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Abstract

A novel canonical Hamiltonian formalism is developed for long internal waves in a rotating en-

vironment. This includes the effects of background vorticity and shear on the waves. By restricting

consideration to flows in hydrostatic balance, superimposed on a horizontally uniform background of

vertical shear and vorticity, a particularly simple Hamiltonian structure arises, which can be thought

of as describing a nonlinearly coupled infinite collection of shallow water systems. The kinetic equa-

tion describing the time evolution of the spectral energy of internal waves is subsequently derived,

and a stationary Kolmogorov solution is found in the high frequency limit. This is surprisingly close

to the Garrett–Munk spectrum of oceanic internal waves.

submitted to JFM

1 Introduction

The term ocean waves typically evokes images of surface waves shaking ships during storms in the open

ocean, or breaking rhythmically near the shore. Yet much of the ocean wave action takes place underneath

the surface, and consists of modulations not of the air-water interface, but of invisible surfaces of constant

density. These internal waves are ubiquitous in the ocean, contain a large amount of energy, and affect

significantly the processes involved in water mixing and transport.

Our knowledge of the typical scales and energy content of oceanic internal waves advanced significantly

through improved and more widespread observations in the last few decades. In particular, an empirically

based formula that Munk and Garrett developed in the seventies (now called the Garrett Munk spectra of
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internal waves) synthesizes magnificently a seemingly universal distribution of energy among scales [1–3].

Description of modern observational work can be found in [4–8]. In particular, in [6] the deviation from

the Garrett-Munk spectra are documented, and in [7] the dissipation rate of turbulent kinetic energy is

measured. On the theoretical side, this distribution has been generally understood as due to the effects

of nonlinear interaction among waves, amenable to a description based on kinetic equations analogous

to the ones of statistical mechanics. Probably the first kinetic equation for internal waves was written in

[9], though not within the frame of a Hamiltonian formalism.

A comprehensive review of a significant line of work developed in the seventies and eighties is provided

in [10] and references therein. Some important references not cited there are [11–13]. More recent work

includes, for example, [14] where a thorough perturbative Eulerian–Boussinesq approach in a nonrotating

environment is developed. See [15–17] for a detailed discussion of the relation between the spectral tails of

Lagrangian and Eulerian flow descriptions. One can also use ray theory to study internal wave scattering,

as in [18], where the Doppler-spreading of short internal wave packets in the atmosphere and the ocean

is studied or, as in [19], where the refraction of short oceanic internal waves by a spectrum of large

amplitude inertia waves is considered.

Our work differs from the line reviewed in [10] in various ways. In [10] the wave dynamics is formulated

in a fully Lagrangian framework, while our isopycnal formulation is Eulerian in the horizontal coordinates

and Lagrangian in the vertical. To write down the equations of motion in the Lagrangian framework,

the system’s Lagrangian is expanded in powers of the assumed small displacement of the fluid parcels.

This description is therefore approximate even at the level of the dynamic equations of motion. Such a

description fails to adequately describe the advection of small scale waves by larger scale flows, as well as

the interaction of waves with the vortical part of motion. This is acknowledged in [10], which proposes as

a challenge the rederivation of the kinetic equation in an Eulerian framework. In the present article, we

fulfill this program, and use therefore as a small parameter not the small displacement of fluid parcels,

but the weakness of the nonlinear interaction among waves.

A fundamental question posed in the eighties is whether the GM spectra is close to the statistical
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steady state solution of the kinetic equation. The discussion in [10] indicates that GM is not inconsistent

with the kinetic equation proposed, and may be close to being a steady state solution. Recently, the

authors have put forward a study showing that power law spectra which, in the high frequency limit, are

very close to GM, constitute exact analytical steady state solutions of a kinetic equation for hydrostatic

flows described in isopycnal coordinates [20]. The present article extends those early results, by starting

to build a theory that includes frequencies comparable to the rate of rotation of the Earth, and that

accounts for the existence of large–scale horizontal eddies and vertical shear in the ocean, over which the

internal waves are superimposed.

The main contribution of this paper is the development of a novel Hamiltonian formalism for the

description of internal waves. Our approach is general enough to include the effects of the Earth’s

rotation, of large–scale eddies and of vertical shear on the waves, yet exclusive enough in its assumptions

to yield a relatively simple, manageable model. The main assumption is that the waves are long enough

to be in hydrostatic balance, yet they live in horizontal scales shorter than those characterizing the

underlying eddies. This allows us to consider as unperturbed flow an arbitrary layered distribution of

potential vorticity and vertical shear –that is, potential vorticity and horizontal velocity profiles which

adopt independent, horizontally uniform values at each depth. Such hydrostatically balanced, horizontally

uniform, vertically varying profiles are quite representative of long waves in the real ocean; they arise

due to the highly anisotropic nature of the ocean’s eddie diffusivity, which tends to homogenize the flow

along isopycnal surfaces.

Hamiltonian structures for stratified incompressible flows have been a subject of active research over

the last few decades. Though a complete review of the subject is outside the scope of this paper,

we list here some of the most important results. The first paper to derive a Hamiltonian structure for

stratified internal waves is probably [12], where a representation is proposed based on Clebsh-like variables.

