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Energy spectra of the ocean’s internal wave field: theory and observations.
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The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean
and the observed deviations from it are shown to form a pattern consistent with the predictions of
wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum
constitutes an exact steady state solution of the corresponding kinetic equation.

Introduction. Internal waves are an important
piece of energy and momentum budgets for the earth’s
atmosphere and ocean. The drag associated with internal
wave breaking needs to be included in order to obtain ac-
curate simulations of the atmospheric Jet Stream [1] and
it has been argued that the ocean’s Meridional Overturn-
ing Circulation [2] is forced by the diffusion of mass [3]
associated with internal wave breaking [4] rather than by
the production of cold, dense water by convection at high
latitudes. Both circulations represent important pieces of
the earth’s climate system.

In a classical work [5], Garrett and Munk demonstrated
how observations from various sensor types could be syn-
thesized into a combined wavenumber-frequency spec-
trum, now called the Garrett-and-Munk (GM) spectrum
of internal waves. Consistent only with linear internal
wave kinematics, the GM spectrum was developed as an
empirical curve fit to available data. Even though devi-
ations have been noted near boundaries [6], and at the
equator [7], the last significant model revision [8,9] has
surprisingly stood the test of time. However, a review of
open ocean data sets reveals subtle variability in spectral
power laws. We show in this letter that predictions based
upon a weakly nonlinear wave turbulence theory are con-
sistent with both the high frequency—high wave number
limit of GM spectrum and the observed variability.

In this letter, we will consider only the high frequency—
high wave number limit of GM; for brevity, we shall de-
note this henceforth as GMj,. The GMy, is given by

E(m,w) ~ Nm 2w 2. (1)

Here E is the spectral wave energy density, N the buoy-
ancy frequency, m the vertical wavenumber, and w the
frequency. The total energy density of a wavefield is
E = [ E(m,w) dmdw.

The possibility that the internal wavefield might ex-
hibit a universal character represents an attractive theo-
retical target, and much effort (as reviewed by [10]) was
devoted to studying the issue of nonlinearity in the con-
text of resonant wave interactions. That line of work is

based on a Lagrangian description of the flow, with two
main approximations: that fluid particles undergo small
displacements, and that nonlinear interactions take place
on a much longer time—scale than the underlying linear
dynamics. An approximate kinetic equation describing
the time evolution of spectral wave energy was derived,
and it was shown [11] that the GM}, spectrum (1) was
close to being a stationary solution.

An alternative to the Lagrangian formulation, based on
a Hamiltonian description in isopycnal (density) coordi-
nates, was recently proposed [12]. This approach does
not invoke a small-displacement assumption and yields
a comparatively simple kinetic equation with an exact
steady power—law solution in the high frequency limit.
That steady state solution, [see (5) below] is close to the
GM,, spectrum (1), yet there is a noticeable difference.
Motivated by this difference, we tried to estimate the ac-
curacy of the GM}, power laws and thus reviewed extant
observations from the literature. In the process of analyz-
ing the data, we found that there was subtle variability in
the high wavenumber, high frequency spectrum, forming
a distinct pattern.

We then reexamined the kinetic equation of [12] and
found its full family of steady state solutions, of which the
solution reported in [12] is just one member. This family
of solutions compares well with the variability found in
the observations. Moreover, the GM}, spectrum (1) is a
member of this family, thus describing the GM}, spectrum
simply as an exact steady—state solution to the kinetic
equation derived in [12].

Hence, in this article we present evidence for variability
in the high frequency-high wavenumber open-ocean inter-
nal wavefield, and find that a wave turbulence approach
predicts that both GM}, itself and the observed variabil-
ity are stationary states of the kinetic equation. The
variability itself, and its likely roots in variable forcing,
Coriolis effects, underlying stratification and currents, as
well as the low frequency range of the energy spectrum,
are fundamental problems posing exciting challenges for
future research.



