
The Forced Inviscid Burgers Equation as a Model forNonlinear Interactions among Dispersive WavesFernando Menzaque, Rodolfo R. Rosales, Esteban G. Tabak, and CristinaV. TurnerAbstract. The forced inviscid Burgers equation is studied as a model for thenonlinear interaction of dispersive waves. The dependent variable u(x; t) isthought of as an arbitrary mode or set of modes of a general system, and theforce is tuned to mimic the e�ects of other modes, which may be either nearor far from resonance with u.When the force is unimodal, a family of exact traveling waves fully de-scribes the asymptotic behavior of the system. When the force is multimodal,with the frequencies of the various modes close to each other, the asymptoticsolution is quasi-stationary, punctuated by faster intermittent events. The ex-istence of these \storms" may have signi�cant implications for energy transferamong modes in more general systems.1. Introduction.The nonlinear interaction among a large set of waves is a complex phenomenon.Among the issues involved are the tuning (or detuning) of sets of modes, dependingof how far they are from perfect resonance. This issue is subtle though, since itdepends on the time scale of the nonlinear interaction, which itself depends on thedegree of tuning among modes.A particularly subtle issue appears in the transition from discrete to continuoussets of waves: how to add up the e�ects of very many near resonances. Do theyinterfere destructively or constructively? In most theories of continuous spectra,the former is usually assumed, to the point of suppressing altogether the leadingorder e�ect of resonances, pushing them to higher orders than those appearing indiscrete systems.In systems that are both forced and damped, statistical cascades often appear,carrying energy among scales, from the scales associated with the forcing, to thosewhere dissipation transfers the energy out of the system. When the scales of forcing2000 Mathematics Subject Classi�cation. Primary 35Q35.Key words and phrases. Breaking waves, near-resonance, Burgers equation.The work of Menzaque was partially supported by SECYT-UNC 98-275/00 CONICOR465/99.The work of Rosales was partially supported by NSF grant DMS-9802713.The work of Tabak was partially supported by NSF grant DMS-9701751.The work of Turner was partially supported by SECYT-UNC 98-275/00 CONICOR 465/99.1



2 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERand dissipation are many decades apart, the intermediate scales span the so{calledturbulent inertial range, where the system behaves e�ectively as a Hamiltonianone, and self-similar energy spectra are often observed. Attempts to understandthe nature of these self-similar cascades gave rise to the theory of Wave Turbulence(e.g., see [1], [2], [5], and [11].) In order to close a very complex system, this theorymakes a number of assumptions, such as phase decorrelation among the variousmodes, scale separation between linear and nonlinear phenomena, and in�nite sizeof the system, giving rise to a continuum of modes. These assumptions are hardto justify, and the theory, despite its beauty, has a number of problems, such asinternal inconsistencies | as when it predicts upscale energy 
uxes{ and a mixedrecord of agreement with observations and numerical simulations (e.g., see [3] and[6].)In this work, we consider a simple model, where surrogates for resonances and nearresonances can easily be built in: the forced inviscid Burgers equation,ut +�12 u2�x = f(x; t) ;(1.1.1)where f = f(x; t) is some smooth forcing, and both f and u are periodic (of period2�) in space and have vanishing mean.Here the dependent variable u(x; t) represents a mode (or set of modes) with linearfrequency ! = 0 (as follows from the zero mean condition.) On the other hand,the externally imposed force f(x; t) represents other modes of the system, which(depending on the scale of their dependence on time) will be close or far fromresonance with u.A vastly di�erent reduced model for resonant energy transfer among modes wasdeveloped in [7]. It it interesting to note that both models, though completelydi�erent in conception and structure, contain intermittent regimes | these arestrong in [7] and much milder in the present work. It appears that intermittenceis a natural occurrence in models of turbulent energy cascades.The nonlinear term in (1.1.1) has two combined functions: to transfer energy amongthe various (Fourier) components of u, and to dissipate energy at shocks. Thus the\inertial cascade" and the system's dissipation are modeled by a single term. Thisnot only implies a big gain in simplicity, but could also in fact be a rather realisticmodel for 
