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PRECONDITIONING OF OPTIMAL TRANSPORT∗

MAX KUANG† AND ESTEBAN G. TABAK†

Abstract. A preconditioning procedure is developed for the L2 and more general optimal
transport problems. The procedure is based on a family of affine map pairs which transforms the
original measures into two new measures that are closer to each other while preserving the optimality
of solutions. It is proved that the preconditioning procedure minimizes the remaining transportation
cost among all admissible affine maps. The procedure can be used on both continuous measures and
finite sample sets from distributions. In numerical examples, the procedure is applied to multivariate
normal distributions, to a two-dimensional shape transform problem, and to color-transfer problems.
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1. Introduction. The original optimal transport problem, proposed by Monge
in 1781 [17], addresses the displacement of a pile of soil between two locations with
minimal cost. Giving the cost c(x, y) of moving a unit mass from point x to point y,
one seeks the map y = T (x) that minimizes its integral. After normalizing the two
piles so that each has total mass one, so that they can be regarded as probability
measures, the problem adopts the form

(1) min
T]µ=ν

∫
c(x, T (x))dµ(x),

where µ and ν are the original and target measures, and T]µ denotes the pushforward
measure of µ by the map T .

In the 20th century, Kantorovich [13] relaxed Monge’s problem, allowing the
movement of soil from one to multiple locations and vice versa. Denoting the mass
transported from x to y by π(x, y), the minimization problem can be rewritten as

(2) min
π

∫
c(x, y)π(x, y)dxdy

among couplings π(x, y) satisfying the marginal constraints∫
π(x, y)dy = µ(x),∫
π(x, y)dx = ν(y).

Since the second half of the 20th century, mathematical properties of the optimal
transport solution have been studied extensively, as well as applications in many
different areas (see, for instance, [20, 15, 4, 8, 11, 5], or [26] for a comprehensive list).

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section May 12,
2016; accepted for publication (in revised form) May 17, 2017; published electronically August 31,
2017.

http://www.siam.org/journals/sisc/39-4/M107495.html
Funding: This work was supported by grants from the Office of Naval Research and the NYU-

AIG Partnership on Global Resilience.
†Courant Institute, New York University, New York, NY 10012 (kuang@cims.nyu.edu, tabak@

cims.nyu.edu).
A1793

http://www.siam.org/journals/sisc/39-4/M107495.html
mailto:kuang@cims.nyu.edu
mailto:tabak@cims.nyu.edu
mailto:tabak@cims.nyu.edu


A1794 MAX KUANG AND ESTEBAN G. TABAK

Since closed-form solutions of the multidimensional optimal transport problems are
relatively rare, a number of numerical algorithms have been proposed. Some recent
representative examples of the different approaches follow.

PDE methods: Benamou and Brenier [3] introduced a computational fluid ap-
proach to solve the problem with continuous distributions µ1,2, exploiting the struc-
ture of the interpolant of the optimal map to solve the PDE corresponding to the
optimization problem in the dual variables.

Adaptive linear programming: Oberman and Ruan [18] discretized the given con-
tinuous distributions and solved the resulting linear programming problem in an adap-
tive way that exploits the sparse nature of the solution (the fact that the optimal plan
has support on a map).

Entropy regularization: The discrete version of optimal transport is the earth
mover’s problem in image processing [22], a linear programming problem widely used
to measure the distance between images and in networks. Recent development on
entropy regularization [23] introduced effective algorithms to solve regularized versions
of these problems.

Data-driven formulations: Data-driven formulations take as input not the distri-
butions µ1,2 but sample sets from both. Methodologies proposed include a fluid-flow-
like algorithm [25], an adaptive linear programming approach [6], and a procedure
based on approximating the interpolant in a feature-space [14].

In this paper, we introduce a procedure to precondition the input probability
measures or samples thereof, so that the resulting measures or sample sets are closer
to each other while preserving the optimality of maps. More precisely, affine maps F
and G are found that transform the original measures µ, ν into two new ones µ̃, ν̃ with
identical mean and covariance, with the key additional property that the transforma-
tion Y = G−1(T (F (X))), which composes the preconditioner and the optimal map T
between µ̃ and ν̃, is the optimal map between the two original distributions µ and ν.
The procedure and its properties are discussed for the standard square-distance cost
and for the more general class of cost functions induced by an inner product.

In theoretical applications, the preconditioning procedure is used to give alterna-
tive derivations of a lower bound for the total transportation cost and of the optimal
map between multivariate normal distributions. For practical applications, we use the
procedure on sample sets to get preconditioned sets, which are then given as input
to optimal transport algorithms to calculate the optimal map. Then, inverting the
the preconditioning map pairs used, we recover the optimal map between the original
distributions.

