 and the sample size is large enough, one can derive accurate estimators for �1
and �2. For instance, if one knows that the sample points are drawn from normal
distributions, given enough samples one can obtain good approximations to their
means and covariance matrices, and hence to the distributions themselves. Since
the optimal transport problem between normal distributions has a closed-form so-
lution [18], one can then define it as the solution to the sample-based problem
between fxigNx

iD1 and fyigNy

iD1.
However, it is generally difficult both to select a parametric model for the un-

known density functions and to do an accurate density estimation with limited sam-
ple size. These concerns, common to many statistical problems, make density es-
timation a not very favorable route, especially for problems in high dimensions.
Moreover, even if provided with good density estimates, we would still need to
solve the classical optimal transport problem numerically, since there is no closed-
form solution for the multidimensional problem between general measures.

A popular formulation of the optimal transport problem is the discrete formula-
tion. Suppose the underlying space X is discrete and the two distribution functions
are f�igNiD1 and f⇢j gNjD1. The Kantorovich formulation (2.2) can be written as

(3.4) minPN
iD1 ⇡ij D�jPN
j D1 ⇡ij D⇢i

NX

i;jD1
cij⇡ij ;

also known in image processing as the earth mover’s problem [33]. This fits well
imaging applications in which the input (an image) can be naturally represented as
a discrete distribution. Yet this is not true for general random sample sets. One
disadvantage of the discrete form (3.4) is that its optimal transfer plan is not neces-
sarily a map as in the classical case. On the other hand, to apply the discrete form
to our problem, we need to properly discretize the problem first. As discussed in
Section 4.2, this is not always a trivial task.

To summarize, properly converting the sample-based problem to either classical
problems or to a discrete formulation are nontrivial tasks. In this paper, we will
instead formulate the problem directly in terms of sample sets.

To define an optimal map f directly from the two finite sample sets fxigNx

iD1 and
fyigNy

iD1, we first need to redefine the constraint f]�1 D �2 so that it makes sense
for samples. The statement that f pushes �1 to �2 can be informally paraphrased
as ff.xi /gNx

iD1 and fyigNy

iD1 are drawn from the same distribution. Since the under-
lying distribution is unknown and hard to estimate, we would like to develop an
equivalence relation that can be directly verified from sample sets.

We propose the following equivalence relation that compares sample sets through
feature functions:
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DEFINITION 3.1 (Sample-based equivalence). We say that a sample set fxigNx

iD1
is sample-based equivalent to fyigNy

iD1 with respect to a set of feature functions
fFj .x/gMjD1 W Rd ! R if

(3.5)
1

Nx

NxX

iD1
Fj .xi / D 1

Ny

NyX

jD1
Fj .yi /; j D 1; 2; : : : ;M:

We denote this equivalence relation by

(3.6) fxigNx

iD1 ⇠ fyigNy

iD1:

Similar ideas have appeared in different contexts to compare measures and sam-
ple sets, for instance, in the MaxEnt framework of [7] and in the constrained density
estimation technique of [24].

One interpretation of the sample-based equivalence arises from the Monge-
Ampere equation (2.11). If we replace the test function h.x/ in (2.11) by a feature
function and substitute the integrals over measures by the corresponding empirical
means, we obtain

(3.7)
1

Nx

NxX

iD1
Fj .r�.xi // D 1

Ny

NyX

iD1
Fj .yi /; j D 1; 2; : : : ;M;

which is equivalent to fr�.xi /gNx

iD1 ⇠ fyigNy

iD1.
Using the above as constraints on the function �.x/, the sample-based optimal

transport problem can be cast as the following optimization problem:

(3.8) min
fr�.xi /gNx

iD1⇠fyi gNy
iD1

NxX

iD1
kr�.xi / � xik2;

In the above problem we substitute the transportation cost by the empirical cost
on the sample set. A closer look at (3.8) reveals that some further specifications are
needed. If the function space for � is not further constrained, the values of r�.xi /
for different xi are uncorrelated. In addition, for locations x 62 fxigNx

iD1, the value
of r�.x/ is not specified or controlled by the optimization problem (3.8). To solve
this problem, we constrain � to lie in a finite-dimensional space:

(3.9) �.x/ D kxk2
2

C
MX

jD1
sjFj .x/:

The kxk2=2 term is included so that when all the sj are zeros �.x/ corresponds to
the identity map.

To summarize, we define below the sample-based Monge-Ampere equation and
the sample-based optimal transport problem:
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DEFINITION 3.2 (Sample-based Monge-Ampere equation). For two sample sets
fxigNx

iD1 and fyigNy

iD1 and a given set of C 1 feature functions fFj .x/gMjD1, we say
a function �.x/ is a solution to the sample-based Monge-Ampere equation if �.x/
satisfies (3.9) and fr�.xi /gNx

iD1 ⇠ fyigNy

iD1.

DEFINITION 3.3 (Sample-based optimal transport). For two sample sets fxigNx

iD1
and fyigNy

iD1 and a given set of feature functions fFj .x/gMjD1, the optimal map f
from fxigNx

iD1 to fyigNy

iD1 is defined as f.x/ D r�⇤.x/, where �⇤ is the solution to
the sample-based Monge-Ampere equation that minimizes

(3.10)
NxX

iD1
kr�.xi / � xik2:

Expanding � as a linear combination of the feature functions as base functions
can be interpreted as applying a finite element method to the classical Monge-
Ampere equation (2.10). There is a clear correspondence between the classical
and sample-based Monge-Ampere equation: when the two measures �1 and �2
are known, the classical solution must satisfy (2.11) for all continuous functions h.
When we only have finite sets of samples fxigNx

iD1 and fyigNy

iD1, the sample-based
solution must lie in a prescribed finite-dimensional space and satisfy (3.7) for all
feature functions.