uid systems, where dissipation is almost invariably associated with someform of wave breaking.The model equation (1.1.1) above is a simpli�ed version of the equations describingthe interaction among resonant triads involving a nondispersive wave [8]. Thesimpli�cation consists in freezing the two dispersive members of the triad, thusmaking them act as a prescribed force on u(x; t).It would seem that a more general model, with a non{zero linear frequency !, isthe one given by the equationut + ! ux +�12 u2�x = f ;(1.1.2)



THE FORCED INVISCID BURGERS EQUATION 3which is equivalent to considering non-zero mean solutions to (1.1.1) | i.e.: writeu = !+~u, where ! is the mean1 of u. However, this last equation can be reduced toequation (1.1.1) by the introduction of the new independent variable x0 = x� ! t.A resonant force f(x; t) in (1.1.1) is one that does not depend on time; a near{resonant one, on the other hand, evolves slowly. More precisely, a near resonanceshould be modeled by ut +�12 u2�x = �2f(x; �t) ;(1.1.3)where 0 < �� 1 measures the degree of non{resonance. The reason for the factor �2in front of the forcing term follows from considering a quasi{steady approximationto the solution to (1.1.3), namely:u(x) � �s2 Z x f(s; �t) ds :This is not quite right, but indicates the correct result: a (slow) forcing of sizeO(�2) in (1.1.3), generally induces a response of amplitude � in u. This shows thatany force stronger than �2 in (1.1.3) would render its own modulation irrelevant,since the induced nonlinearity would act on a much faster time scale than that ofthe modulation.Interestingly, the �'s above in (1.1.3) can be scaled out by a simple transformation:let ~t = � t, and write u = �~u. Then, in terms of these new variables, (1.1.3)becomes (1.1.1). Hence near-resonances in (1.1.1) cannot be de�ned asan asymptotic limit involving a small parameter �; if there is a distinctionbetween near resonant and nonresonant forces, it will have to arise from a �nitebifurcation in the behavior of the solutions to (1.1.1) | which in fact occurs, as wewill show in section 2.The fact pointed out in the prior paragraph is part of a more general property ofequation (1.1.1), namely: it is a canonical system. For consider a model involvinga more general nonlinearity, such as:ut +N(u)x = f(x; t) ;(1.1.4)where, generically, we can assume that N(u) = O(u2) (since any linear term can beeliminated by a Galilean transformation.) Now consider a weakly nonlinear, nearlyresonant, situation, where u is small, the force is small and the time scales are slow.Thus, take: u = �~u, f = �2 ~f , with the time dependence via ~t = �t, and 0 < �� 1.Then it is easy to see that, in terms of ~u, ~f , ~t, and x, the leading order system is(1.1.1) | except for, possibly, a constant other than 1=2 in front of the nonlinearterm. In fact, this reduction of the equations to (1.1.1) will occur even if we havea system (i.e.: u in (1.1.4) is a vector), as long as there is a single force (lined upwith a single mode of the system.)1Note that, because f has a vanishing mean, the mean of the solutions to (1.1.1)is a constant.



4 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERNotation and general properties.It is well known that the inviscid Burgers equation develops shocks. Throughoutthis work, we shall use the following notation for various quantities at shocks:� A plus (respectively, minus) superscript (or subscript) stands for the valueof the corresponding variable ahead (respectively, behind) of the shock.� Brackets stand for the jump across the shock of the enclosed expression.Speci�cally: the value ahead (to the right) minus the value behind (to theleft). Thus, for example: [u] = u+ � u� ;is the jump in u across the shock.Shocks obey the following rules:� The shock speed is given by the Rankine-Hugoniot jump conditions,namely: S = �u = 12 �u+ + u�� :where �u is the arithmetic mean of u at the shock, and S is the shock speed.� Shocks must satisfy an entropy condition, which for (1.1.1) states that ushould jump down across shocks, i.e.:[u] � 0 :Finally, equation (1.1.1) has an energyE(t) = Z 2�0 12 u2(x; t)dx ;which satis�es the equationdEdt �X� 112[u]3� = Z 2�0 u(x; t) f(x; t) dx ;(1.1.5)where the sum on the left is over all the shocks in the solution. This sum accountsfor the dissipation of energy at the shocks, and the right hand side represents thework by the forcing term f . That is, we have:Ed = �X( 112[u]3) > 0 and Wf = Z 2�0 u f dx ;where Ed is the energy dissipated per unit time and Wf is the work done by theforcing. Contents and plan of the paper.Much of the contents of this paper will be concerned with the study of the energeticinterplay between the dissipation at shocks and the work done by the forcing func-tion. Our interest lies mostly in situations where E(t) is close to stationary, so thatthe work done by the forcing and the dissipation at shocks approximately balanceeach other. Either of these then represents the amount of energy 
owing throughthe system, and the dependence of this 