The resulting Hamiltonian is an explicit infinite power series of canonically conjugated variables. In

[21], a Hamiltonian formalism for internal waves in isopycnal coordinates is developed. No hydrostatic

approximation is invoked, and thus the resulting Hamiltonian is expressed as an explicit power-series in the

3



powers of the assumed small nonlinearity. Potential problems in using Clebsh variables for stratified flows

have been addressed in [22, 23]. Problems of describing the Hamiltonian structures to describe interaction

of wave and vortex mode is addressed in [24]. In addition to the references above, a noncanonical

Hamiltonian structure based on a Lie-Poisson framework has been developed in [25]. More recently, two

broad reviews on Hamiltonian structures for fluids have been published [26, 27].

We choose to describe the flow in isopycnal coordinates, replacing the depth z by the density ρ as the

independent vertical coordinate. The advantage of such semi–Lagrangian description is manifold. First,

it eliminates the need to handle the vertical velocity explicitly, which renders the equations much more

tractable. At a deeper level, it greatly simplifies the description of the interaction between waves and

vorticity, since potential vorticity is preserved along particle trajectories, and these remain on isopycnals

in the absence of mixing. In particular, if the potential vorticity is uniform throughout an isopycnal

surface, it remains so forever. This is the situations we choose to describe: a profile of vorticity which

varies across surfaces of constant density, but is homogeneous along them. Such “pancake–like” profiles

are quite representative of the intermediate scales in the ocean, smaller than the dominant eddies, but

still containing a significant wealth of internal waves. Modeling this scenario constitutes an intermediate

step between considering irrotational frameworks, and studying the fully turbulent interaction between

arbitrary profiles of vorticity and waves.

Finally, the equations in isopycnal coordinates are highly reminiscent of the equations for a shallow

single layer of homogeneous fluid. We exploit this formal analogy to develop a Hamiltonian formalism

for internal waves which extends naturally similar formalisms for shallow waters.

The plan of this paper is the following. In section (2), we develop a hierarchy of Hamiltonian de-

scriptions for long waves. Our goal here is to develop a general Hamiltonian formalism for nonlinear

internal waves in a rotating environment, superimposed on a background of layered potential vorticity

and horizontally uniform shear. However, we choose to do so in stages, starting in the simple context

of linear, irrotational shallow water equations, and adding progressively nonlinearity, stratification, the

Coriolis effect, and nontrivial potential vorticity. This not only clarifies the logic and essential simplicity
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of the structure of the final Hamiltonian, but also yields along the way a series of Hamiltonian structures

for problems of intermediate simplicity. In section (3), we derive kinetic equations for the time evolu-

tion of the energy spectrum of internal waves, based on the Hamiltonian description developed in the

previous section. For this, we constrain ourselves to consider a neutral background with neither shear

nor vorticity. However, we still include the Coriolis effect. Then, in section (4), we find approximate

stationary solutions to the kinetic equations corresponding to a direct cascade of energy toward the finest

scales, in the high–frequency limit, where the effects of the Earth’s rotation are negligible. This was the

situation considered in [20]. Finally, in section (5), we provide some concluding remarks, and discuss

open problems for further research.

2 Hamiltonian formalism for long internal waves

In this section we develop a Hamiltonian formalism for long internal waves in a rotating environment. We

choose to do so progressing through a hierarchy of models, which starts with linear, irrotational shallow

water waves in a non–rotating environment, and ends up with fully nonlinear internal waves in a stratified

and rotating environment, superimposed on an arbitrary layered distribution of potential vorticity.

2.1 Linear, Non-Rotating Shallow Waters

In non–dimensional form, the shallow–water equations take the form

ht + ∇ · (h~u) = 0, (1)

~ut + (~u · ∇)~u+ ∇h = 0 . (2)

Here h represents the height of the free–surface, and ~u the horizontal velocity field. The height h has

been normalized by its mean value H , the velocity field u by the characteristic speed c =
√
gh (here g is

the gravity constant), the horizontal coordinates by a typical wavelength L, and time by L/c. Writing

h = 1 + η ,
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and assuming that η and |u| are much smaller than one, one obtains to leading order the linearized

equations

ηt + ∇ · ~u = 0 (3)

~ut + ∇η = 0 . (4)

At this linear level, the dynamics of waves and vorticity decouple, with the former satisfying the wave

equation, and the latter remaining constant in time. In particular, if the flow is initially irrotational (i.e.,

∇ × ~u = 0), it will remain so forever. Hence we may restrict our attention here to irrotational flows.

These may be described by a scalar potential φ, such that

~u = ∇φ .

For such flows, the system in (3, 4) reduces to

ηt + ∆φ = 0 ,

φt + η = 0.

This system is Hamiltonian, with

H =
1

2

∫

(

η2 + |∇φ|2
)

dx. (5)

The Hamiltonian form of the equations is

ηt =
δH
δφ

, (6)

φt = −δH
δη

. (7)

Notice that the Hamiltonian in (5) is the sum of the potential and kinetic energy of the system. The

former is actually given by 1
2 (1+η)2, but the difference can be absorbed by a gauge transformation of the

potential φ. Our goal is to preserve the essential simplicity of this formulation when we add nonlinearity,

ambient rotation and stratification.
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2.2 Nonlinear, Non-Rotating Shallow Waters

For the fully nonlinear shallow–water equations in (1, 2), waves and vorticity no longer decouple (in

fact, the nonlinear interaction of waves and vorticity is among the main theoretical obstacles to a full

description of turbulence.) However, it is still true that a flow which starts irrotational stays so forever.

Hence we may restrict ourselves to considering this scenario, introduce again the scalar potential φ, and

rewrite (1, 2) in the form

ht + ∇ · (h∇φ) = 0 ,

φt +
1

2
|φ|2 + h = 0 .