As in the classical setting, once the sample-based optimal transport problem is
defined, we can extend it to the barycenter problem:

DEFINITION 3.4 (Sample-based barycenter problem). GivenK sample sets fxki gNk

iD1,
k D 1; 2; : : : ; K, positive weights w1; w2; : : : ; wK , .

PK
kD1wk D 1/ and a fixed

parameter Ny , we call a sample set fyigNy

iD1 the barycenter if it minimizes

(3.11)
KX

kD1
wk

NyX

iD1
kr�k.yi / � yik2;

where fr�k.yi /gNy

iD1 ⇠ fxki gNk

iD1 for k D 1; 2; : : : ; K.

Instead of a barycenter measure ⌫, in the sample-based formulation the target
is a sample set fyigNy

iD1, depending on the parameter Ny , the sample size of the
barycenter.

If we set Ny D 1 and consider the single feature function

(3.12) F.x/ D x;
the solution is given by

(3.13) y1 D
KX

kD1
wk

1

Nk

NkX

iD1
xki ;
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the weighted average of the barycenters of the given sample sets. With Ny > 1
and more general feature functions, the solution captures more detailed structures
in the data and becomes harder to solve. We discuss properties of the sample-based
formulation in the next subsections.

3.2 The Solution of the Local Sample-Based Optimal Transport Problem
As in the classical Monge-Ampere equation, the sample-based version can have

multiple solutions; even though there are exactly M unknowns fsj gMjD1 to be
solved from the M equations (3.7), the feature functions are typically nonlinear.
To derive all the solutions and figure out which one gives the smallest transporta-
tion cost is computationally intractable. In addition, nonlinearity can lead to the
nonexistence of solutions.

However, when the two sample sets are close to each other, we will be able not
only to guarantee the existence of a solution but also find the global minimizer of
the objective function. We call this type of problems “local sample-based optimal
transport problems.”

To state the full theorem, we first introduce some notation:
Denote by F W Rd ! RM the feature function vector:

(3.14) F.x/ D

0

BBB@

f1.x/
f2.x/
:::

fM .x/

1

CCCA
:

We define the matrices Ai 2 RM⇥d and A 2 RM⇥dNx by

Ai D rF.xi /; i D 1; 2; : : : ; Nx;

and

(3.15) A D
�
A1 A2 � � � ANx

�
:

Denote the feature values of the two sample sets by column vectors a;b 2 RM :

(3.16) a D 1

Nx

NxX

iD1
F.xi /; b D 1

Ny

NyX

iD1
F.yi /:

Inspired by the sample-based Monge-Ampere equation, define G W RM ! RM :

(3.17) G.s/ D 1

Nx

NxX

iD1
F.xi C sT Ai /:

THEOREM 3.5. Assume that A has full row rank. Then there exist an open set U
around 0 and an open set V around a such that

(I) G W U ! V gives a bijection between U and V . Thus for all b 2 V ,
the solution to the sample-based Monge-Ampere equation exists and is
unique.



SAMPLE-BASED OPTIMAL TRANSPORT 1607

(II) For all b 2 V , we can define a map �⇤ through (3.9) with s⇤ D G�1.b/.
Then �⇤.x/ gives the global minimum of the sample-based optimal trans-
port problem.

(III) For a fixed compact set X ⇢ Rd , if all feature functions are C 2 functions
in X , �⇤.x/ is convex in X .

Before giving the proof, we interpret the meaning of the theorem. In contrast to
the situation in the general, nonlocal case, Theorem 3.5 establishes the existence
of the sample-based Monge-Ampere solution and states that the local solution is
the minimizer of the nonlinear global optimization problem (3.10). In addition,
the convexity of the optimal �⇤ is also guaranteed when the feature functions’
Hessian matrices are uniformly bounded, which corresponds to a key property of
the solution to the classical quadratic optimal transport problem.

Other conditions can be substituted for the compactness of set X in (III). For
instance, we can choose X D Rd and enforce that all the feature functions’ Hes-
sian matrices are uniformly bounded in Rd , from which we can prove the global
convexity of the optimal �⇤. We ask X to be compact in the main theorem because
the sample sets are finite, so it is reasonable to discuss properties of the optimal
map in a compact set.

The first requirement of the theorem is that A be full row rank. One necessary
condition for this is that

(3.18) M < dNx;

which loosely states that the number of feature functions should not exceed the
number of sample points. If this is not satisfied, we are overfitting and no longer
have Theorem 3.5.

The other requirement is that the two sample sets should be close to each other,
measured by the feature vectors they yield. The closeness of sample sets coincides
with the concept of “local optimal transport” introduced in the theoretical algorithm
section. As we will see in the next section, using a solver for the local sample-based
Monge-Ampere equation as the black box solver in the algorithms, we can adapt
all the theoretical algorithms to solve practical sample-based problems.

The theorem guarantees the existence of an open set V . The size of V represents
how close the feature vector b needs to be to a for the theorem to hold. An estimate
of the size of V can be found by combining the estimates for V1, V2, and V3 in the
proof below. The upper bound on the size of V1 is essentially a bound on the
size of the neighborhood on which the function is invertible. Such an estimate
can be derived when the Jacobian matrix is Lipschitz—see, for instance, theorem
2.9.7 in [19]. For V2 and V3, the bounds can be computed from their definitions
(3.23) and (3.29). In this article we do not give an explicit bound for the size of V .
However we will discuss how to ensure that b � a is small enough in practice
(Section 3.3). For further discussion, we refer readers to Section 5.
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PROOF OF THEOREM 3.5. We would like to use the inverse function theorem
to prove (I). For the function G defined in (3.17), we have G.0/ D a. To apply the
inverse function theorem, we verify that the Jacobian matrix at s D 0 is invertible.

(3.19)
@G.s/
@ s

D 1

Nx

NxX

iD1
rF.xi C sT Ai /AT

i ;

so

(3.20)
@G.0/
@ s

D 1

Nx

NxX

iD1
AiAT

i D 1

Nx
AAT:

Since A is full row rank, the Jacobian matrix is positive definite, thus invertible.
By the inverse function theorem, there exists an open set U1 around 0 and an open
set V1 around a such that G gives a bijection between U1 and V1.