ux on the characteristics of f(x; t) willteach us something about the nature of the energy exchange among near resonantmodes.This paper is organized as follows. In section 2, we study the asymptotic, longtime solutions to (1.1.1), under unimodal forces f(x; t) = f(x � ! t). This longtime asymptotic behavior is given by a family of exact traveling wave solutions. We



THE FORCED INVISCID BURGERS EQUATION 5observe an interesting bifurcation between near resonant and nonresonant behavior,taking place at a critical value of ! (that depends on the form and size of the forcingf .) If j!j is smaller than this critical value, the forcing does work on the solution;if j!j is bigger, on the other hand, it does not. We sketch proofs for these results,which use a novel combination of Hamiltonian formalism with breaking waves.In section 3, we study two-modal forcings, in which f = g1(x) + g2(x � ! t). Forlarge values of !, g2 has vanishingly small e�ect on the asymptotic, long time,solution u(x; t). For small values of !, on the other hand, quasi-steady solutionsu = u(x; �) arise (where � is a slow time), punctuated by intermittent events (whichwe call \storms") with enhanced rates of energy exchange between the forcing andthe solution, at an intermediate time scale (slow, but faster than � .) The abnormalrate of energy exchange during storms hints at the possibility that nonlinear wavesystems may have regimes where the energy exchange among modes is stronglyin
uenced by fast, intermittent events, involving coherent phase and amplitudeadjustments of the full spectrum, rather than by the slow evolution of individualresonant sets.We can make the statement in the prior paragraph more precise, or at least moresuggestive, as follows: We show in section 3 that the extra (integrated) energyexchange during a storm scales like !�1=2. In our model, however, there are only a�nite number of storms per period, which itself scales like !�1. Thus the averageenergetic impact of the storms is of order !1=2, vanishing with !. Yet, in morecomplex systems, there are a number of likely scenarios (involving, for instance,random or pseudo-random events), in which the number of storms per period willincrease as the period does, at least as !�1=2. When this is the case, the energeticimpact of storms will be at least comparable to that of the quasi-steady parts ofthe solution, and we will �nd ourselves at the threshold of an energy cascade drivenby intermittent events. 2. A Single Forcing Mode.In this section, we consider the equationut +�12u2�x = f(x� !t) ;(2.2.1)where f = f(z) and u = u(x; t) are 2�-periodic in space, real functions, with zeromean. Here we will assume that f is a su�ciently smooth function, and that theinitial conditions are such that the solution is, at all times, piece-wise smooth, witha �nite number of shocks.As explained earlier, the forcing term is resonant if ! = 0, near resonant if ! is smalland far from resonant if ! is big. Notice though that, from the argument aboveequation (1.1.4) in the introduction, we cannot give an asymptotic meaning to thisdistinction through the introduction of a small parameter, since this equation isthe canonical model for the description of systems with a 
uid-like nonlinearity,weakly forced near resonance. Interestingly, as we shall see below (remark 2.2), theequation admits exact solutions where there is a sharp transition between resonantand non-resonant behavior, at a critical value of the frequency ! = !c.Below we consider a special set of solutions to equation (2.2.1), given by travel-ing waves. These solutions not only can be written exactly in closed form, but havespecial signi�cance | since they describe the long time behavior for the general



6 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERsolution. In subsections 2.2 and 2.3 we show {numerically and analytically{ thatthe solution to the initial value problem for (2.2.1) above converges to the travelingwave solution as t!1, which is generically unique.2.1. Exact Traveling Solutions. We shall seek traveling wave solutions to(2.2.1) of the form u(x; t) = G(z) ;(2.2.2)where z = x� ! t. Then equation (2.2.1) becomes the O.D.E.ddz �12(G� !)2� = f(z) :(2.2.3)This has the solutions G(z) = ! �p2F (z) ;(2.2.4)where F = R z f(s)ds, with the constant of integration selected so that F (z) � 0everywhere.We shall de�ne Fcr to be the choice of F such that min(Fcr) = 0.