Through analysis and numerical examples, we see that the preconditioning proce-
dure can often explain and remove a substantial portion of the transportation cost with
little computational cost. Furthermore, assuming that the following numerical optimal
transport algorithm finds problems with closer measures easier to solve, the precon-
ditioning algorithm will also increase the performance of the underlying algorithm.

2. Optimal transport. We first let µ and ν be two probability measures on the
same sample space X and let X be a random variable from µ. Optimal transport asks
how to optimally move the mass from µ to ν, given a function c(x, y) that represents
the cost of moving a unit of mass from point x to point y. Monge’s formulation seeks
a map y = T (x) that minimizes the total transportation cost:

(3) min
X∼µ,T]µ=ν

E c(X,T (X)),

where T]µ represents the pushforward measure of µ through the map T .
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A transfer plan π(x, y) is the law of a coupling (X,Y ) between the two measures
µ and ν. For any measurable set E ⊂ X ,

π(E ×X ) = µ(E), π(X × E) = ν(E).

Denoting the family of all transfer plans by Π(µ, ν), Kantorovich’s relaxation of the
optimal transport problem is

(4) min
π∈Π(µ,ν)

E c(X,Y ).

Since the maps Y = T (X) represent a subset of all couplings between µ and ν, the
feasible domain for (3) lies within the one for (4).

While there are many results on the general optimal transport problem, a par-
ticularly well studied and useful case is the L2 optimal transport on RN , in which µ
and ν are probability measures on RN and the cost function c(x, y) is given by the
square Euclidean distance ‖x − y‖2. In this case, with moderate requirements, one
can prove that the solution to Kantorovich’s relaxation (4) is unique and agrees with
the solution to Monge’s problem (3). In other words, the unique optimal coupling
(X,Y ) corresponds to a map Y = T (X). Moreover, this optimal map is the gradient
of a convex potential φ. These properties have been introduced in numerous works,
for example, in Theorem 3.1 in [9].

Theorem 2.1. For Kantorovich’s relaxation (4) with the quadratic cost function
and absolute continuous measures µ and ν, the optimal coupling (X,Y ) is a map
Y = T (X), where T : RN → R is defined by

(5) T (x) = ∇φ(x),

where φ(x) is convex and T]µ = ν.

While this characterization of the solution is attractively simple, closed-form so-
lutions of the L2 optimal transport on RN are rare for N > 1. The difficulties
of deriving closed-form solutions prompted research to solve the optimal transport
problem numerically. An incomplete list of formulations and methods can be found
in section 1.

The goal of this paper is not to provide a complete numerical recipe to solve the
L2 optimal transport problem, but to introduce a practical preconditioning procedure.
This procedure transforms the original measures µ and ν into two new measures, so
that the optimal transport problem between the new measures is easier to solve, while
the optimality of solutions is preserved by the transformation. The procedure extends
beyond the square-distance cost to all cost functions induced by an inner product.

3. Admissible map pairs. The basic framework of the preconditioning proce-
dure is as follows:

X ∼ µ Y=G−1(T (F (X)))−−−−−−−−−−−−→ Y ∼ νyX̃=F (X)

yỸ=G(Y )

X̃ ∼ µ̃ Ỹ=T (X̃)−−−−−−−−−→ Ỹ ∼ ν̃.

Suppose that we transform µ and ν into two new measures µ̃ and ν̃ via some
invertible maps F and G and that the solution to the new L2 optimal transport
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problem between µ̃ and ν̃ is given by Ỹ = T (X̃). Then the map

(6) Y = G−1(T (F (X)))

pushes forward µ into ν, yet it is generally not optimal. We call the pair of invertible
maps (F,G) an admissible map pair if the resulting map (6) is always optimal for the
original problem between µ and ν.

There are several simple admissible map pairs.

Definition 3.1 (translation pairs). Given two vectors m1,m2 in RN , a transla-
tion pair (F,G) is defined by

(7) F (X) = X −m1, G(Y ) = Y −m2.

If Ỹ = T (X̃) is an optimal map, then T = ∇φ for some convex function φ, which
implies that

(8) Y = m2 + T (X −m1) = ∇ [m2X + φ(X −m1)] ,

so Y = G−1(T (F (X))) is indeed the optimal map between µ and ν. Thus translation
pairs are admissible map pairs.

Among all translation pairs, we can minimize the total transportation cost in the
transformed problem:

E‖X̃ − Ỹ ‖2 = E‖X −m1 − Y +m2‖2

= E‖X − EX − Y + EY ‖2 + ‖EX −m1 − EY +m2‖2

≥ E‖X − EX − Y + EY ‖2.

This shows that the transportation cost between X̃ and Ỹ is minimized when EX −
EY = m1 −m2. In particular, we can adopt m1 = EX and m2 = EY , which gives
both measures a zero mean. We call the corresponding translation pair the mean
translation pair.