Thus as long as b 2 V1, there exists an s⇤ satisfying

(3.21) s⇤ D G�1.b/:
The corresponding �⇤ is the local solution for the sample-based Monge-Ampere
equation.

For (II), we compute the objective function in (3.10):

(3.22)
NxX

iD1
k�⇤.xi / � xik2 D

NxX

iD1
k sT Aik2 D sT AAT s :

Since AAT is positive definite, it provides a metric for RM . Then there exists ı > 0
such that

(3.23) U2 WD
˚
s j

p
sT AAT s < ı

 
⇢ U1:

Defining V2 D G.U2/, we have that for any b 2 V2, s⇤ D G�1.B/ is the unique
point inU2 that solves G.s/ D b. Thus s⇤ gives the global minimum of the sample-
based optimal transport problem.

For (III), we first claim that the L2 norm of all feature functions’ Hessian matri-
ces are uniformly bounded on X ; i.e., there exists a finite number C such that for
all x 2 X and j ,

(3.24) kHFj .x/k2 < C:
Since HFj .x/ is a continuous function on the compact set X , and

(3.25) kHFj .x/k2 D max
ktkD1

kHFj .x/tk;

kHFj .x/k2 is also a continuous function of x. From the compactness of X , there
exists a constant Cj such that

(3.26) kHFj .x/k2 < Cj 8x 2 X :

We can then set C D maxj Cj and establish the uniform boundedness of the Hes-
sian matrices.
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Compute the Hessian matrix of �⇤,

(3.27) H�⇤.x/ D I C
MX

jD1
s⇤
j HFj .x/:

Since

(3.28)
����
MX

jD1
s⇤
j HFj .x/

����
2


MX

jD1
ks⇤
j HFj .x/k2  Ck s⇤ k1;

if we constrain s⇤ such that Ck s⇤ k1 < 1, H�⇤.x/ is invertible. Since k � k1 also
gives a metric on RM , using the same argument we can define U3 and V3 that
guarantee that �⇤ is convex on X :

(3.29) U3 WD
⇢

s
ˇ̌
ˇ k s k1 <

1

2C

�
⇢ U2; V3 D G.U3/:

This concludes the proof of (III). ⇤

3.3 Sample-Based Optimal Transport and Barycenter Algorithms
In this section we adapt the theoretical algorithms introduced in Section 2.2 by

using the local solution theorem in Section 3.2 to solve sample-based problems.
Theorem 3.5 guarantees that the local solution to the sample-based Monge-

Ampere equation (3.7) is the solution to the sample-based optimal transport prob-
lem. In practice, we use a standard iterative nonlinear system solver, such as a trust
region method [11] or the Levenberg-Marquardt method [28], to solve the system
(3.7). We set the initial point of the numerical algorithm to s D 0; thus the solution
given by the solver, if successful, will be the local solution sought.

The theoretical algorithms TOT and CTB introduced in Section 2.2 are based
on a black box solver for the local optimal transport problem. This corresponds
exactly to the local sample-based problem and the nonlinear system solver. Thus
if we use the nonlinear system solver to solve local problems in the theoretical
algorithms, we can extend the algorithms to solve sample-based problems.

While the theoretical algorithms can be naturally extended to the sample-based
case, the latter requires the specification of feature functions. These can be defined
by the user, based on expert knowledge of the nature of the sample sets, which
gives great flexibility to the sample-based formulation. We devote the next section
to discuss some general ways of selecting feature functions.

To complete the description of the algorithm, we need to further specify initial
sets and stopping criteria.

For the initial sets in the SOT algorithm, we need to ensure that fxk�1
i gNk�1

iD1 and
fxki gNk

iD1 are close to each other so that Theorem 3.5 holds for the subproblem. We
first assign to each point xi a random point zi in the set fyigNy

iD1. Then we use step 5
of the SOT algorithm to define all the initial sets. With K large enough, we can
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Algorithm 7 Sample-Based Optimal Transport Algorithm (SOT)

(1) Let fx0i g
Nx

iD1 D fxigNx

iD1 and fxKi gNy

iD1 D fyigNy

iD1. Set initial sample sets
fxki gNx

iD1 (k D 1; 2; : : : ; K � 1);
(2) Select a set of feature functions fFj .x/gMjD1;
(3) Set the current set fzigNx

iD1 D fx0i g
Nx

iD1;
(4) For k D 1; 2; : : : ; K, solve the sample-based optimal map f from fzigNx

iD1
to fxki gNx

iD1 using a standard nonlinear system solver and update fzigNx

iD1
through

(3.30) fzigNx

iD1 D ff.zi /gNx

iD1I
(5) For k D 1; 2; : : : ; K � 1, update fxki gNx

iD1 through

(3.31) fxki gNx

iD1 D
⇢
K � k
K

x0i C k

K
zi
�Nx

iD1
and go to step 3.

Algorithm 8 Composite Sample-Based Barycenter Algorithm (CSB)

(1) Set the initial sample set fyigNy

iD1;
(2) Select a set of feature functions fFj .x/gMjD1;

(3) Run steps 1, 3, and 4 of SOT once for each pair .fyigNy

iD1; fxki gNk

iD1/ to map
fyigNy

iD1 to a new set fzki gNy

iD1;
(4) Update fyigNy

iD1 through

(3.32) fyigNy

iD1 D
⇢ KX

kD1
wk zki

�Ny

iD1
:

(5) Run steps 5, 3, and 4 of SOT once for each pair .fyigNy

iD1; fxki gNk

iD1/ to
update fzki gNy

iD1 and go to step 4.

guarantee that every pair of sample sets gives close feature vectors. For simplicity,
we use equal weights 1

K .
For the CSB algorithm, the initial set can be chosen arbitrarily. In practice, we

choose the set to be identical to one of the sets given.
We stop the algorithm when an iteration does not significantly change the map.