(2.2.5)These solutions can be used to produce exact (periodic) traveling wave solutionsthat both have a vanishing mean, and satisfy the entropy condition when theyinclude shocks. Generically, three distinct cases can arise, with the solution de-termined uniquely by ! if Fcr has a single minimum per period. See�gure 1 for illustrative examples.Case 1. If F is strictly larger than Fcr, then the solution must be smooth |with only one sign selected in (2.2.4). This follows because the entropy conditionfor shocks only allows downward jumps; thus only jumps from the positive to thenegative root are allowed. Given that G must be periodic, no shocks are possiblewhen min(F ) > 0. In this case, the sign of the square root, and the value of theintegration constant de�ning F , follow upon imposing the condition that the meanof u = G must vanish.We can write the solutions corresponding to this case as two families of solutions(one for ! > 0 and another one for ! < 0) parameterized by a single parameter� > 0, as follows: u = ! � sign(!)p2 (� + Fcr(z)) ;(2.2.6) ! = � 12� Z 2�0 p2(� + Fcr(z)) dz ;(2.2.7)where z = x � ! t and F (as de�ned above) is given by F (z) = � + Fcr(z). Theseformulas show thatFor j!j > !cr, where !cr is de�ned below in equation (2.2.8), the travel-ing wave solutions are as smooth as Fcr. Furthermore, they are uniquelydetermined by the function f and the frequency !.Notice that uniqueness, in this case where j!j > !cr, does not depend atall on Fcr having a single minimum per period.Case 2. For values of j!j smaller than!cr = 12� Z 2�0 p2Fcr(z) dz ;(2.2.8)



THE FORCED INVISCID BURGERS EQUATION 7no F can be found that will satisfy the zero mean condition. When this is the case,one must take F = Fcr, and allow the solution to jump between the positive andthe negative roots. Then the solution can return (smoothly) to the positive rootthrough the point where Fcr = 0, which is generically unique. In this case, thetunable parameter that one can use to adjust the solution so that u = G has avanishing mean, is the position z = s of the shock (notice that, because u at theshock jumps from u� = ! +p2Fcr(s) to u+ = ! �p2Fcr(s), the shock's velocityis ! | therefore it remains �xed in the frame moving with the traveling wave.)To be speci�c, assume that Fcr has a single minimum per period, and letz = zm be the position of the minimum. Then the equation for the shock positionz = s is given by:! = � 12� Z szmp2Fcr(z) dz + 12� Z zm+2�s p2Fcr(z) dz ;(2.2.9)where zm � s < zm + 2�. Since the right hand side in this equation is a (strictly)monotone decreasing function of s (with the values !cr for s = zm, and �!cr fors = zm+2�) there is a unique solution for s. Thus the traveling wave solutionis unique.Remark 2.1. Notice that, in the (non-generic) case when Fcr has more thanone minimum per period, uniqueness is lost when ! � !cr. This is because, inthis case, there is more than one possible point where a smooth switch from thenegative to the positive root in equation (2.2.4) can occur. This feature is at theroot of the behavior reported in section 3 for the response to forcings with morethan one frequency.Case 3. In the limiting case when ! = !cr, the shock and the smooth transitionfrom negative to positive root coalesce and disappear, leaving a corner moving atspeed !cr as the only singularity of the solution.Simple example; single harmonic forcing.Consider the case with a single sinusoidal forcing: f = f(z) = sin z (with z =x � !t), for which Fcr = 1� cos(z) = 2 sin2(z=2). Then the critical value for ! isgiven by: !cr = 12� Z 2�0 2 ���sin(z2)��� dz = 4� ;(2.2.10)and we have:Solutions with shocks for the simple example: These occur for j!j < !cr =4=�, and have the formu(x; t) = G(z) = ! � 2 ���� sin(x� !t2 ) ���� :(2.2.11)In each period (say 0 � z < 2�) there is a (continuous) switch from the minusto the plus sign as z crosses z = 0, and a switch from the plus to the minus sign(across a shock) at some position z = s. The position of this (single) shock followsfrom the zero mean condition (i.e.: equation (2.2.9) for this simple example)0 = Z s0 G+(z) dz + Z 2�s G�(z) dz = 2�! � 8 cos(s=2) ;(2.2.12)



8 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNER
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Figure 1. Examples of traveling waves for the equationut + (0:5u2)x = sin(x� ! t). Three solutions are shown:(a) Smooth solution, for ! = �2:00 < �!cr.(b) Critical solution, with a corner, for ! = �!cr = �4=�.(c) Solution with a shock, for ! = �0:70!cr.The "envelope" for the solution with a shock, given by u = !�p2F is alsoshown (dashed line.) In each case, the solution is plotted for a time t suchthat ! t = 0:80�.where G+ = ! + 2 j sin(z=2)j, and G� = ! � 2 j sin(z=2)j. Thuss = 2arccos��4!� ; with 0 � s < 2� :(2.2.13)We can also compute the work per unit time Wf done by the external force f onthis exact solution. Since this work must agree with the energy Ed dissipated at