Definition 3.2 (scaling pairs). Given two nonzero numbers α, β in R, the scaling
pair (F,G) is defined by

(9) F (X) = αX, G(Y ) = βY.

Clearly if Ỹ = T (X̃) = ∇φ(X̃) is an optimal map, then

(10) Y =
1
β
T (αX) = ∇ 1

αβ
φ(αX)

is also an optimal map. So all the scaling pairs are admissible map pairs. In particular,
if X and Y are not constants, one can choose

α =
1√

E‖X‖2
, β =

1√
E‖Y ‖2

,

so that

E‖X̃‖2 = E‖Ỹ ‖2 = 1.

We call this specific scaling pair the normalizing scaling pair.
Next we discuss general linear admissible map pairs. We will think of X as row

vectors, so the matrices representing linear transformations act on X on the right.
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Theorem 3.3. Let F (X) = XA and G(Y ) = Y B, where A,B ∈ RN×N are
invertible matrices. Denote by Ỹ = T (X̃) the optimal map from µ̃ to ν̃. If B =
(AT )−1, the induced map between µ and ν is also optimal.

Proof. The induced map can be written as

Y = T (XA)B−1 = T (XA)AT .

Let T (X) = ∇φ(X) and ψ(X) = φ(XA); then we have

(11) Yi =
N∑
j=1

∇φ(XA)j(AT )ij =
∂

∂Xi
φ(XA) ⇒ Y = ∇ψ(X).

Since ψ is also a convex function, the induced map Y = T (XA)B−1 is also an optimal
map.

Remark 3.4. Another way to understand this theorem is to consider map pairs
(F,G) that do not alter the inner product. In fact, the theorem holds if for any
x, y ∈ RN ,

(12) xyT = F (x)G(y)T .

This observation implies that the same result holds for more general cost functions:
as long as the metric d(x, y) is induced by an inner product 〈x, y〉, we only need the
pair F and G to be adjoint operators to guarantee they form an admissible map pair.

The above theorem gives us a family of new admissible map pairs.

Definition 3.5 (linear pairs). Let A be an invertible matrix in RN×N ; then the
linear pair (F,G) is defined by

(13) F (X) = XA, G(Y ) = Y (AT )−1.

We first give some examples of common linear pairs.

Definition 3.6 (orthogonal pairs). For any orthogonal matrix A,

(14) F (X) = XA, G(Y ) = Y A

is called a orthogonal map pair.

For orthogonal pairs, we have (AT )−1 = A. This means that performing the
same orthogonal linear transformation on both measures preserves the optimality of
solutions. The interpretation of this result is straightforward, as an orthogonal map
yields a distance-preserving coordinate change which does not alter the cost function.

Definition 3.7 (stretching pairs). For any unit vector d and scalar α, we can
stretch X by a factor of α along d, and at the same time stretch Y by a factor of 1/α
along the same direction:

(15)
F (X) = X − (XdT )d+ α(XdT )d = X(I + (α− 1)dT d),
G(Y ) = Y − (Y dT )d+ 1/α(XdT )d = X(I + (1/α− 1)dT d).

We call such map pairs stretching pairs.

It can be verified this is indeed a linear pair, and thus an admissible map pair.
Composing translation and linear pairs, one obtains a more general class of affine

pairs. Among all affine pairs, we seek the optimal one for our preconditioning proce-
dure. We first state a linear algebra result.
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Theorem 3.8. For any two positive definite matrices Σ1 and Σ2 in RN×N , there
exists an invertible matrix A ∈ RN×N such that

(16) D = ATΣ1A = A−1Σ2(AT )−1,

where D is a diagonal matrix with entries satisfying

(17) d1 ≥ d2 ≥ · · · ≥ dN > 0.

In addition, D is unique.

Proof. We first prove the existence of A. Since Σ1/2
1 is invertible, we can replace

A by a matrix B satisfying

B = Σ1/2
1 A

and

D = BTB = B−1Σ1/2
1 Σ2Σ1/2

1 (BT )−1.

Because Σ1/2
1 Σ2Σ1/2

1 is positive definite, it admits an eigenvalue decomposition of the
form

(18) Σ1/2
1 Σ2Σ1/2

1 = QΛQT ,

with Q orthogonal and Λ diagonal with sorted, positive diagonal entries. Setting
B = QΛ1/4, we have

BTB = Λ1/2

and

B−1Σ1/2
1 Σ2Σ1/2

1 (BT )−1 = Λ−1/4QTQΛQTQΛ−1/4 = Λ1/2.

Thus the conditions of the theorem are satisfied with

(19) D = Λ1/2, A = Σ−1/2
1 QΛ1/4.