Overview of observations: a family of spectra.
Below we present a summary of historical oceanic internal
wave energy spectra. These observations are re-analyzed
to study whether the high-frequency, high-wavenumber
spectra may form a pattern. We review seven data sets
available in the literature. We shall present a detailed
analysis of these data sets elsewhere; here we just list
them along with their high—frequency, high-wave num-
ber asymptotics. Let us assume that, in this limit, the
three dimensional wave action n(k,m) can be approxi-
mated by horizontally isotropic power laws of the form

em = 1o k|7 [m[™ (2)

where k is the horizontal wave vector, k = |k| its modu-
lus, m vertical wavenumber and ng is a constant.

Using the linear dispersion relation of internal waves,
wk,m & |k|/m, this action spectrum can be transformed
from the wavenumber space (k,m) to the vertical wave-
number-frequency space (w,m) . Multiplication by the
frequency yields the corresponding energy spectrum,

B(m,w) oc w? " m? oY

The total energy of the wave field is then
E= /w(k,m)n(k,m) dkdm = /E(w,m) dwdm.

Below we list extant data sets with concurrent vertical
profile and current meter observations and some ma-
jor experiments utilizing moored arrays, along with our
best estimate of their high-wave-number high frequency
asymptotics (the order is chronological):

e The Mid-Ocean Dynamics Experiment (MODE),
March-July 1973, Sargasso Sea (26°0" N, 69°40" W):
m—2254,=16 [13];

e The Internal Wave Experiment (IWEX), 40 days ob-
servations in November-December 1973, Sargasso Sea
thermocline (27°44' N, 69°51’ W): k—24+04,=1.75 [14];
e The Arctic Internal Wave Experiment (AIWEX),
March to May of 1985, Canada Basin thermocline, (74°
N, 143 — 146° W): m~2150, =12 [15,16];

e The Frontal Air-Sea Interaction FExperiment
(FASINEX), January to June of 1986, Sargasso Sea ther-
mocline (27° N, 70° W): m 19 to =2.0,,=1.75 117 18],

e Patches Experiment (PATCHEX), 7.5 days during Oc-
tober of 1986, eastern Subtropical North Pacific, (34° N,
127° W) m—1.75w—1.65 to —2.0 [19]7

e The Surface Wave Process Program (SWAPP) ex-
periment, 12 days during March, 1990, eastern Sub-
tropical North Pacific thermocline, (35° N, 127° W):
m71.9w72.0 [20]7

e North Atlantic Tracer Release Experiment (NATRE),
February-October 1992, eastern Subtropical North At-
lantic thermocline, (26° N 29° W): m~=27w =06 (for
1 < w < 6cpd) [21].

These deep ocean observations (Figure 1) exhibit a higher
degree of variability than one might anticipate for a uni-
versal spectrum. Moreover, the deviations from the GMy
spectral power laws form a pattern: they seem to roughly
fall upon a curve with negative slope in the (z,y) plane.
We show in the next section that the predictions of wave
turbulence theory are consistent with this pattern.

A wave turbulence formulation for the inter-
nal wave field. In this section we assume that the
internal wave field can be viewed as a field of weakly
interacting waves, thus falling into the class of systems
describable by wave turbulence. Wave turbulence is a
universal statistical theory for the description of an en-
semble of weakly interacting particles, or waves. This
theory has contributed to our understanding of spectral
energy transfer in complex systems [22], and has been
used for describing surface water waves since pioneering
works by Hasselmann [23], Benney and Newell [24] and
Zakharov [25,26].

The dynamics of oceanic internal waves can be most
easily described in isopycnal (i.e. density) coordinates,
which allow for a simple and intuitive Hamiltonian de-
scription [12]. To describe the wave field, we introduce
two variables: a velocity potential ¢(r, p), and an isopy-
cnal straining II(r, p). The horizontal velocity is given
by the isopycnal gradient V of the velocity potential,
u(r, p) = Vo(r, p). The straining IT = p/(9,p) can also
be interpreted as the fluid density in isopycnal coordi-
nates.