More specifically, in the SOT algorithm we compare the images of fxigNx

iD1 before
and after one iteration. If

(3.33)
1

Nx

NxX

iD1

��zbefore
i � zafter

i

��2 < ";
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we stop the algorithm. In the CSB algorithm, we compare the set fyigNx

iD1 before
and after one iteration; if

(3.34)
1

Ny

NyX

iD1

��ybefore
i � yafter

i

��2 < ";

we stop the algorithm.
The SOT and CSB algorithms can be directly applied to sample sets. Except

for the selection of feature functions, there are only four parameters. For both
algorithms, two of them are for the stopping criteria, one for the local nonlinear
system solver and the other the " introduced above. The third parameter is Ny , the
number of sample points sought from the barycenter. Finally, the fourth parameter
is K, the number of interpolant sample sets in the SOT algorithm (which is also
used in the CSB algorithm). K should be large enough so that every subproblem
is local so that it has a solution. In practice, we set K to an initial value K0; if
the local problem does not have a solution (a fact informed by the local nonlinear
system solver), we double the value of K and rerun the current iteration.

3.4 Selection of Feature Functions
Both the optimal map and the time complexity of the algorithms for the sample-

based optimal transport and barycenter problems are highly dependent on the choice
of feature functions. The more feature functions one uses, the richer the structure
of the optimal map r�.x/ (though one must be careful not to overfit the problem)
and the slower the algorithm.

Feature functions can be defined by the user, based on expert knowledge of the
nature of the sample sets. Feature functions constructed in this way can be very
informative and useful. We will discuss an example of problem-specific feature
functions in the numerical tests in Section 4.3.

In this section we introduce techniques to choose feature functions that are not
problem-specific, and attempt to automatically capture the most significant aspects
of the sample sets without requiring the user’s external insight.

Moments
The simplest feature functions are moments of the sample sets. Choosing for

feature functions the components of x:

(3.35) Fj .x/ D x.j /; j D 1; 2; : : : ; d;

the sample-based Monge-Ampere equation just matches the means of fr�.xi /gNx

iD1
and fyigNy

iD1. Since rF.x/ D I, the corresponding function space of the map only
contains translations,

(3.36) r�.x/ D x C s;

which shift the first sample set so as to match the mean of the second sample set.
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Choosing for feature functions the first and second moments,

Fj .x/ D x.j /; j D 1; 2; : : : ; d;(3.37)

F .2n�iC1/i
2 Cj .x/ D x.i/x.j /; 1  i  j  d;(3.38)

the sample-based Monge-Ampere equation matches the means and covariance ma-
trices of fr�.xi /gNx

iD1 and fyigNy

iD1. Suppose the means of fxigNx

iD1 and fyigNy

iD1
are m1 and m2 and the covariance matrices are †1 and †2. The solution of the
sample-based Monge-Ampere equation can be written as

(3.39) r�.x/ D s1C.x � m1/S;

where s1 2 Rd is a row vector and S 2 Rd⇥d is a symmetric matrix. From the
Monge-Ampere equation, they satisfy

s1 D m2; S†1S D †2:

Solving the above yields the optimal linear map:

(3.40) r�⇤.x/ D m2 C .x � m1/†
�1=2
1

�
†
1=2
1 †2†

1=2
1

�1=2
†

�1=2
1 ;

which agrees with the optimal map solution between multivariate normal distribu-
tions [18]. For these moment functions, the sample-based Monge-Ampere equa-
tion, because of linearity, has a unique solution.

Since in this case the solution has a closed form, we do not need to use the SOT
algorithm to solve the sample-based optimal transport problem. Instead, we can
simply compute the empirical mean and covariance matrices of the two sample
sets and apply (3.40).

In the same setting for the sample-based barycenter problem, when the mean
and covariance matrix of the kth sample set are mk and †k , we can use the BTB
algorithm to find the barycenter. Using the closed-form solution (3.40), we have
the following adaptation of the BTB algorithm 9.

This algorithm can also be viewed as an algorithm iterating over the mean my

and covariance matrix †y . After step 4 of each iteration, we can compute the new
mnew
y and †new

y with respect to the old ones,

mnew
y D

KX

kD1
wkmk;(3.45)

†new
y D †�1=2

y

✓ KX

kD1
wk

�
†1=2y †k†

1=2
y

�1=2
◆2
†�1=2
y :(3.46)

The fixed point of this algorithm satisfies

(3.47) †y D
KX

kD1
wk

�
†1=2y †k†

1=2
y

�1=2
;



SAMPLE-BASED OPTIMAL TRANSPORT 1613

Algorithm 9 Fixed-Point Barycenter Algorithm

(1) Set the initial sample set fyigNy

iD1;
(2) Calculate the empirical mean and covariance matrix of fyigNy

iD1,

my D 1

Ny

NyX

iD1
yi ;(3.41)

†y D 1

Ny

X

iD1
.yi � my/

T.yi � my/I(3.42)

(3) Define the optimal maps from fyigNy

iD1 to fxki gNk

iD1 (k D 1; 2; : : : ; K) using
(3.40):

(3.43) r�k.y/ D mk C .y � my/†
�1=2
y

�
†1=2y †k†

1=2
y

�1=2
†�1=2
y I

(4) Update fyigNy

iD1 using

(3.44) yi D
KX

kD1
wkr�k.yi /; i D 1; 2; : : : ; Ny ;

and go to step 2.

which agrees with the solution of barycenter problems of multiple normal distribu-
tions [2]. The iteration formula also agrees with the fixed-point iterative methods
found in [3].

We can see that using first and second moment functions as feature functions
gives us exact solutions of the optimal transport and barycenter problems with
normal distributions. Moreover, it gives an iterative algorithm to solve the sample-
based barycenter problem. The other advantage of the sample-based formulation
is that we can use this solution on arbitrary sample sets without the assumption of
normal distributions. The result is justified as a specific solution when only the first
and second moments are chosen as feature functions.