(8)

This system is also Hamiltonian, with

H =
1

2

∫

(

h2 + h|∇φ|2
)

dx , (9)

and canonical equations

ht =
δH
δφ

,

φt = −δH
δh

.

In this case, the Hamiltonian is the sum of the potential and kinetic energy, without qualifications.

2.3 Nonlinear, Non-Rotating, Internal Waves

The non–dimensional equations of motion for long internal waves in an incompressible, stratified fluid

with hydrostatic balance, are given by

d~u

dt
+

∇P
ρ

= 0, Pz + ρ = 0,

dρ

dt
= 0, ∇ · ~u+ wz = 0 ,
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where ~u and w are the horizontal and vertical components of the velocity respectively, P is the pressure,

ρ the density, ∇ = (∂x, ∂y) the horizontal gradient operator, and

d

dt
=

∂

∂t
+ ~u · ∇ + w

∂

∂z

is the Lagrangian derivative following a particle.

Changing to isopycnal coordinates (x, y, ρ, t) , where the roles of the vertical coordinate z and the

density ρ as independent and dependent variables are reversed, the equations become:

D~u

Dt
+

∇M
ρ

= 0 ,

Mρ = z ,

zρ,t + ∇ · (zρ~u) = 0 .

(10)

Here ~u = (u, v) is the horizontal component of the velocity field, ∇ = (∂x, ∂y) is the gradient operator

along isopycnals, D
Dt = ∂t + ~u · ∇, and M is the Montgomery potential [28],

M = P + ρ z.

For flows which are irrotational along isopycnal surfaces, we introduce the velocity potential

~u = ∇φ.

Such a substitution allows us to integrate (10) once and illuminate z, after which these equations reduce

to the pair

φt +
1

2
|∇φ|2 +

1

ρ

∫ ρ ∫ ρ2 Π

ρ1
dρ1 dρ2 = 0 ,

Πt + ∇ · (Π∇φ) = 0 ,

(11)

where we have introduced the variable

Π = ρMρρ = ρzρ.
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This variable Π has at least two physical interpretations. One is that of density in isopycnal coordi-

nates, since

Π dρ = ρ dz .

The other is that of a measure of the stratification, namely the relative distance between neighboring

isopycnal surfaces, since this distance dz is given by

dz = Π
dρ

ρ
.

Notice the similarity between (11) and the equations (8) for nonlinear shallow water. Internal wave

equations could be viewed as a system of infinitely many, coupled shallow water equations. This analogy

allows us to identify a natural Hamiltonian structure for internal waves.

The variable Π is also the canonical conjugate of φ,

Πt =
δH
δφ

, φt = −δH
δΠ

, (12)

under the Hamiltonian flow given by

H =
1

2

∫

(

Π |∇φ|2 −
∣

∣

∣

∣

∫ ρ Π

ρ1
dρ1

∣

∣

∣

∣

2
)

drdρ . (13)

The first term in this Hamiltonian clearly corresponds to the kinetic energy of the flow; that the second

term is in fact the potential energy follows from the simple calculation

1

2

∣

∣

∣

∣

∫ ρ Π

ρ1
dρ1

∣

∣

∣

∣

2

dρ =
1

2

∣

∣

∣

∣

∫ z

dz

∣

∣

∣

∣

2

dρ =

=
1

2
z2dρ = −ρ z dz + d

(

1

2
ρ z2

)

,

so

−
∫ ρ(zb)

ρ(zt)

1

2

∣

∣

∣

∣

∫ ρ Π

ρ1
dρ1

∣

∣

∣

∣

2

dρ =

∫ zt

zb

ρ z dz − 1

2
ρ z2

∣

∣

∣

∣

∣

zt

zb

, (14)

where b and t stand for bottom and top respectively, and the boundary conditions are usually such that

the integrated term at the end is a constant.
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2.4 Linear Shallow Waters in a Rotating Environment

In a rotating environment, the linearized shallow–water equations are

ηt + ∇ · ~u = 0 ,

~ut + ∇η + ~u⊥ = 0 .

Here

~u =

(

u
v

)

is the velocity field, and

~u⊥ =

(

−v
u

)

.

The Coriolis parameter f has been absorbed in the nondimensionalization of time, so it is effectively

equal to one.

These equations do not preserve vorticity, so irrotationality cannot be assumed. However, they pre-

serve the potential vorticity

q = vx − uy − η . (15)

The assumption corresponding to irrotationality in the non-rotating case is therefore that of zero potential

vorticity, i.e. q = 0. We can in fact generalize this hypothesis, and consider an arbitrary, though constant,

potential vorticity. We shall employ such generalization when we consider internal waves in a rotating

environment. In order to exploit this assumption, it is convenient to decompose the flow into a potential

and a divergence-free part:

~u = ∇φ + ∇⊥ψ , (16)

where

∇⊥ =

(

−∂y

∂x

)

. (17)

In terms of φ and ψ, the equations take the form

ηt + ∆φ = 0 ,
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φt + η − ψ = 0 ,

ψt + φ = 0 . (18)

The condition of zero potential vorticity takes the form

q = vx − uy − η = ∆ψ − η = 0 , (19)

so the system above reduces to

ηt + ∆φ = 0 (20)

φt + η − ∆−1η = 0 . (21)

This system is Hamiltonian, with canonical variables φ and η, and Hamiltonian

H =
1

2

∫

(

∣

∣∇φ+ ∇∆−1η
∣

∣

2
+ η2

)

dx . (22)

Again, the Hamiltonian agrees with the total energy of the system.