To prove the uniqueness of D, suppose that there are D1, A1 and D2, A2 such that

D1 = AT1 Σ1A1 = A−1
1 Σ2(AT1 )−1,

D2 = AT2 Σ1A2 = A−1
2 Σ2(AT2 )−1.

Then

D2
1 = A−1

1 Σ2Σ1A1,

D2
2 = A−1

2 Σ2Σ1A2,

implying that D2
1 , Σ2Σ1, and D2

2 are similar to one other. Since D1 and D2 are
positive diagonal matrices with sorted entries, they must be identical, which proves
the uniqueness of D.

Using the theorem above, we can define the following optimal linear pair.
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Definition 3.9 (optimal linear pair). Assume that µ and ν are mean-zero mea-
sures with covariance matrices Σ1 and Σ2, and let A be an N×N matrix that satisfies
(16). We define the optimal linear pair (F,G) by

(20) F (X) = XA, G(Y ) = Y (AT )−1.

(Notice that the matrix A can be constructed following (18) and (19) in the proof of
Theorem 3.8.)

This pair has the following useful properties.

Property 3.10. The resulting random variables X̃, Ỹ derived from the optimal
linear pair have the same diagonal covariance matrix D:

EX̃T X̃ = ATΣ1A = D,(21)

EỸ T Ỹ = A−1Σ2(AT )−1 = D.(22)

Property 3.11. Among all possible linear pairs X ′ = XC, Y ′ = Y (CT )−1 given
by an invertible matrix C, the optimal linear pair minimizes E‖X ′ − Y ′‖2. In other
words, for any invertible matrix C,

(23) E‖X ′ − Y ′‖2 ≥ E‖X̃ − Ỹ ‖2.

Proof. For any matrix C, we have

E‖X ′ − Y ′‖2 = EX ′X ′T + EY ′Y ′T − 2EX ′Y ′T

= EXCCTXT + EY (CT )−1C−1Y T − 2EXY T

= E tr(CTXTXC) + E tr(C−1Y TY (CT )−1)− 2EXY T

= tr(CTΣ1C) + tr(C−1Σ2(CT )−1)− 2EXY T .

On the other hand, (16) is equivalent to

Σ1 = (AT )−1DA−1, Σ2 = ADAT .

In terms of S = A−1C,

E‖X ′ − Y ′‖2 = tr(STDS) + tr(S−1D(ST )−1)− 2EXY T

= tr(SSTD) + tr((SST )−1D)− 2EXY T .

Writing S = (s1, s2, . . . , sN )T and (ST )−1 = (z1, z2, . . . , zN )T , we have

E‖X ′ − Y ′‖2 =
N∑
i=1

dis
T
i si +

N∑
i=1

diz
T
i zi − 2EXY T

=
N∑
i=1

di(sTi si + zTi zi)− 2EXY T

≥
N∑
i=1

di(2sTi zi)− 2EXY T

= 2
N∑
i=1

di − 2EXY T

= E‖X̃ − Ỹ ‖2.
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Notice that we have the equal sign when S = I, which means that C = A. Thus

E‖X ′ − Y ′‖2 ≥ 2
N∑
i=1

di − 2EXY T = E‖X̃ − Ỹ ‖2.

Composing the mean translation pair and the optimal linear pair, one obtains
the optimal affine pair. It follows from the properties above that the optimal affine
pair not only gives the two distributions zero means and transforms the covariance
matrices into diagonal matrices, but also minimizes the distance between µ̃ and ν̃
among all affine pairs.

4. General quadratic cost functions. In Theorem 3.3, we introduced a class
of affine maps that preserves the optimality of solutions for the square-distance cost.
As mentioned in Remark 3.4, similar results hold for the more general cost functions
induced by an inner product. We have the following generalization of Theorem 3.3.

Theorem 4.1. Let 〈·, ·〉 be an inner product in X . For the optimal transport
problem with cost

(24) c(x, y) = 〈x− y, x− y〉,

we have that (F,G) is an admissible map pair if F and G are adjoint operators with
respect to inner product 〈·, ·〉.

Proof. It follows from the fact that c(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, y〉, where only
the last term depends on the actual coupling between X and Y , that

argmin E [c(X,Y )] = argmax E [〈X,Y 〉] .

Since this applies to both the original and the preconditioned problems, their optimal
solutions satisfy

(X∗, Y ∗) = argmax [E〈X,Y 〉] and (X̃∗, Ỹ ∗) = argmax[E〈X̃, Ỹ 〉].

But if F and G are adjoint,

〈X̃, Ỹ 〉 = 〈F (X), G(Y )〉 = 〈X,Y 〉,

so

(X̃∗, Ỹ ∗) = (F (X∗), G(Y ∗)),

proving the conclusion.