Kernel Functions
Another type of feature function can be used to characterize the local structure

of a sample set. For a given location z0 and a bandwidth parameter h, we can
define a kernel function F.x/ such that

(3.48) F.x/ D K
⇣x � z0

h

⌘
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where K.x/ is a nonnegative C 1 function that vanishes as x tends to infinity. The
mean of F.x/ over a sample set fxigNx

iD1 is

(3.49)
1

Nx

NxX

iD1
K
⇣xi � z0

h

⌘
;

which can be interpreted as the value of a kernel density estimator at point z0.
Thus if the feature function set consists of kernel functions at .z0; h0/; .z1; h1/; : : : ;
.zM ; hM /, the sample-based equivalence 3.1 between two sample sets corresponds
to their density functions from kernel density estimation agreeing at the locations
fzj gMjD1.

One natural candidate for the kernel function K.x/ is the Gaussian kernel

(3.50) Kh.x/ D 1
p
.2⇡/d

exp
✓

�kxk2
2h2

◆
;

which we have used to build feature functions in most of the numerical tests in
Section 4.

The remaining choice to make is the location/bandwidth set f.zj ; hj /gMjD1. The
simplest strategy is to choose for fzj gMjD1 a regular grid in sample space. This is
shown to work well in applications in two subsubsection of Section 4.3.

Data-driven approaches can better inform the choice of f.zj ; hj /gMjD1. For in-
stance, one might want to place more kernels in areas with a higher density of
points. One appropriate technique is the mean-shift algorithm [10], which locates
local maxima of the probability density underlying data.

Specifically, for all the input sample sets, we choose a set of bandwidth param-
eters fhj g. For each hj , we use the mean shift algorithm on all the sample sets to
locate a set of local maxima fzij g. We then construct kernel functions from all pairs
of .zij ; hj / to form a set of feature functions. This scheme is applied in Section 4.2.

Feature Functions from Feature Extraction Techniques
Feature extraction techniques seek to extract as much information as possible by

using a minimum number of functions.
One such technique is principal component analysis. Consider the optimal trans-

port problem between two sample sets in Rd . As mentioned, we can use all the
first moment functions to shift one sample set to the other, which requires d fea-
ture functions. As an alternative, we can perform PCA on the sample sets and only
select the projections on the first few principal directions as feature functions.

A more useful generalization of PCA is kernel PCA [41]. With a kernel function,
kernel PCA can capture nonlinear structures in sample sets.

4 Numerical Examples
In this section, we apply SOT and CSB algorithms on both synthetic and real

examples. We start with optimal transport between normal distributions. We use
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these examples to assess the performance of the algorithms, since the true solutions
are known in closed form.

Then we present a detailed comparison between the sample-based method and
classical discrete optimal transport algorithms on a one-dimensional example. We
show that when the data consists of i.i.d. sample sets, sample-based optimal trans-
port outperforms the others in both accuracy and computational cost.

Finally, we apply sample-based algorithms to more general sample sets, includ-
ing Gaussian mixture models and shape and color transfer problems. The under-
lying distributions in these applications include multimodality, complex geometry,
three dimensionality, and rich structure.

4.1 Optimal Transport and Barycenter Problems of Normal Distributions
Quadratic optimal transport and barycenter problems with normal distributions

have closed-form solutions (Section 3.4). This provides us with good synthetic
examples to assess our methods and perform error analysis.

Optimal Transport Problem between Normal Distributions
Consider the two-dimensional normal distributions N .m0; †0/ and N .m1; †1/

with

.m0;m1/ D ..0; 0/; .5; 5//; .†0; †1/ D
✓✓

2 �1
�1 2

◆
;

✓
2 1
1 2

◆◆
:

Drawing 200 sample points from each distribution, we obtain the datasets shown
in Figure 4.1a.

To solve the corresponding sample-based optimal transport problem, we apply
the SOT algorithm 7 with first and second moment functions as feature functions.
In the algorithm, we set the number of interpolant sample setsK to 12 and the error
limit " in (3.33) to 10�4.

Figure 4.1b shows the trajectories of 15 random sample points from the sample
set of �0. We can see that all the trajectories are straight lines with equal distance
between interpolant sample sets, a property of McCann interpolants.

Figure 4.1c displays the convergence of the SOT algorithm. The error computed
is similar to (3.33),

(4.1)

p
1

Nx

NxX

iD1

��zji � z⇤
i

��2;

where zji is the map of xi after the j th iteration and z⇤
i is the optimal one. The

algorithm converges sublinearly and stops in only five iterations.
Figure 4.1d shows four interpolant sample sets z�t with t D 0:25; 0:5; 0:75; 1.

We can see the sample sets moving toward �1 and gradually changing shape.
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FIGURE 4.1. Application of the SOT algorithm with parameters K D
12, " D 10�4 to the optimal transport problems between two normal
distributions. (a) Sample sets drawn from distributions �0 and �1 re-
spectively. (b) Trajectories of 15 sample points from �0 to �1. (c) Em-
pirical L2 error defined in (4.1) after each iteration of SOT. (d) McCann
interpolant sample sets with t D 0:25; 0:5; 0:75; 1.

Barycenter of Normal Distributions
Consider a two-dimensional barycenter problem with five normal distributions

(Figure 4.2). For each of the 400-point sample sets, one can calculate the empir-
ical means and covariance matrices shown in Table 4.1. With finite sample sizes,
sample statistics only provides estimates for the unknown distribution parameters.
To analyze the convergence of our algorithms, we will ignore sample errors and
directly work with sample statistics. Statistics of the true barycenter measure �⇤
in Table 4.1 is calculated using (3.47) with the sample means and covariance ma-
trices.

We apply two barycenter algorithms to this problem: the CSB algorithm 8 and
the fixed-point barycenter algorithm 9.