THE FORCED INVISCID BURGERS EQUATION 9the shock (given that the solution is steady), we have:Wf = Z 2�0 f u dx = Ed = � 112 [u]3 = 163 �1� ��!4 �2�3=2 :(2.2.14)A plot of the work done by the forcing is shown in �gure 2.Remark 2.2. For j!j � !cr = 4=� the solutions have no shocks (see below)and there is no energy dissipation, nor work done by the forcing (i.e.: the solutionis orthogonal to the forcing.) This indicates a rather abrupt change in behavior,which we interpret as the boundary of resonance. That is, a sharp transitionfrom resonant behavior (with the forcing continuously pumping energy into thesystem, which is then dissipated by a shock) to non-resonant behavior (with nowork done by the forcing) occurs at j!j = !cr. It is easy to see that this behavior isgeneral, and not particular to the special harmonic forcing of this simple example.It will occur for the traveling waves produced by any forcing of the form in equation(2.2.1). It is interesting to note that this behavior is analogous to a third orderphase transition, with the collective behavior of the modes making up the solutionswitching from a dissipative con�guration to a non-dissipative one.Smooth solutions for the simple example: These occur for j!j > !cr = 4=�,and have the form u(x; t) = ! �p2 (D � cos(x� !t)) ;(2.2.15)where D > 1 and the sign of the square root follow from the condition on the mean:Z 2�0 u(x; t) dx = 0 :It is actually easier to write ! as a function of D, as follows! = !(D) = � 12� Z 2�0 p2(D � cos z) dz ; where D � 1 :(2.2.16)This equation is the same as (2.2.7) for this simple example, with D = 1 + �.Critical solutions for the simple example: These occur for j!j = !cr = 4=�,and are given by: u = ��!cr � 2 ����sin�x� !crt2 ������ :(2.2.17)2.2. Numerical Experiments. In subsection 2.3 we will show (analytically)that the solution to the general initial value problem for equation (2.2.1) convergesasymptotically (for large times) to the traveling wave solution | at least in thecase where the traveling wave solution is unique, i.e.: Fcr, as de�ned in (2.2.5), hasa single minimum per period. In this section, we show the result of a numericalcalculation illustrating the convergence process.Numerical code: In both the calculations shown in this subsection, and those insection 3, we use a (second order in time) Strang [9] splitting technique, separatingthe equation into ut = f and ut +�12 u2�x = 0 :Then we use a second order Runge{Kutta ODE solver for the �rst equation. Forthe second equation we use a second order Godunov [4] scheme, with the van Leer
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Figure 2. Energy dissipated (as a function of !) by the traveling waves.The energy dissipated Ed (equal to the work Wf done by the external forcef) for the equation ut+(0:5u2)x = sin(x�! t), is shown as a function of !.Notice the sharp cuto� at ! = � !cr, beyond which no work is done by theforce f . This result is general and does not depend on the particular forcingsin(x� ! t) | it will occur for any forcing of the form f = f(x� ! t).[10] monotonicity switches. This yields a fairly simple and robust shock capturing(second order, both in time and space) algorithm.Example: Figure 3 shows an example of how a solution to equation (2.2.1) (withf = sin(x � ! t) and \arbitrary" initial data) converges to a traveling wave ast!1. Speci�cally, we take ! = 0:5!cr | where !cr is given in equation (2.2.10)| and u(x; 0) = sin(x).The convergence to the traveling wave solution is done via the formation of shocks(only one in this case) that dissipate energy and force the solution to converge toits limiting shape. The arguments in subsection 2.3 give a more precise descriptionof this process. Notice how fast the convergence is: the period in time of the forcingfunction is T = 2�=!, and (even though the initial condition is O(1) away from
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Figure 3. Forcing f = sin z in the equation, with z = x � !t and! = !cr=2 = 2=�. As t ! 1 the solution converges to the travelingwave u = ! � 2 sin(z=2), where the sign switch occurs at the shock posi-tion. The traveling wave has period 2�=! in time (same as the forcing.)From left to right and from top to bottom, we plot the solution and the"envelope" ! � 2 sin(z=2) (dashed line) for the traveling wave: (a) Initialconditions for t = 0. (b) Time t = 0:08 (2�=!), shortly before the formationof the shock. (c) Time t = 0:10 (2�=!), shortly after the formation of theshock. (d) Time t = 0:50 (2�=!), once the solution has converged to thetraveling wave.the traveling wave) by t = T=2 the solution is indistinguishable from the travelingwave.2.3. Asymptotic behavior of the solutions. In this subsection, we show(analytically) that the exact solutions of subsection 2.1 yield the large time (t!1)asymptotic behavior of the solutions to equation (2.2.1), for any initial data. First,we show that this result holds for j!j > !cr, and initial data relatively close tothe corresponding smooth exact solution. Next we present arguments for the casej!j � !cr, and arbitrary initial data. The same type of reasoning that we use in