Any inner product on RN can be written in terms of the standard vector multi-
plication, through the introduction of a positive definite kernel matrix K:

(25) 〈x, y〉 = xKyT ,

so stating that the linear operators F (X) = XA, G(Y ) = Y B are adjoint is equivalent
to

(26) AKBT = K.

We can also derive the optimal linear pair for general cost functions. Here we only
state without proof the core linear algebra theorem.
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Theorem 4.2. Let Σ1, Σ2, and K be positive definite matrices in RN×N . There
exist invertible matrices A,B ∈ RN×N such that

(27) AKBT = K

and

(28) D = K1/2ATΣ1AK
1/2 = K1/2BTΣ2BK

1/2,

where D is a unique diagonal matrix with entries satisfying

(29) d1 ≥ d2 ≥ · · · ≥ dN > 0.

Matrices constructed so as to satisfy the above theorem give the optimal linear
pairs with respect to the corresponding cost. Notice that in this case the resulting
measures no longer have diagonal covariance matrices:

(30) EX̃T X̃ = EỸ T Ỹ = K−1/2DK−1/2.

5. Preconditioning procedure and its applications. Returning to the stan-
dard cost, we introduce the full preconditioning procedure using all the admissible map
pairs discussed in section 3.

Definition 5.1 (preconditioning procedure). For two random variables X and
Y with probability measures µ and ν, let

m1 = EX, m2 = EY,(31)
Σ1 = E

[
(X −m1)T (X −m1)

]
, Σ2 = E

[
(Y −m2)T (Y −m2)

]
.(32)

We construct two matrices A and D that satisfy (16), and apply the preconditioning
procedure:

(33) X̃ = (X −m1)A, Ỹ = (Y −m2)(AT )−1.

If the optimal map between µ̃ and ν̃ is Ỹ = T (X̃), the optimal map between X ∼ µ
and Y ∼ ν is

(34) Y = [m2 + T ((X −m1)A)AT ].

This preconditioning procedure moves the two given measures into new measures
with zero mean and the same diagonal covariance matrix. An extra step that one
can add to the preconditioning procedure uses the scaling pairs to normalize both
measures so that they have total variance one. In the numerical experiments for this
article we do not perform this extra step.

The computational cost of this procedure is low. Assuming we work on datasets
with n sample points in p-dimensional space, the computational cost is in the order of
np2+p3. When p� n, the main cost is just calculating empirical covariance matrices.

One straightforward theoretical application of the procedure is a simple derivation
of the optimal map between multivariate normal distributions. If X ∼ N(m1,Σ1) and
Y ∼ N(m2,Σ2), the X̃ and Ỹ resulting from the application of the preconditioning
procedure have the same distribution N(0, D). Since the optimal coupling between
identical measures is the identity map, the optimal map between N(m1,Σ1) and
N(m2,Σ2) is

(35) Y = m2 + (X −m1)AAT = m2 + (X −m1)Σ−1/2
1 (Σ1/2

1 Σ2Σ1/2
1 )1/2Σ−1/2

1 ,
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a result that agrees with the one found in [12] through different means.
This procedure also gives an alternative proof to the following lower bound intro-

duced in [7].

Theorem 5.2. Suppose (X,Y ) is the optimal coupling between µ and ν. Let m1 =
EX and m2 = EY , and let Σ1,2 be their respective covariance matrices. Denoting the
nuclear norm of a matrix M by ‖M‖∗, we have the following lower bound for the total
transportation cost:

(36) E‖X − Y ‖2 ≥ ‖m1 −m2‖2 + ‖Σ1‖∗ + ‖Σ2‖∗ − 2‖Σ1/2
1 Σ1/2

2 ‖∗.

Proof. This bound follows directly from the estimation in the proof of Prop-
erty 3.11. Since

‖Σ1‖∗ = tr(Σ1), ‖Σ2‖∗ = tr(Σ2), ‖Σ1/2
1 Σ1/2

2 ‖∗ =
N∑
i=1

di,

applying the optimal affine pair to general random variables X and Y , we have

E‖X − Y ‖2 = ‖m1 −m2‖2 + ‖Σ1‖∗ + ‖Σ2‖∗ − 2‖Σ1/2
1 Σ1/2

2 ‖∗ + E‖X̃ − Ỹ ‖2.

Since clearly E‖X̃ − Ỹ ‖2 is nonnegative, we derive the lower bound (36) along with
the condition for the bound to be sharp.

A more general application of this procedure is to precondition measures and
datasets before applying numerical optimal transport algorithms.