There are several differences between these two algorithms. The fixed-point
algorithm is only applicable to normal distributions, as each iteration uses directly
the optimal transport solution for normal distributions (3.40). On the other hand,
the CSB algorithm solves general barycenter problems. In each iteration it does
not compute full optimal transport solutions but only performs one SOT update for
each subproblem.

As mentioned in Section 3.4, the fixed-point algorithm can be viewed as a basic
sample-based algorithm. If the optimal transport solution is unknown, it runs a full
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Distribution m1 m1 †11 †22 †12

�1 1.22 4.63 0.59 0.25 -0.33
�2 4.73 -1.43 0.26 0.11 0.12
�3 -1.87 -4.62 0.32 0.57 0.27
�4 3.47 -4.83 0.55 0.30 0.15
�5 -2.99 -2.75 0.51 0.46 0.09
�⇤ 0.91 -1.80 0.38 0.27 0.07

TABLE 4.1. Sample statistics of five normal distributions in the
barycenter problem example.

SOT algorithm in every iteration, which typically consists of several SOT updates.
This indicates that the fixed-point algorithm should generate much better updates
per iteration.

In the experiment, we set K D 12 and " D 10�4 for the CSB algorithm; the
feature functions chosen are the first and second moment functions. The resulting
barycenter sample set �⇤ is shown in Figure 4.2a.

Figure 4.2b displays the solution’s accuracy after every iteration, measured as
the Wasserstein distance between normal distributions. We can see that both algo-
rithms converge linearly and generate accurate solutions in only a few iterations.
While the fixed-point barycenter algorithm does converge faster due to its addi-
tional normal distribution assumption, the CSB algorithm has a comparable con-
vergence rate, even though it only performs one SOT update in each iteration.

4.2 Detailed Analysis of a One-Dimensional Optimal Transport Problem
In this section, we perform a careful comparison between sample-based optimal

transport algorithms and existing ones. Specifically, we compare the discrete linear
programming method with the SOT algorithm 7 with meanshift feature functions.

We have so far ignored sample error: with finite sample sets, the true solution
between unknown distributions is unavailable. The hope is that the solution de-
rived from sample sets is close to the unknown truth when the sample size is large
enough.

To measure the quality of an algorithm, we compute the error between the true
map f ⇤.x/ of distributions and the map f .x/ derived from an instance of finite
sample sets:

(4.2) e.f / D E.f .x/ � f ⇤.x//2:

Here the random variable x follows the source distribution. Then we compute the
expected error Ee.f / by averaging e.f / over multiple instances of sample sets.

We can see that in order to compute Ee.f /, we need to fix both source and
target distributions and generate multiple sample set instances as inputs. The other
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FIGURE 4.2. Application of the CSB algorithm with parameters K D
12, " D 10�4 to a barycenter problem between five normal distributions.
(A) Sample sets drawn from the �i .i D 1; : : : ; 5/. (B) Errors after each
iteration of the CSB algorithm and fixed-point barycenter algorithm. The
error is defined as the Wasserstein distance between the true and the
estimated distribution.

requirement is that we need to be able to compute the true solution between general
continuous distributions, which is why we work on one-dimensional distributions.

For meaningful comparison, we create synthetic distributions such that neither
method is able to exploit their specific forms. The source distribution chosen is the
Gaussian mixture model (Figure 4.3a):

(4.3) p.x/ ⇠ 1

2


N

✓
2

9
;
2

9

◆
CN

✓
7

9
;
1

9

◆�
;

while a beta distribution is picked as target:

(4.4) q.x/ ⇠ Beta.2; 5/:

This example requires the algorithms to correctly transfer a symmetric, two-mode
distribution into a one-mode, asymmetric one.

We now specify the discrete linear programming method to which we compare
the SOT algorithm. As mentioned in Section 3.1, in order to use the linear program-
ming method on sample-based problems, we first need to construct histograms
from the sample sets to provide as inputs to the linear programming algorithm.

Specifically, for both the source and target sample sets, we divide their corre-
sponding domains into M equal-sized bins, denoting the bin centers by si and tj ,
and the corresponding histogram distributions by pi and qj (Figures 4.3a and 4.3b).
Defining the cost function between source bin i and target bin j as cij D .si�bj /2,
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(A) Sample sets. (B) Destination distribution.
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FIGURE 4.3. One-dimensional synthetic example. Both sample sets
have 100 sample points. The number of bins is 10 for both his-
tograms. The SOT solver uses the mean shift methodology for fea-
ture selection with parameter h D 0:1; 0:5. (A) Gaussian mixture
1
2 ŒN.

2
9 ;
2
9 / C N.79 ;

1
9 /ç. (B) Beta distribution Beta.2; 5/. (C) True op-

timal map and solutions from the discrete solver and the SOT algorithm.

we solve the following linear programming problem:

(4.5) min
⇡ij �0

MX

i;jD1
cij⇡ij s.t.

MX

iD1
⇡ij D qj ;

MX

jD1
⇡ij D pi :

Since the solution ⇡ij of the above optimization does not automatically yield a
map, we follow the natural averaging scheme: if sample point x is in the i0th bin
of the source distribution, we define the map f as the conditional expected value
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FIGURE 4.4. Es.f / comparison between the discrete and the SOT
solver. The Es.f / are averaged over 500 tests for each case. The sam-
ple sizes chosen for both sample sets are 50; 100; 200; 400. In every case,
the discrete solver is used with number of bins 5; 10; 20; 40; 80; 160. The
SOT solver is used with mean shift feature selection with bandwidth pa-
rameter h D 0:1; 0:5.

of the solution:

(4.6) f .x/ D 1

pi0

MX

jD1
⇡i0j tj :

To compare the two algorithms under different sample variances, we choose as
sample sizes 50; 100; 200; 400. For the discrete solver, the main parameter is the
number of bins used to obtain the empirical pdf; we useM D 5; 10; 20; 40; 80; 160
for all cases. Notice that the number of variables in the corresponding linear pro-
gramming problem is the square of the bin numbers (i.e., 25 forM D 5 and 25 600
for M D 160.) For the SOT algorithm with mean shift feature functions, we fix
the mean shift bandwidths h D 0:1; 0:5, since this parameter describes the distri-
bution rather than the sample set. The number of variables (feature functions) in
the corresponding nonlinear optimization problem is then fixed for a given sample
set and is shown in the caption of Figure 4.4.