12 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERthis second part can be used to show global convergence when j!j > !cr, but weshall not carry out the details of such argument here.The main mechanism involved in the convergence (as t!1) to the traveling wavesolution when j!j � !cr (see remark 2.5) is much more \e�cient" than the mech-anism involved in the case when j!j > !cr. This is because the �rst mechanisminvolves O(1) shocks at all times, while the second has shocks of vanishing ampli-tude as t ! 1. The calculation displayed in �gure 3 illustrates how e�cient themechanism in the case j!j � !cr is, as pointed out at the end of subsection 2.2.By contrast, in numerical calculations done for j!j > !cr, we observed a very slowapproach to the limiting behavior.Remark 2.3. We shall restrict our arguments to the case when Fcr, given byequation (2.2.5), has only two extremal points per period: a single zero, and a singlemaximum. The single zero condition guarantees a unique traveling wave solution.The single maximum condition is technical and simpli�es the arguments | it isnot really needed, as we point out later (see remark 2.6.)When the single zero condition is not satis�ed, so that the traveling wave solutionfor j!j � !cr is not unique, our numerical experiments still show convergence to atraveling wave as t ! 1, which depends on the initial conditions. Actually, thearguments in this section for the case j!j > !cr do not depend on Fcr having a singlezero, while the arguments for j!j � !cr indicate convergence to some traveling wave,even if it is not unique.Case: j!j > !cr. Local convergence to the smooth exact solution.Preliminaries.Let uex = uex(z) (where z = x � !t) be the exact solution introduced in subsec-tion 2.1 | see equations (2.2.6 { 2.2.7). Then equation (2.2.1) can be written inthe form vt +�12v2 � F�z = 0 ;(2.2.18)where v = v(z; t) = u � !, and F = F (z) = 12 (uex � !)2 is the function de�nedearlier in subsection 2.1. We note thatmin(F ) > 0 ; dFdz = f ;and that v must be a 2�-periodic function of z, with Mean(v) = �!. Finally, letvex = uex � ! = � sign(!)p2F (z)be the exact solution of equation (2.2.18) corresponding to uex | i.e.: the travelingwave. We shall now assume that ! < �!cr, since the case ! > !cr can beobtained from the symmetry, in equation (2.2.1), given by: ! ! �!, u ! �u,f(z)! �f(�z), and x! �x. Then we can writevex(z) = p2F :(2.2.19)The argument of convergence to the traveling wave solution as t ! 1, in thisj!j > !cr case, is divided in two parts. In part I we show that the initial data canbe restricted so that the solution remains positive (and bounded away from zero)for all times, and that such solutions always break and develop shocks | with the



THE FORCED INVISCID BURGERS EQUATION 13sole exception of the traveling wave (which has no shocks.) In part II we constructa (convex) Hamiltonian functional, which decreases for solutions with shocks, andis minimized by the traveling wave solution.Case: j!j > !cr. Part I.Along characteristics, equation (2.2.18) takes the formdzdt = v ; and dvdt = dFdz (z) :(2.2.20)This can be written in the Hamiltonian formdzdt = @h@v ; and dvdt = � @h@z ;(2.2.21)with Hamiltonian h = h(z; v) = 12v2 � F (z) :(2.2.22)This is the standard Hamiltonian for a particle in a one{dimensional potential �eldV (z) = �F (z). We shall use this Hamiltonian formulation to derive the followingtwo results:8>>>><>>>>: I. We can constrain the initial data v = v(z; 0), so that v =v(z; t) remains positive (and bounded away from zero) for alltimes t � 0.II. Smooth initial data v = v(z; 0), di�erent from vex (but con-strained so that v > 0 for all t � 0), necessarily developshocks.(2.2.23)These two results will be used in Part II to show convergence of v to vex, as t!1.For both results, we turn to the phase plane for the Hamiltonian system (2.2.21)(see �gure 4). To prove the �rst result, notice that, because the characteristicevolution is given by this Hamiltonian system, if the initial data are such thatv(z; 0) � v0(z) (where v = v0(z) > 0 is an orbit for the system), then v � v0 for alltimes (hence it remains positive and bounded away from zero.) This is easy to seefrom the example in �gure 4. Therefore, we shall (from now on) assume that vis greater than zero.To prove the second result, notice that, because here we consider only values ofv greater than zero, all centers are excluded, and the trajectories of (2.2.21) areall open in the plane (though, of course, closed in the cylinder de�ned by the 2�periodicity of z). Several such trajectories, corresponding to di�erent values ofh, are displayed in �gure 4. The point we need to make is that any two suchtrajectories always have di�erent periods, for the period T (h) is given byT (h) = 1p2 Z 2�0 dzph+ F (z) ;so that dTdh = � 12p2 Z 2�0 dz(h+ F (z))3=2 < 0 :This means that any two characteristics with di�erent values of h necessarily meet(the one with the shorter period catches up to the other one.) Therefore a shockmust form (since two values of h at a single position z imply two distinct values ofv.)