2.5 Rotating Nonlinear Shallow Waters

The fully nonlinear equations for shallow waters in a rotating environment are

ht + ∇ · (h~u) = 0, (23)

~ut + (~u · ∇)~u + ∇h+ ~u⊥ = 0 . (24)

The statement of conservation of potential vorticity now takes the form (Sec 12-2 in [28])

D

Dt

(

1 + vx − uy

h

)

= 0 (25)

(That is: the total vorticity of a vertical column of water divided by its height remains constant as the

column moves.) The unperturbed state has

q =
1 + vx − uy

h
= q0,
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where q0 is an arbitrary (prescribed) potential vorticity, so this is the hypothesis to make for the analogue

of irrotational flows:

q0h = 1 + vx − uy . (26)

We introduce the potentials φ and ψ as in (16), and use the fact that

(~u · ∇)~u =
1

2
∇|∇φ + ∇⊥ψ|2 + ∆ψ

(

∇⊥φ−∇ψ
)

,

to rewrite (24) as

∇φt + ∇⊥ψt +
1

2
∇|∇φ+ ∇⊥ψ|2 + ∆ψ

(

∇⊥φ−∇ψ
)

+ ∇h+ ∇⊥φ−∇ψ = 0.

Taking the divergence and the two–dimensional curl ∇⊥· of the above equations, we obtain the following

pair:

φt +
1

2
|∇φ+ ∇⊥ψ|2 + ∆−1∇ ·

[

∆ψ(∇⊥φ−∇ψ)
]

+ h− ψ = 0,

ψt + ∆−1∇⊥ ·
[

∆ψ(∇⊥φ−∇ψ)
]

+ φ = 0 .

By noticing that

−ψ = ∆−1∇ · (∇⊥φ−∇ψ),

φ = ∆−1∇⊥ · (∇⊥φ−∇ψ),

we can rewrite these equations, together with (23) in the form

ht + ∇ · (h (∇φ+ ∇⊥ψ)) = 0,

φt +
1

2
|∇φ+ ∇⊥ψ|2 + ∆−1∇ ·

[

(1 + ∆ψ)(∇⊥φ−∇ψ)
]

+ h = 0,

ψt + ∆−1∇⊥ ·
[

(1 + ∆ψ)(∇⊥φ−∇ψ)
]

= 0 .

The constraint (26) on the potential vorticity takes the form

1 + ∆ψ = q0h , (27)
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under which the equations above reduce to the pair

ht + ∇ · (h (∇φ + ∇⊥∆−1(q0h− 1))) = 0

φt +
1

2
(∇φ+ ∇⊥∆−1(q0h− 1))2+

q0∆
−1∇ ·

[

h (∇⊥φ−∇∆−1(q0h− 1))
]

+ h = 0 .

These equations are Hamiltonian, with conjugate variables φ and h, and Hamiltonian

H =
1

2

∫

(

h
∣

∣∇φ + ∇⊥∆−1(q0h− 1)
∣

∣

2
+ h2

)

dr , (28)

representing again the sum of kinetic and potential energies.

2.6 Nonlinear Internal Waves in a Rotating Environment

The equations for long internal waves in a rotating environment are particularly simple when written in

the isopycnal coordinates (x, y, ρ, t); they take the form in (11) with an extra term ~u⊥ due to the Coriolis

force:

D~u

Dt
+ ~u⊥ + ∇1

ρ

∫ ρ ∫ ρ2 Π − Π0

ρ1
dρ1 dρ2 = 0,

Πt + ∇ · (Π ~u) = 0 .

(29)

where

Π0 = Π0(ρ)

is a reference stratification profile, that we introduce here for future convenience.

The expression for the potential vorticity in these coordinates is

q =
1 + vx − uy

Π
, (30)

and it satisfies

Dq

Dt
= 0 . (31)
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Notice that the advection of potential vorticity in (31) takes place exclusively along isopycnal surfaces.

Therefore, an initial distribution of potential vorticity which is constant on isopycnals, though varying

across them, will never change. Hence we shall propose that

q = q0(ρ) , (32)

where q0(ρ) is an arbitrary function; i.e., one may assign any constant potential vorticity to each isopycnal

surface. This is a highly nontrivial extension of the irrotational waves of the previous sections. Extending

our description further to include general distributions of potential vorticity, varying even within surfaces

of constant density, would necessarily complicate its Hamiltonian formulation, making it loose its natural

simplicity. In fact, the problem of interaction between vorticity and waves is that of fully developed

turbulence, which escapes the scope of our description. However, the “pancake–like” distributions of

potential vorticity that we propose are common in stratified fluids, particularly the ocean and the atmo-

sphere. They arise due to the sharp contrast between the magnitudes of the turbulent diffusion along

and across isopycnals. Thus potential vorticity is much more rapidly homogenized along isopycnals than

throughout the fluid, yielding the “pancakes”. As we show below, even waves super–imposed on such a

general and realistic distribution of potential vorticity admit a rather simple Hamiltonian description.