As shown in Figure 4.4, the SOT algorithm outperforms the discrete linear pro-
gramming algorithm in every case (different sample sizes and different number of
bins). From the computational perspective, the SOT algorithm uses no more than
30 variables in the optimization problem, while the discrete solver requires many
more to yield solutions of similar quality.

Notice that, with larger sample size, the value of Ee.f / decreases, which is
likely due to the component of Ee.f / arising from the sample variance of the
sample sets. Another observation is that the discrete solver requires larger bin
numbers to achieve comparable Ee.f / to the SOT solver. Hence the user needs
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to tune the number of bins in the solver to the different sample sizes. On the
other hand, the SOT solver has as the only parameter the bandwidth h, which gives
uniformly good results for all sample sizes in our example.

4.3 Optimal Transport between General Distributions
The prior subsections examined sample-based algorithms applied to problems

with closed-form solutions. We now apply these algorithms to more challenging
and practical problems to see the broad range of maps that the algorithm can gen-
erate.

Shape Transforms
Optimal transport and barycenter problems have been used to solve shape trans-

form problems [42]. The task is to find maps or barycenters for different shapes in
two and three-dimensional spaces.

The application starts by viewing a shape as a uniform distribution supported on
a given domain �. To transfer one shape to the other is equivalent to solving the
optimal transport problem between the corresponding uniform distributions.

One of the advantages of the optimal transport methods is that they give one-
to-one point maps between shapes and also intermediate shapes (interpolant and
barycenter measures). This is particularly true in the sample-based setting, since
the sample-based algorithm gives analytical map functions, which directly provide
maps of arbitrary points without any further averaging scheme. Thus it is straight-
forward to derive intermediate shapes from the optimal solution.

An important issue to address is the representation of shapes in the sample-
based setting. For source shapes, we generate sample sets through equal-distance
grid points (e.g., Figure 4.5). This simple process allows us to control the sample
size by tuning the grid size. Choosing larger sample sizes allows us to represent
more detailed structure in a shape. For instance, to represent the “bird” shape in
Figure 4.6, we used 5000 sample points, while for the ring (Figure 4.5d) we used
only 1000 sample points.

On the other hand, we need to develop a postprocessing procedure to recover
shapes from finite sample sets. We first generate a kernel density estimator zp.x/
from the sample set. Then we construct the shape Å� by adopting as boundary a
level set with relatively large zp.x/.

In this article, we use Gaussian kernels for kernel density estimation. The band-
width is chosen to be half of the rules of thumb bandwidth [21] to avoid blurring
the shape’s boundary. Then we define the following as the output shape:

(4.7) z� D
⇢

xj zp.x/ > 1

2
max

x
zp.x/

�
:

In this section, all shape transforms are carried out using the preconditioning
procedure in [23] and the SOT algorithm 7. The feature functions are chosen as
Gaussian kernels with centers on a 7 ⇥ 7 grid with two bandwidths h D 0:5; 1.
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FIGURE 4.5. Optimal transport from an ellipse sample set (A) to a ring
sample set (D). (B) and (C) are intermediate sample sets with t D 1

3 ;
2
3 .

The sample set in (A) is colored to identify the trajectory of four subsets.

In Figure 4.5, we transfer an ellipse (Figure 4.5a) to a ring (Figure 4.5d). Both
sample sets consist of approximately 1000 grid points. We color the source sample
sets with four different colors to show what each subset transforms into in the
process. Interpolant sample sets are shown for t D 1

3 ;
2
3 (Figures 4.5b and 4.5c).

To recover shapes from sample sets, we implement the postprocessing step on
all the sample sets. The corresponding shapes in Figure 4.5 are recovered and
shown in the first row of Figure 4.6.

Three additional shape transforms are shown in Figure 4.6. We can see that
shapes with different orientations, different topologies, and sharp corners can be
effectively mapped into each other by the algorithm.

Color Transfer
Next we apply sample-based algorithms to color transfer problems [13, 38, 46],

which have as a general objective to recolor a source image so that its colors re-
semble those of a target image. One can view the set of colors of an image as a
distribution and find the optimal map between the source and the target, using the
earth mover’s distance (EMD) [39] as a quantification of the transfer required.
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FIGURE 4.6. Each row shows a two-dimensional shape transform and
intermediate shapes. The shapes are generated from the sample sets us-
ing the postprocessing procedure. Intermediate shapes are shown for
t D 0:25; 0:5; 0:75.

We follow the algorithm framework in [37], substituting the core optimal trans-
port step by the SOT algorithm 7.

To represent an image, one assigns to each pixel a 5-dimensional vector x D
.xs; xc/, in which xs D .x; y/ represents the pixel location and xc D .l; a; b/
represents color in the CIELAB color space. Thus the sample set S D fxig of all
pixels is a full representation of the corresponding image.

The first step of the color transfer meta-algorithm is spatiocolor clustering. Us-
ing the superpixel method [1], pixel set S is clustered into several subsets Sj , where
each Sj has mean vector xxj D .xxj ; xyj ; xlj ; xaj ; xbj / and empirical covariance matrix
†j . Then we define a new weighted sample set zS D fxxj g with weights jSj j=jSj as
a more compact approximation to an image (e.g., Figure 4.7c).

There are two reasons for applying spatiocolor clustering. First, since we only
apply optimal transport on the color dimensions of sample sets, this step incorpo-
rates spatial information into the meta-algorithm. Second, compared to the original
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S , zS is a much smaller sample set. This makes the core optimal transport algorithm
much faster since the computational cost scales with the sample size.2

The second and core step is to apply an optimal transport algorithm to the
weighted sample sets. Define zSc 2 R3 as the set of points in CIELAB color space
projected from the elements in zS . To find an optimal map T between zSc

source and
zSc

target of source and target images, we apply the preconditioning procedure along
with the SOT algorithm.