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Figure 4. Unbounded, v > 0 trajectories, for the system with Hamiltonianh = 12 v2 + cos z � 1. These occur for v > vcr(z) = p2Fcr(z), whereFcr = (1 � cosz). (a) Critical trajectory vcr, connecting the saddle points(thick solid line.) (b) A trajectory v0, slightly above critical (dashed line.)(c) Two typical trajectories vex and v1 (solid lines.) For the P.D.E. vt +( 12 v2 + cos z)z = 0, whose characteristic form is given by this Hamiltoniansystem, it is clear that: If the initial data for v are above a curve such as v0,then the solution remains above v0 for all times.Hence the only case in which characteristics do not cross is the one in which theinitial data lies on a contour line h = constant. However, such initial data is givenby v(z; 0) =p2(F + h) ;and the condition that the average of v be equal to �! implies that h = 0, i.e.,v = vex. Hence all initial data di�erent from vex develop shocks.



THE FORCED INVISCID BURGERS EQUATION 15Case: j!j > !cr. Part II.For the second part of the argument, we need a di�erent Hamiltonian structure,the one given by the integralH = Z 2�0 �16v3 � v F� dz :(2.2.24)Using H , equation (2.2.18) can be written in the Hamiltonian formvt = � @@z ��H�v � :(2.2.25)We notice that H is convex for positive functions v = v(z) (of mean equal to�!), with a unique absolute minimum given by v(z) = p2F = vex. Furthermore,because of the Hamiltonian structure (2.2.25), H is conserved while v(z; t) remainssmooth. On the other hand (see equation (2.2.27) below) H is dissipated at shocks.Hence, since all v's di�erent from vex develop shocks (as shown earlier in part I),H cannot settle down until it reaches its minimum value, corresponding to v = vex.We show now that H decreases when there are shocks. We have:dHdt = NXj=1 Z sj+1sj �H�v vt dz � dsjdt �16v3 � v F�j! ;(2.2.26)where we have assumed that there are N shocks per period (for some N), withsj = sj(t) the position of the j-th shock, s1 < s2 < � � � < sN , and sN+1 = s1 + 2�(from the periodicity.) Substitute now into this last expression vt from (2.2.25),and the Rankine-Hugoniot jump conditions for the shock velocities:dsjdt = 12 �v�j + v+j � ;where v�j denote the values of v ahead and behind the shock. ThendHdt = � 12 NXj=1 Z sj+1sj  ��H�v �2!z dz + �v�j + v+j � �16 v3 � v F�j!= 12 NXj=10@"��H�v �2 � 16 v4 + v2 F#j � 16 v�j v+j �v2�j1A= 112 NXj=1 �12 v4�j � v�j v+j �v2�j!= 124 NXj=1[v]2j �v2�j < 0 :(2.2.27)The last inequality follows from the entropy condition, that states that v (thereforev2, since v > 0) decreases from left to right across shocks. This concludes theargument of convergence to the traveling wave in the case j!j > !cr.