In practice, instead of continuous probability measures in closed form, one of-
ten has only sample points drawn from otherwise unknown distributions. Applying
the procedure of this paper to precondition a problem posed in terms of samples is
straightforward, since the preconditioning maps act on the random variables, and
hence on the sample points. The only difference is that instead of the true mean val-
ues and covariance matrices, one uses estimates, such as their empirical counterparts,
to define the preconditioning maps.

A natural question is how applying the preconditioning procedure improves the
overall algorithm performance.

First, as discussed above, the preconditioning procedure itself is very fast—as it
involves only the estimation of means and covariance matrices from the data. This cost
is typically negligible in comparison to the cost of any algorithm for numerical optimal
transport. With this low computational expense, the procedure can accurately explain
and remove a significant portion of the transportation cost. As we will see in the
shape transform and color transfer examples below, this portion is substantial in
many applications.

The other benefit of the procedure is that it will potentially improve the per-
formance of the numerical optimal transport algorithm. This will be true if the
underlying algorithm finds optimal transport problems with closer measures easier to
solve. This is because we proved in Property 3.11 that the preconditioned measures
are closer to each other than the original ones.

As the preconditioned measures µ̃, ν̃ are closer to each other, the map between
them is closer to the identity. Since this map relates to the dual variable φ, the
dual problem also simplifies. For the standard square-distance cost, the dual problem
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adopts the form

min
φ,ψ

∫
φ(x)µ̃(x)dx+

∫
ψ(y)ν̃(y)dy, φ(x) + ψ(y) ≥ x · y.

As a guide, consider first the extreme situation where µ̃ = ν̃. Then the problem
reduces to

min
φ,ψ

∫
[φ(x) + ψ(x)] µ̃(x)dx, φ(x) + ψ(y) ≥ x · y,

with solution φ(x) = ψ(x) = 1
2‖x‖

2, corresponding to the identity map T (x) =
∇φ(x) = x. Generally, preconditioning does not make µ̃ and ν̃ identical, yet it gives
them the same mean x̄ and diagonal covariance matrix D. Under these conditions,
Property 3.11 shows that among all affine maps, the identity brings the two distribu-
tions closest, a result that, translated into the dual variables, states that the optimal
quadratic φ and ψ are again φ(x) = ψ(x) = 1

2‖x‖
2. Hence one can write

φ(x) =
‖x‖2

2
+ φ̃(x), ψ(y) =

‖y‖2

2
+ ψ̃(y),

which reduces the problem to

min
φ̃,ψ̃

∫
φ̃(x)µ̃(x)dx+

∫
ψ̃(y)ν̃(y)dy, φ̃(x) + ψ̃(y) ≥ −‖x− y‖2,

for which even the simplest choice φ̃(x) = ψ̃(y) = 0, which satisfies the constraints
trivially, yields the best possible linear map. Thus algorithms based on the dual
formulation can take this as a starting point for further improvement of the objective
function.

6. Numerical experiments. Our first example concerns optimal transport
problems between two-dimensional normal distributions. Consider µ and ν defined
by

(37) µ = N

(
[1, 1],

(
2 0
0 1

))
, ν = N

(
[−1, 0],

(
1 −1
−1 2

))
.

We generate N = 200 data points {xi}200
i=1 and {yi}200

i=1 from each distribution. The
distributions and sample sets are shown in Figures 1(a) and 1(b).

We then perform the preconditioning procedure on both the distributions and
the sample sets. Notice that the two versions should give slightly different results,
because in the sample-based version empirical statistics are used instead of the true
ones. The results are shown in Figures 1(c) and 1(d). The preconditioning procedure
for continuous measures by definition makes µ̃ = ν̃. On the other hand, the two
preconditioned sample sets are consistent with the preconditioned measures.

In the second example, we test the preconditioning procedure on more complicated
distributions. We define both µ and ν to be Gaussian mixtures:

(38)
µ = 1

2N

(
[2,−1],

(
1/4 0
0 1/4

))
+ 1

2N

(
[2,−3],

(
1/2 1/4
1/4 1/4

))
,

ν = 2
3N

(
[2, 1],

(
3 −1
−1 2

))
+ 1

3N

(
[−2, 1],

(
2 1
1 2

))
.
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-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4
measure µ
sample set {xi}

(b) ν and {yi}

-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4
measure ν
sample set{ yi}
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Fig. 1. Preconditioning on the two Gaussian distributions µ and ν defined in (37). Sample sets
{xi} and {yi} are sampled from µ and ν, respectively, each with sample size 200. In (c) and (d), the
preconditioned measures µ̃ and ν̃ are derived from µ and ν by the preconditioning procedure. {x̃i}
and {ỹi} are transferred from the original sample sets with maps defined by their empirical mean
values and covariance matrices.