In order to isolate the wave dynamics satisfying the constraint (32), we decompose the flow into a

potential and a divergence-free part as in (16). In terms of the potentials φ and ψ, (32) and (31) yield

1 + ∆ψ = q0Π , (33)

and, repeating the same steps as in nonlinear rotating shallow waters, the equations in (29) reduce to the

pair

Πt + ∇ ·
(

Π
(

∇φ + ∇⊥∆−1 (q0Π − 1)
))

= 0 ,

φt +
1

2

∣

∣∇φ+ ∇⊥∆−1 (q0Π − 1)
∣

∣

2

+∆−1∇ ·
[

q0Π
(

∇⊥φ−∇∆−1 (q0Π − 1)
)]

+
1

ρ

∫ ρ ∫ ρ2 Π − Π0

ρ1
dρ1 dρ2 = 0 .

14



(34)

This pair is Hamiltonian, with conjugated variables φ and Π, i.e. it can be written as

Πt =
δH
δφ

, φt = −δH
δΠ

. (35)

where the Hamiltonian is given by

H =

∫

[

1

2
Π
∣

∣∇φ+ ∇⊥∆−1 (q0Π − 1)
∣

∣

2 − 1

2

∣

∣

∣

∣

∫ ρ Π − Π0

ρ1
dρ1

∣

∣

∣

∣

2
]

dρd~r . (36)

Again, this Hamiltonian represents the sum of the kinetic and potential energy of the flow.

Notice the similarity of our description of internal waves with the Hamiltonian formulation for free–

surface waves introduced in [29, 30]. There, it was shown that the free–surface displacement and the

three–dimensional velocity potential evaluated at the free surface are canonical conjugate variables. In

our case, the canonical conjugate variables are also a displacement and a velocity potential, though the

velocity potential in (36) is for the two–dimensional flow along isopycnal surfaces, and the displacement

is the relative distance between neighboring isopycnal surfaces, as described above.

Looking back, we could have included some vorticity from early on; there was no need to take it

equal to zero, as the last section shows. In shallow waters, it could have been any constant; in internal

waves, any function of the density. It is clear though that, if one wanted to include arbitrary vorticity

distributions, one would need to go fully Lagrangian, to exploit the fact that vorticity is preserved along

particle paths. This would make the Hamiltonian structure less appealingly simple.

The key steps taken here for finding a simple Hamiltonian structure for internal waves, could be

summarized as follows:

1. To consider long waves in hydrostatic balance. This, together with the choice of isopycnal co-

ordinates, leads to a system of equations formally equivalent to an infinite collection of coupled

shallow–water systems. This analogy allows us to generalize the relatively simple Hamiltonian

structure of irrotational shallow–waters to the richer domain of internal waves.
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2. To decouple waves from vorticity, by assuming the latter to be either zero, constant or uniform

along isopycnal surfaces, with an arbitrary dependence on depth. This is facilitated by the choice

of a flow description in isopycnal coordinates.

3. To realize that the potential φ is a good candidate canonical variable, and that its conjugate is the

height h for shallow waters, and the surrogate Π for density in the isopycnal formulation of internal

waves.

4. To introduce nonlocal operators into the Hamiltonian. These arise naturally from the “elliptic”

constraints of hydrostatic balance and layered potential vorticity. Despite its unusual look, the

Hamiltonian is invariably just the sum of the standard kinetic and potential energies, integrated

over the domain.

The assumptions of hydrostatic balance and horizontally uniform background vorticity and shear, which

simplify notoriously the description of the flows, are quite realistic for a wide range of ocean waves.

3 Weak turbulence theory

In this section, we apply the formalism of wave turbulence theory to derive a kinetic equation, describing

the time evolution of the energy spectrum of internal waves. In order to do this, we need to assume

that the waves are weakly nonlinear perturbations of a background state. In principle, we could adopt

for this state an arbitrary background distribution of (layered) potential vorticity, vertical shear and

stratification. To make the derivation clear, however, we focus here on the case with zero shear and

zero potential vorticity, and a stratification profile with constant buoyancy frequency. Even though the

mechanics for deriving the kinetic equation in the more general setting are entirely similar (though more

cumbersome), the tools at our disposal for finding relevant exact solutions to these equations, which we

actually use in section 4, are only applicable to the case with the simplest background.

To leading order in the perturbation, we obtain linear waves, with amplitudes modulated by the

nonlinear interactions. These linear waves have, in general, a complex vertical structure (they are eigen-
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functions of a differential eigenvalue problem), but reduce, in our case, to sines and cosines [31].

Let us now take (36) and rewrite it in dimensional form:

H =

∫

[

1

2
Π
∣

∣∇φ+ ∇⊥∆−1 (q0Π − f)
∣

∣

2 − g

2

∣

∣

∣

∣

∫ ρ Π − Π0

ρ1
dρ1

∣

∣

∣

∣

2
]

. (37)

Here f is the Coriolis parameter, g is the acceleration due to gravity. Note that

[Π] = Length, [φ] =
Length2

T ime
.

The potential vorticity is, in dimensional form,

q =
f + vx − uy

Π
.

In the calculations that follow, we shall consider flows which are perturbations of a state at rest, stratified

but without vorticity. When this is the case, vx − uy is zero to leading order, and we have the following

relation between the potential vorticity profile q0 and the stratification profile Π0:

q0(ρ) =
f

Π0(ρ)
. (38)

Moreover, the definition of Π implies that

Π0 = − g

N2
, (39)

where N(ρ) is the buoyancy frequency, which we shall consider here to be a constant.

For the subsequent calculations it will be convenient to decompose the potential Π into its equilibrium

value and its deviation from it. Therefore let us redefine

Π → Π0 + Π .