These two variables form a canonically conjugated
Hamiltonian pair, so that the primitive equations of mo-
tion (i.e. conservation of horizontal momentum, hydro-
static balance, mass conservation and the incompress-
ibility constraint) can be written as a pair of canonical
Hamilton’s equations,

Hz%/(l‘[chﬁF—‘/p%dm 2) drdp .
(3)

The first term in the Hamiltonian clearly corresponds
to the kinetic energy of the flow, the second term can be
shown to correspond analogously to the potential energy.

Performing the Fourier transform, and introducing a
complex field variable ap, via

iN\/op . NG
= (ap —a’,) T, = m (

o = 29k
where p = (k,m) is the 3-d wave vector, N is buoyancy
frequency, g is gravity acceleration; the canonical pair of
equations of motion and the Hamiltonian (3) read

.0 OH

I—ap = ——,
ot ® 8@2‘)

ap + a*_p) ,

where H:/wp|ap|2dp—|—



/VI?lap2 ( PlapzaF’B + aplapzapa) 5p1—pz—p3 dp1dp2dps

Ps3
/ 6V9192 ap1ap2ap3 + aplapzapa) 6p1+p2+p3 dp1dp2dps,

with wave-wave interaction matrix elements given by

[12]: VP —UP  +UP: +UP2 with

P1P2 P1P2 PP2 PP1

Up __ N k2 . k3 wpzwm kl
P1pP2 4\/@ k2k3 H Wpy

These field equations are equivalent to the primitive
equations of motion for internal waves (up to the hydro-
static balance and Boussinesq approximation); the work
reviewed in [10] instead resorted to a small displace-
ment approximation to arrive at similar equations. We
will argue elsewhere that this extra assumption does not
provide an internally consistent description of interac-
tions between extremely scale separated waves. For the
purposes of this letter, it suffices to note that the two
kinetic equations are different and yield different steady
solutions.

We shall characterize the field of interacting internal
waves by its wave action dp_pnp = (apaj,).

Under the assumption of weak nonlinear interaction,
one derives a closed equation for the evolution of the
wave action, the kinetic equation. Assuming horizon-
tal isotropy, the kinetic equation can be reduced further

by averaging over all horizontal angles, obtaining [with
p = (k,m) and dp1dps = dkidmydkedms)]

dnk)m 1 .
dt - % / (R£1P2 o Rgzln - R;gfp) dpldp2/Ak1k27

R£1P2 = 6“’@_“’?1 —Wpy P1P2 | P1102|2 6m_m1_m2kk1k2 ’
(4)
where 11171172 = Np,Np, — np(npl + npz) and Allzﬂcz =
1/2
2 [(kkn)? + (kh2)? + (kaka)?] — k4 = ki — k3) /2.

A family of steady state power-law solutions
to the kinetic equation. In wave turbulence the-
ory, three-wave kinetic equations admit two classes of
exact stationary solutions: thermodynamic equilibrium
and Kolmogorov flux solutions, with the latter corre-
sponding to a direct cascade of energy —or other con-
served quantities— toward the higher modes. The fact
that the thermodynamic equilibrium —or equipartition of
energy— np = 1/wp is a stationary solution of (4) can be
seen by inspection, whereas in order to find Kolmogorov
spectra one needs to be more elaborate. In [12] we used
the Zakharov-Kuznetsov conformal mapping [25-27] to
show analytically that the following wave action spec-
trum constitutes an exact steady state solution of (4)
[note the difference with (1)]:

Nem = 10 |kK|772|m|7Y2; BE(m,w) < w™Pm™2  (5)

+ Remarkably though, this is not the only steady state so-

lution of the kinetic equation having nonzero spectral
energy fluxes. In fact, there is a full family of such power
law steady solutions. To see this, consider the kinetic
equation (4), and substitute into it the ansatz (2). Let
us now denote the resulting RHS of (4) by I(k,m). For
steady states, I(k,m) needs to vanish for all values of k
and m, for appropriately chosen values of (z,y). How-
ever, once [ vanishes for one such wavenumber (k, m), it
does so for all, due to the fact that I is a bi-homogeneous
function of k and m:

I(ak, pm) = a* T2 B2 (k, m). (6)

Hence we can fix k and m, and seek zeros of I as a func-
tion of z and y. The exact analytical solution (5) cannot
correspond to an isolated zero of I, since (0,1,9,1) is
nonzero (it is proportional to the energy flux in the Kol-
mogorov solution [22]). Hence, by the Implicit Function
Theorem, there must exist a curve of zeros of I(x,y).