In Figures 2(c) and 2(d) the preconditioned datasets have the same diagonal covari-
ance matrix and are closer to each other than in the original datasets. As in the
first example, the preconditioned sample sets are consistent with the corresponding
preconditioned measures. This shows numerically that the preconditioning procedure
on sample sets is consistent with the procedure on continuous measures.

In the third example, we apply the preconditioning procedure along with the
sample-based numerical optimal transport algorithm introduced in [14], which takes
sample sets as input and compares and transfers them through feature functions.
This iterative algorithm approaches the optimal map by gradually approximating
the McCann interpolant [16] and updating the local transfer maps. We apply the
preconditioning procedure and give the preconditioned sample sets to the algorithm.
Then we take the optimal map from the algorithm’s output and transform it to solve
the original problem. The preconditioning procedure is crucial on two grounds: not
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(c) µ̃ and {x̃i}
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(d) ν̃ and {ỹi}
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Fig. 2. The distributions µ and ν are the Gaussian mixtures defined in (38). {xi} and {yi}
are derived in the same way as in Figure 1. In (c) and (d), the two preconditioned sample sets {x̃i}
and {ỹi} are transferred from the original datasets through maps defined in terms of their empirical
mean values and covariance matrices.

only does the algorithm perform better on the preconditioned sample sets, which are
closer to each other than the original ones, but feature selection becomes easier, as
the same features describe the two distributions at similar levels of precision.

We choose a two-dimensional shape transform problem to test the algorithm.
The problem involves finding the optimal transport between two geometrical objects,
which can be described in probabilistic terms by introducing a uniform distribution
within the support of each. For demonstration purposes, consider the specific task of
transforming an ellipse into a ring (Figure 3(a)), described by

(39)
Ω2 = {(x, y)

∣∣1 ≤ 3(x− 5)2 + 2(y + 1)2 − (x− 5)(y + 1) ≤ 9},
Ω1 = {(x, y)

∣∣(x− 1)2 + 10y2 ≤ 1}.

Both sample sets are drawn from uniform distributions within each region, with
the sample size set to 1000 points per sample set.



A1806 MAX KUANG AND ESTEBAN G. TABAK

(a) Ω1 and Ω2
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(c) preconditioned Ω2
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Fig. 3. Shape transformation problem. The two regions Ω1 and Ω2 are shown in (a), and
their preconditioned images are shown in (b) and (c). (d)–(i) illustrate the McCann interpolation
of the optimal map, at times shown in the titles. All computations are carried out on sample sets
drawn from the corresponding region. For the plots, we estimate the density function p(x) for each
sample set and display the area with p(x) > ε, where ε is a small constant. The density functions
are estimated by a kernel density estimator with optimal kernel parameters.

This is a challenging optimal transport problem, since (a) the locations and sizes
of the two regions are different; (b) the topological structures of the two regions
are different, as one is simply connected and the other is not; (c) both regions have
sharp boundaries, which makes the solution singular; and (d) since both shapes are
eccentric, the optimal map between them is not essentially one-dimensional as in the
transformation between a circle and a circular ring.

The preconditioned regions are shown in Figures 3(b) and 3(c); they share the
same mean and diagonal covariance matrix. The two preconditioned regions are much
closer to each other, the blue one (b) distinguished by its hole and a slightly smaller
radius. Using the sample-based algorithm on the preconditioned sample sets, we find
the optimal map T between the two preconditioned regions. Reversing the precon-
ditioning step, the map can then be transformed back to the optimal map between
Ω1 and Ω2. The map and its McCann interpolation are shown in the second row
of Figure 3. Without the preconditioning step, the procedure would have produced
much poorer results and at a much higher computational expense.

As a fourth test problem, we apply the preconditioning algorithm to color-transfer
problems [21, 27, 10], whose general objective is to recolor an input image so that its
colors resemble those of a target image. One can view the set of colors of an image
as a distribution and find the optimal map between the input and the target, using
the earth mover’s distance (EMD) [22] as a quantification of the transfer required.

For the purpose of testing the preconditioning algorithm, we follow the meta-
algorithm introduced in [19] without the postprocessing step, since we are concerned
here only with the quality of the optimal transport step rather than with the overall
quality of the entire algorithm. We first outline the meta-algorithm and refer the
reader to [19] for a more detailed description.

Since our focus is on the optimal transport step, we strictly follow all the other
steps as described in [19]. For the optimal transport step, we adopt the precondition-
ing algorithm along with the sample-based algorithm as in the shape transfer problem
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Algorithm 1 Color-transfer meta-algorithm.
Sample set formulation: Retrieve the color sample set in the RGB space from each

image by gathering the three-dimensional color (RGB) of all the pixels in the
image.

Spatio-color clustering: Cluster each color sample set and construct a smaller
weighted sample set using a superpixel method [1], which takes into account
not only the colors but also the location of the pixels.