Then the Hamiltonian takes the following form:

H =

∫

d~rdρ

[

1

2

(

− g

N2
+ Π

)

∣

∣

∣

∣

∇φ− fN2

g
∇⊥∆−1Π

∣

∣

∣

∣

2

− g

2

∣

∣

∣

∣

∫ ρ Π

ρ1
dρ1

∣

∣

∣

∣

2
]

. (40)
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It can be represented as a sum of a quadratic and a cubic part:

H = Hlinear + Hnonlinear,

Hlinear =

∫

d~rdρ

[

− g

2N2

∣

∣

∣

∣

∇φ − N2f

g
∇⊥∆−1Π

∣

∣

∣

∣

2

− g

2

∣

∣

∣

∣

∫ ρ Π

ρ1
dρ1

∣

∣

∣

∣

2
]

,

Hnonlinear =
1

2

∫

d~rdρΠ

∣

∣

∣

∣

∇φ− N2f

g
∇⊥∆−1Π

∣

∣

∣

∣

2

(41)

Let us use the Fourier transformation:

Π(~r, ρ) =
1

(2π)3/2

∫

Π~pe
i~R~pd~p,

φ(~r, ρ) =
1

(2π)3/2

∫

φ~pe
i~R~pd~p,

~p = (~k,m), ~R = (~r, ρ).

Note that the operator ∇⊥∆−1 has a simple representation in Fourier space:

∇⊥∆−1Π(~R) = − i

(2π)3/2

∫

d~p
~k⊥

k2
ei~p ~RΠ~p, ~k⊥ = (−ky, kx) .

Since in the ocean, ρ deviates from its equilibrium value ρ0 by no more then 3%, it is natural to make

the Boussinesq approximation, replacing the density by a reference value ρ0:

g

2

∣

∣

∣

∣

∫ ρ Π

ρ1
dρ

∣

∣

∣

∣

' g

2ρ0

∣

∣

∣

∣

∫ ρ

Πdρ

∣

∣

∣

∣

.

Then

Hlinear = −1

2

∫

d~p

(

g

N2
k2|φ~p|2 +

(

N2f2

gk2
+

g

ρ2
0m

2

)

|Π~p|2
)

,

Hnonlinear =
1

2

∫

d~p1d~p2d~p3δ(~p1 + ~p2 + ~p3)

(

−~k2 · ~k3Π~p1
φ~p2

φ~p3
− N4f2

g2

~k2 · ~k3

k2
2k

2
3

Π~p1
Π~p2

Π~p3
−

2
N2f

g

~k2 · ~k⊥3
k2
3

Π~p1
Φ~p2

Π~p3

)

.

(42)

From now on it will be convenient to use the following short–hand notation:

18



1.
∫

d123 instead of d~p1d~p2d~p3,

2. δ1+2+3 instead of δ(~p1 + ~p2 + ~p3),

3. Πi and Φi instead of Πpi
and Φpi

.

Then the last formula can be written in a more compact form:

Hnonlinear =
1

2

∫

d123δ1+2+3

(

−~k2 · ~k3Π1φ2φ3 −
N4f2

g2

~k2 · ~k3

k2
2k

2
3

Π1Π2Π3−

2
N2f

g

~k2 · ~k⊥3
k2
3

Π1Φ2Π3

)

(43)

The canonical equations of motions (12) form a pair of real equations. Their Fourier transformation

gives a pair of two complex equations, yet not independent. To reduce this pair to one complex equation,

one performs the transformation

φ~p =
i√

2
√

f~p

(

a~p − a∗−~p

)

,

Π~p =

√

f~p√
2

(

a~p + a∗
−~p

)

.

(44)

Here f~p is a real, positive and even, otherwise arbitrary function.

This transformation turns the pair of canonical equation of motion (12) into a single equation for the

complex variable a~p:

i
∂

∂t
ap =

∂H
∂a∗p

. (45)

The following choice of f~p

f~p =

√

gk2

N2

(

N2f2

gk2
+

g

ρ2
0m

2

)−1

diagonalizes the quadratic part of a Hamiltonian, bringing it to the following form:

Hlinear =

∫

ω~p |a~p|2 d~p,
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where ω~p is the dispersion relation for linear internal waves in isopycnal coordinates:

ω~p =

√

f2 +
g2k2

ρ2
0m

2N2
. (46)

(In the more familiar Eulerian framework, the dispersion relation transforms into

ω~p =

√

f2 +
N2k2

m∗
2
,

where m∗, the vertical wavenumber in z coordinates, is given by m∗ = − g
ρ0N2m .)

With such a choice of fp the transformations (44) take the following form:

φ~p =
iN

√
ω~p√

2gk

(

a~p − a∗
−~p

)

,

Π~p =

√
gk

√

2ω~pN

(

a~p + a∗
−~p

)

.

(47)

In terms of a~k, the Hamiltonian (42) reads

H =

∫

ωp |a~p|2 d~p+

∫

V~p1~p2~p3

(

a∗~p1
a∗p2

a~p3
+ a~p1

a∗~p2
a∗~p3

)

δ~p1−~p2−~p3
d~p123 +

∫

U~p1~p2~p3

(

a∗~p1
a∗p2

a∗~p3
+ a~p1

a~p2
a~p3

)

δ~p1+~p2+~p3
d~p123.