The third step is image synthesis. As the optimal map f above only maps mean
color vectors, one needs to construct a color map for all pixels in the original set S
that incorporates geometrical information.

As in [43], we define a similarity metric !j .x/ using Gaussian kernels:

(4.8) !j .x/ D exp
✓

�1
2
.x � xxj / z†j

�1
.x � xxj /T

◆
;

where f†j is a weighted covariance matrix defined by

(4.9) f†j D W†jW; W D diag.�s; �s; �c ; �c ; �c/:

Here �s; �c are parameters that control the strength of smoothing in the spatial and
color spaces, respectively.

For each pixel x, we define the map zT :

(4.10) zT .xc/ D
X

j

!j .x/T .xxcj /:

In the final step we apply iterative TMR filters [36] to the transferred image to
restore sharp details of the original image.

While we used the framework introduced in [37], there are several differences
in our implementation. First and foremost, we used the sample-based algorithm
instead of the relaxed optimal transport. Although no relaxation is mentioned di-
rectly, adopting the sample-based setting itself can be considered as a relaxation,
since in the sample-based setting we do not require source sample points to map to
the exact locations of target sample points, and using a finite set of feature functions
requires the distributions to match only in the desired subspaces.

The other difference is that we define optimal transport in CIELAB color space,
because the euclidean distance in CIELAB space better approximates the percep-
tual difference among colors [20].

For all the examples in this section, we use the superpixel method with the num-
ber of superpixels set to 2000 and the compactness parameter set to 2. For the SOT
algorithm we use Gaussian feature functions on a 5 ⇥ 5 ⇥ 5 grid with bandwidth
h D 1. In the image synthesis step we set �s D 10, �c D 1.

In Figure 4.7 we present step-by-step results of the full algorithm on the widely
used parrot image, comparing it to existing methods. We can see that the final
image Figure 4.7e preserves sharp features in the source image and is free of the

2 This is true both for sample-based algorithms and for the regularized optimal transport in [37].
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artificial defects in Figures 4.7f and 4.7g. This gain can be partially attributed to
the postprocessing step, although we can see that even without postprocessing Fig-
ure 4.7d is also very smooth in color. Notice that the sample-based algorithm makes
some choices of color transfer different from the algorithm in [37] (Figure 4.7h).
We can see that visually it is closer to the raw optimal transport in Figure 4.7f,
which suggests that the sample-based solution is closer to optimal in the optimal
transport sense. In Figures 4.7i, 4.7j, 4.7k, and 4.7l, source, target, and transferred
sample sets are projected to .l; a/ and .l; b/ spaces. While both source and target
sample sets have complex geometric features, the sample-based method is able to
optimally transfer one to the other.

In Figure 4.8 we present more examples of color transfer. The algorithm creates
reasonable results in all three examples and the transferred sample set in l-a does
agree with the target sample set. It is also worth noting that while the sample-based
approach transfers the color distribution, it doesn’t always create visually perfect
results. For instance, in the flower example the transferred figure has purple in
the background due to the fact that the purple color has more weights in the target
image than in the source image.

5 Conclusions and Future Work
This article introduces a new family of optimal transport and barycenter algo-

rithms for finite sample sets. Two features are unique to these algorithms. One
is that they solve the optimal transport and barycenter problems iteratively, by ap-
proximating an adaptive number of interpolant measures using key properties 2.3
and 2.4. In each iteration, the local updates alternate with a global update, in which
new sample sets are constructed as interpolants of the global map. The second fea-
ture is that the sample sets are compared with each other through a set of feature
functions, whose gradients also define the function space to which the maps con-
sidered are constrained.

Through synthetic examples, we found that these algorithms converge to the
optimal solution in just a handful of iterations. Also, the new algorithms give en-
couraging results in applications such as the shape transform and the color transfer
problems.

One possible extension is to develop other algorithms under the same theoreti-
cal framework: since we proved general convergence theorems for GDOT 2.7 and
GDB 2.9, which are not limited to the proposed SOT (7) and CSB (8) algorithms,
one can use these theorems to prove convergence for all those algorithms that meet
the bare requirements of an L-descending map (2.5). For instance, a useful exten-
sion of the SOT algorithm consists of choosing adaptively the time variables ti of
the interpolant measures. Since the amount of improvement in the transportation
cost of each interpolant segment can be different after applying a local update, it
is natural to put less effort into those segments of the interpolant that are closer to
convergence. This improvement can potentially speed up the SOT algorithm.
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(A) Source image. (B) Target image. (C) Space-color
clusters.

(D) Image synthe-
sis.

(E) Postprocessing. (F) [34]. (G) [32]. (H) [37].
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(I) Source sample set, .l; a/-space.
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(J) Source sample set, .l; b/-space.
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(K) Target and output sample sets, .l; a/-
space.
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(L) Target and output sample sets, .l; b/-
space.

FIGURE 4.7. Color transfer of parrot images by the SOT algorithm.

Several improvements can be made in the sample-based formulation. An ex-
tension of the sample-based equivalence (3.1) consists of relaxing the equality of
expected feature values, since exact equality is not a strict requirement in the pres-
ence of sample noise in the empirical expected values.
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FIGURE 4.8. More color transfer examples, with source images on the
top row, targets on the second row, and the results of transferring on the
third. The bottom row displays the sample points of the target and those
of the transformed source.

One important component of the algorithm is the selection of feature functions.
While we looked into several possibilities, including moments and kernel func-
tions, improvements could be made to better incorporate information from data,
especially when the dimensionality of the sample space is high.

Other extensions under development include applications to constrained den-
sity estimation and the computation of the sample-based barycenter of probability
measures conditioned on continuous variables.
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