Since this family of steady state solutions is not all ap-
parently amenable to a closed form, we sought the zeros
of I by numerical integration. This involves a certain
amount of work. First, the delta-functions in (4) restrict
contributions to the resonant set. Consider, for example,
the resonant set

k=k; +kz, m=mi+m2, Wem = Wky,mi + Who,mo-

Given k, kq, ko and m, one can find m; and mo satis-
fying this resonant condition by solving

k/m = ki/|mi| + ko /|m —m].

This equation reduces to a quadratic equation for mq,
and then one can find mo from ms = m — mq. After
this reduction, one is left with a two—dimensional inte-
gral, over |ki| and |kz|. This infinite domain is further
restricted by the requirement that |k;|, |k2| and |k| are
such that they can correspond to the sides of a trian-
gle; this restricted (though still infinite) domain is called
the kinematic box in the oceanographic literature. The
next problem for the numerical integration is that the
integrand diverges ( typically in an integrable fashion) at
the boundaries of the domain. This is solved by a suit-
able change of variables. Finally, a second substitution
renders the domain of integration finite.

The resulting family of zeros is depicted in Figure 1.
Notice that the curve passes through the exact solu-
tion (5). More importantly, it also passes through the
point (4,0), corresponding to the GMj; spectrum (1).
Hence this classical spectrum is for the first time shown
to correspond to an exact steady solution to a kinetic
equation based on first fluid principles.

Finally, we note the integrals converge in the param-
eter regime occupied by the observations. In regions of
tightly spaced contour lines (z < 1.7and y < 0.7, > 4.2
and y < —0.4) (4) is nonintegrable.



The other points marked on the figure correspond to
the observational sets discussed above. Notice that, with
the exception of NATRE, they all lie very close to the
zeros of I. Therefore the predictions of wave turbulence
are consistent with the observed deviations from GMy,.

In fact, the NATRE point lies in an area of (z,y) space
where z = I and z = 0 are nearly tangential, thus making
the line of zeros effectively “thicker” (in other words, the
collision integral is not zero at the observed points, but
it is very small, possibly allowing other, typically smaller
effects to take over.)

— Conclusions We have shown that the wave tur-
bulence formalism captures much of the variability ap-
parent in the oceanic internal wave field. This includes
the characterization of the spectral curve put together by
Garrett and Munk as an exact steady solution to a ki-
netic equation for the evolution of the wave field, derived
from first principles. In addition, the curve of steady so-
lutions to this kinetic equation is consistent with much
of the observed variability in the energy spectra. We
conjecture that the placement along this curve of indi-
vidual observations depends on the nature of the forcing
(for instance, by tides and atmospheric winds), the lo-
cal degree of stratification, vorticity and shear, and the
variable magnitude of the Coriolis parameter. This is the
subject of ongoing research.
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FIG. 1. Ocean observations and analytical zeroes of the kinetic

equation (4) in the (z,y) plane, with the high—frequency action
spectrum given by the power law (2). Solid red dots represent the
thermodynamical equilibrium solution, the closed—form zero (5)
and the GMj, spectrum (1). Blue circles represent different obser-
vational sets. The solid black curve marks the numerically com-
puted zeros of the kinetic equation. Contour lines of the RHS of
the equation (4) with high—frequency action spectrum given by the
power law (2), I(z,y), are also shown, with red curves correspond
to positive values, and blue to negative values.
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