(48)

This is a standard three-wave Hamiltonian of wave turbulence theory. The calculation of the interaction

coefficients is a straightforward task, yielding

V 1
23 = I1

23 + J1
23 +K1

23,

I1
23 = − N

4
√

2g

(

~k2 · ~k3

k2k3

√

ω2ω3

ω1
k1 +

~k1 · ~k3

k1k3

√

ω1ω3

ω2
k2 +

~k1 · ~k2

k1k2

√

ω1ω2

ω3
k3

)

,

J1
23 =

Nf2

4
√

2g ω1ω2ω3

(

~k2 · ~k3

k2k3
k1 −

~k1 · ~k3

k1k3
k2 −

~k1 · ~k2

k1k2
k3

)

,

K1
23 =

ifN√
2g

~k2 · ~k⊥3
k1k2k3

(√

ω2

ω1ω3
(k2

1 − k2
3) +

√

ω1

ω2ω3
(k2

2 − k2
3) +

√

ω3

ω1ω2
(k2

2 − k2
1)

)

,

(49)
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where we have used the fact that ~k1 = ~k2 + ~k3.

Following wave turbulence theory, one proposes a perturbation expansion in the amplitude of the

nonlinearity. This expansion gives to leading order, linear waves. Then one allows the amplitude of the

waves to be slowly modulated by resonant nonlinear interactions. This modulation is described by an

approximate kinetic equation [32] for the “number of waves” or wave-action np, defined by

npδ(p − p′) = 〈a∗pap′〉 .

This kinetic equation is the classical analog of the Boltzmann collision integral. The basic ideas for

writing down the kinetic equation to describe how weakly interacting waves share their energies go back

to Peierls. The modern theory has its origin in the works of Hasselmann [33, 34], Benney and Saffmann

[35], Kadomtsev [36], Zakharov [29, 32, 37], and Benney and Newell [38, 39]. The derivation of kinetic

equations using the wave turbulence formalism can be found, for instance, in [32, 40]. For the three-wave

Hamiltonian (48), the kinetic equation reads:

dnp

dt
= π

∫

|Vpp1p2
|2 fp12 δp−p1−p2

δωp−ωp1
−ωp2

dp12 ,

−2π

∫

|Vp1pp2
|2 f1p2 δp1−p−p2

δωp1
−ωp−ωp2

)

dp12 , (50)

where fp12 = np1
np2

− np(np1
+ np2

) .

Assuming horizontal isotropy, one can average (50) over all horizontal angles, obtaining

dnp

dt
=

1

k

∫

(

Rk
12 −R1

k2 −R2
1k

)

dk1dk2dm1dm2 ,

Rk
12 = ∆−1

k12 δ(ωp − ωp1
− ωp2

) fk
12 |V k

12|2 δm−m1−m2
kk1k2 ,

∆−1
k12 = 〈δ(k − k1 − k2)〉 ≡

∫

δ(k − k1 − k2) dθ1dθ2 ,

∆k12 =
1

2

√

2 ((kk1)2 + (kk2)2 + (k1k2)2) − k4 − k4
1 − k4

2 . (51)

4 Kolmogorov Spectra in the High Frequency Limit

Once the kinetic equation is derived, it is natural to search for its stationary solutions. Typically, kinetic

equations admit two classes of exact stationary solutions: thermodynamic equilibrium and Kolmogorov
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flux solutions, with the latter corresponding to a direct cascade of energy –or other conserved quantities–

toward the higher modes. The fact that the thermodynamic equilibrium –or equipartition of energy–

np = 1/ωp is a stationary solution of (51) can be seen by inspection. On the other hand, the solutions,

corresponding to pure Kolmogorov spectra are much more subtle and only emerge after one has exploited

scaling symmetries of the dispersion relation and the coupling coefficient via what is now called the

Zakharov transformation [32].

In this section, we carry out such procedure in the high–frequency limit, where the effects of the

Earth’s rotation are negligible. The spectrum that we find, expanding on previous work described in [20],

is not far from the classical empirical formula of Garrett and Munk.

Since the system under consideration has cylindrical, rather then spherical symmetry, stationary

solutions of the kinetic equation should also have cylindrical symmetry. Things are further complicated

by the fact that our dispersion law (46) is not scale invariant, and neither is the interaction matrix element

(49). However, in the high frequency limit ω � f , (46) becomes

ωp ≡ ωk,m ' g

Nρ0

k

|m| ,

Furthermore, in this limit, the matrix element (49) retains only it first term, I1
23. This is due to the fact

that the second J1
23 and third K1

23 terms are proportional to f2 and f respectively, and f is negligible in

the high frequency limit.

Indeed if one changes variables in (49) so that

ωi = Nξi,

rescaling the frequencies in terms of the buoyancy frequency N , and similarly one introduces

~ki = ~κi/L,

i.e. nondimensionalizing the horizontal wavevectors in terms of some distance L to be determined, then

V 1
23 = I1

23 + J1
23 +K1

23
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I1
23 = − N

3

2

4
√

2gL

(

~κ2 · ~κ3

κ2κ3

√

ξ2ξ3
ξ1

κ1 +
~κ1 · ~κ3

κ1κ3

√

ξ1ξ3
ξ2

κ2 +
~κ1 · ~κ2

κ1κ2

√

ξ1ξ2
ξ3

κ3

)

J1
23 =

N3/2

4L
√

2g

f2

N2

1√
2g ξ1ξ2ξ3

(

~κ2 · ~κ3

κ2κ3
κ1 −

~κ1 · ~κ3

κ1κ3
κ2 −

~κ1 · ~κ2

κ1κ2
κ3

)

K1
23 = i

N3/2

L
√

2g

f

N

~κ2 · ~κ⊥3
κ1κ2κ3

(
√

ξ2
ξ1ξ3

(κ2
1 − κ2

3) +

√

ξ1
ξ2ξ3

(κ2
2 − κ2

3) +

√

ξ3
ξ1ξ2

(κ2
2 − κ2

1)

)

Note that K1
23 is proportional to (f/N) and J1

23 is proportional to (f/N)2. Taking into account that,

in the real ocean, f/N ' 1/100 we see that the K1
23 and J1

23 terms could safely be neglected from the

matrix element in the high frequency limit.