Optimal transport: Construct an optimal map T (·) from the input sample set to
the target sample set.

Image synthesis: As the map T (·) is derived at the superpixel scale, we reconstruct
the color map for each pixel from T (·) using a maximum likelihood estimation
[24].

introduced above. The color transfer application fits the optimal transport sample-
based setting, since the input consists of sets of data points in the three-dimensional
(RGB) space.

We denote the input and target weighted sample sets derived from the space-color
clustering step by {Ui ∈ R3}Nx

i=1 with weights {υi}Nx
i=1 and {Vi ∈ R3}Ny

i=1 with weights
{νi}

Ny

i=1, respectively. To demonstrate the advantage of preconditioning, we apply the
algorithm in three different ways:
No preconditioning (NP): We apply directly a weighted version of the sample-

based algorithm to {Ui}Nx
i=1, {Vi}

Ny

i=1 and find the optimal map T1(·).
Preconditioning-only (PO): We apply the preconditioning algorithm to the two

weighted sample sets, find the preconditioning maps F and G, and directly
define as the resulting map their composition T2 = G−1 ◦ F .

With preconditioning (P): We first use the preconditioning algorithm to get F
and G. Then we apply the sampled-based algorithm to the preconditioned
sample sets {F (Ui)}Nx

i=1 and {G(Vi)}
Ny

i=1 to find a map T ′. Finally, we compute
the optimal map consisting of the composition of all three: T3 = G−1 ◦T ′ ◦F .

Our objective is to compare P and NP, but we added PO as an additional reference.
As proved above, PO will optimally match the mean vectors and covariance matrices
of two sample sets, which can be seen as a simple relaxation of the optimal transport
problem.

We use two examples from the color-transfer literature. The input and target
images are shown in the first two columns of Figure 4. We follow the meta-algorithm,
Algorithm 1, with the same parameters used in [19]. Specifically, for the superpixel
method we set the number of superpixels to 2000 and the compactness to 2. For the
image synthesis step, we set the covariance rescaling parameters to σx = σy = 10,
σr = σg = σb = 1.

We can see that the NP and P algorithms do produce different results, as a
significant share of the differences between the input and target images is explained
and removed by the preconditioning step in the P algorithm. In both examples, while
the transformed images from both algorithms are reasonable, the images from the NP
algorithm do have some artifacts, while the images from the P algorithm are smoother
and contain more details.

Another observation is that the PO algorithm also produces quite reasonable
results, despite the fact that it only matches means and covariances. The results from
the PO and P algorithms have substantial similarities, which indicates that a large
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(a) Input image (b) Target image (c) NP image (d) PO image (e) P image

(f) Input image (g) Target image (h) NP image (i) PO image (j) P image

Fig. 4. Two color-transfer problems. The first column (subfigures (a) and (f)) contains the
input images; the second ( (b) and (g)) contains the target images; the third ( (c) and (h)) displays
the images resulting from the NP algorithm; the fourth ( (d) and (i)) displays the images resulting
from the PO algorithm; and the last column ( (e) and (j)) displays the results from the complete
algorithm, P.

portion of the differences (EMD) can be removed by matching means and covariances
alone.

7. Conclusions and future work. This paper describes a family of affine
map pairs that preserves the optimality of transport solutions, and finds an optimal
one among them that minimizes the remaining transportation cost. The procedure
extends from the square-distance cost to more general cost functions induced by an
inner product. Based on these map pairs, we propose a preconditioning procedure
which maps input measures or datasets to preconditioned ones while preserving the
optimality of the solutions.

The procedure is efficient and easy to implement, and it can significantly reduce
the difficulty of the problem in many scenarios. Using this procedure one can directly
solve the optimal transport problem between multivariate normal distributions. We
tested the procedure both as a stand-alone method and along with a sample-based
optimal transport algorithm. The procedure in all cases successfully preconditioned
the input measures and datasets, making them more regular and closer to their coun-
terparts.

As future work, one natural extension is to consider nonlinear admissible map
pairs, which can potentially further reduce the total transportation cost and directly
solve a wider class of optimal transport problems. If the family of admissible map pairs
is rich enough, one can potentially construct a practical optimal transport algorithm
from these map pairs alone.

Another possible extension is to the barycenter problem [2]:

(40) min
πk∈Π(µk,ν),ν

K∑
k=1

wk

∫
c(x, y)dπk(x, y),



PRECONDITIONING OF OPTIMAL TRANSPORT A1809

where µ1, µ2, . . . , µK are K different measures with positive weights w1, w2, . . . , wK .
Instead of the two measures of the regular optimal transport problem, we would like
to map K measures simultaneously while preserving the optimality of the solution.
The simplest of such maps is the set of translations that give all measures the same
mean.
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