We reproduce here for completeness the derivation of the Kolmogorov solution found in [20]. Let us

assume that np is given by the power-law anisotropic distribution

nk,m = kx|m|y . (52)

To find the values of the exponents x and y we will require that (52) is a stationary solution to (51)

in the high frequency limit. We shall use a version of Zakharov’s transformation [29, 37] introduced for

cylindrically symmetrical systems by Kuznetsov in [41]. Namely, let us subject the integration variables

in the second term R1
k2 in (51) to the following transformation:

k1 = k2/k′1, m1 = m2/m′

1, k2 = kk′2/k
′

1, m2 = mm′

2/m
′

1.

Then R1
k2 becomes Rk

12 multiplied by a factor

(

k1

k

)−6−2x (
m

m1

)2+2y

.

Furthermore, let us subject the third term R2
1k in (51) to the similar conformal transformation:

k1 = kk′1/k
′

2, m1 = mm′

1/m
′

2, k2 = k2/k′2, m2 = m2/m′

2.

Then R2
1k becomes Rk

12 multiplied by a factor

(

k2

k

)−6−2x (
m

m2

)2+2y

.
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Therefore (51) can be written as

dnp

dt
=

1

k

∫

Rk
12

(

1 −
(

k1

k

)−6−2x(
m

m1

)2+2y

−

(

k2

k

)−6−2x (
m

m2

)2+2y
)

dk1dk2dm1dm2 . (53)

We see that the particular choice −6 − 2x = 2 + 2y = 1 , which gives x = −7/2, y = −1/2 , makes

the right-hand side of (51) vanish due to the delta function in the frequencies, corresponding to energy

conservation. The resulting wave action and spectral energy distributions are given by

nk,m = |k|−7/2|m|−1/2, (54)

Ek,m = kωk,mnk,m = |k|−3/2|m|−3/2,

This solution corresponds to the flux of energy from the large to the small scales. Direct calculations

show that this solution is local, i.e. collision integral converges on this solution.

We shall next compare the spectrum just derived with the classic formula by Garrett and Munk [1–3],

which synthesizes in compact form many measurements of oceanic internal wave turbulence.

To this end, let us first write the total energy of the system as the integral of a spectral energy density:

E =

∫

E(k,m) dk dm . (55)

Note that E(k,m) is integrated over scalars k and m. Garrett and Munk proposed the following empirical

expression for E(k,m):

E(k,m) =
3 f N Em/m∗

π
(

1 + m
m∗

)5/2
(N2k2 + f2m2)

. (56)

Here E is a constant, quantifying the total energy content of the internal wave spectrum, k = |k|, and

m∗ is a reference vertical wavenumber determined from observations. Using the dispersion relation for

internal waves, the GM spectrum can be transformed from wave-number space (k,m) into frequency-

horizontal wavenumber space (k, ω). The integral of E(k, ω) over k yields the moored spectrum

E(ω) = 2 f E
(

π
(

1 − (f/ω)2
)1/2

ω2
)−1

, (57)
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with an 1/ω2 dependence away from the inertial frequency that appears prominently in moored observa-

tions.

For |m| >> m∗ and |ω| >> f , the Garrett-Munk spectrum (56) becomes

E(k,m) '
(

k2m3/2
)−1

. (58)

By contrast, the spectrum that we obtained above using the Wave Turbulence formalism is

E(k,m) '
(

k3/2m3/2
)−1

. (59)

The small difference between the two spectra may be due to a variety of reasons. Two possibilities

that we find highly plausible are the neglected effects of the Earth’s rotation, and those of breaking waves.

An exploration of these possibilities, however, lies outside the scope of the present article.

5 Conclusions

We have developed a quite general, natural Hamiltonian formalism for internal waves in a stratified,

rotating environment. Our formulation gains much in simplicity, by restricting consideration to flows in

hydrostatic balance, superimposed on a vertically arbitrary, but horizontally uniform shear and vorticity

fields. The resulting Hamiltonian inherits much of the structure of the shallow–water equations, though

with one extra vertical dimension. The use of isopycnal coordinates, whereby the depth z is replaced

by the density ρ as the independent vertical coordinate, allows for a straightforward separation of the

dynamics of waves and vorticity, by assuming the latter to be uniform on surfaces of constant density.

This Hamiltonian formulation allows us to derive a kinetic equation for the time evolution of the

spectral energy density. In the limit of high frequencies, when the effects of the rotation of the Earth

loose significance, an exact steady solution to this kinetic equation can be found, corresponding to the

direct cascade of energy toward the short scales. This Kolmogorov–like spectrum is surprisingly close to

the empirically based prediction of Garrett and Munk.

Further challenges suggested by the work reported here, include extending the Kolmogorov solutions

found in the high-frequency limit, to cover the full range of frequencies of internal waves, including those
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comparable to the inertial frequency f . Also, the effects of breaking waves on the energy spectrum needs

to be addressed; it could potentially help explain the difference between the exponent of the spectrum

found here and that of Garrett and Munk.
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