16 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERCase: j!j � !cr. Global convergence to the non-smooth traveling waves.Here we shall consider the case with j!j � !cr (when F = Fcr � 0) and generalinitial data. We shall require that the zero value of Fcr be achieved only once perperiod in z (for concreteness take this value to be z = 0.) The reason for thisrestriction | which is satis�ed by generic functions Fcr = Fcr(z) | is that: whenFcr vanishes at more than one position per period, there is more than one steadysolution to equation (2:2:1), and this renders the issue of ultimate convergence toone of the steady solutions more cumbersome. We shall also require that Fcr haveonly one local maximum per period, since this simpli�es the arguments (but thiscondition is not strictly needed, as we point out later, in remark 2.6.)We shall use the following functional G, a modi�cation of the Hamiltonian H in(2.2.24): G = Z 2�0 �16 jvj3 � jvjFcr� dz :(2.2.28)Notice that G is minimized pointwise by functions of the form v(z) = �p2Fcr =�jvexj. In particular, the exact steady solution to equation (2.2.1) is the onlyminimizer of G consistent with the entropy condition for shocks (v never jumpsupwards) and with the requirement that its average be equal to �!. This followsfrom the condition that there is only one point where Fcr(z) = 0, which is the onlyplace at which v(z) can switch smoothly from negative to positive. Hence therecan be only one shock switching v(z) back to negative. The position of this shockis then determined by the condition that v(z) +! must have a vanishing mean. Inparticular, for j!j = !cr, this last condition determines that the sign of v(z) neverchanges, and the only singularity of the solution is a corner at the position of thezero of Fcr (with no shocks.)The argument for convergence to vex will be based on the fact that, afteran initial transient period, G necessarily decays when v(z; 0) 6= vex.Unlike H , G is not a Hamiltonian, yet it allows us to write equation (2.2.18) in thefollowing pseudo-Hamiltonian form (valid wherever v 6= 0):vt = �� @@z ��G�v � ;(2.2.29)where � = sign(v) =8<: 1 if v > 0 :0 if v = 0 :�1 if v < 0 :Assume now that there are N shocks per period, with sj = sj(t) the location of thej-th shock, where s1 < s2 < � � � < sN and sN+1 = s1 (periodicity.) Furthermore,introduce the functions h = h(z; t) = 12 v2 �Fcr and g = 16 jvj3 � jvjFcr. We noticethatvt = �hz ; @g@v = � h ; and � hhz = �18 � v4 � 12 � v2 Fcr�z + 12 � �F 2cr�z ;where the last equation applies away from the shocks (in particular, it is valid when� is discontinuous due to a zero of v.)



THE FORCED INVISCID BURGERS EQUATION 17Using the formulas above, we write below an equation for the time evolution ofthe functional G. Here, as usual, the brackets stand for the jump | front toback | of the enclosed quantities across the shock, the superscripts � are used toindicate values immediately ahead and behind a shock, and a subscript j indicatesevaluation at the j-th shock. We have:dGdt = � NXj=1 Z sj+1sj � hhz dz + dsjdt [ g ]j!= � 12 Z 2�0 � �F 2cr�z dz � 12 NXj=1 �� F 2cr�j +NXj=1 �18 � v4 � 12 � v2 Fcr + 12 � F 2cr�j � 12 �v+j + v�j � [ g ]j!= � 12 Z 2�0 � �F 2cr�z dz � 12 NXj=1 �� F 2cr�j +NXj=1��� � 124 v4 + 12 F 2cr��� v+ v� �� � 112 v2 � 12 Fcr���j= S1 + S2 + S3 + S4 ;(2.2.30)where S1 = � 12 Z 2�0 � �F 2cr�z dz � 12 NXj=1 �� F 2cr�j ;S2 = 124 Xlocal ��[v]2 �v2��j ;S3 = Xtransonic�v+ v� �16 v2 � Fcr��� 112 v4 + F 2cr��j ;and S4 = Xto zero ��� 124 v4 + 12F 2cr��j :Here the sum S2 is carried over all the \local" shocks (where v+ and v� both havethe same sign: v+ v� > 0), the sum S3 is carried over all the \transonic" shocks(where v+ < 0 < v�), the sum S4 is carried over all shocks where either v+ orv� vanishes, and the overbars indicate the average value across the shock of theappropriate quantity.Remark 2.4. Notice that only the values of Fcr at the points where � jumps,and are not shocks, contribute to S1 (that is, the places where v changes sign\smoothly".) This is because only the points where � jumps contribute to theintegral that appears in the de�nition of S1, with the sum in the same de�nitionsubtracting any contributions that arise at the shocks. In fact, (generically) we can



18 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERwrite:S1 = 12 0@Xn2D[� F 2cr]n � NXj=1[� F 2cr]j1A = 12 0@Xn2D �[�]F 2cr�n � NXj=1 �[�]F 2cr�j1A ;where D is a set of indexes for all the positions across which v switches sign.It should be clear that� S1 does not have a de�nite sign, since its overall sign depends on the relativesizes of F 2cr at the places where v crosses zero upwards (from negative topositive, so that [�] = 2) versus the places where it crosses zero downwards,so that [�] = �2.� On the other hand, S2 is always non-positive, vanishing only whenthere are no local shocks (as it is the case for the exact traveling wavesolution vex.) This follows because, when v � 0 on both sides of the shock:� = 1 and the entropy condition yields [v2] < 0. Similarly, when � = �1,the entropy condition yields [v2] > 0.� S3 is always non-positive, vanishing only when v� = p2Fcr andv+ = �p2Fcr (or there are no transonic shocks), as it is the case forthe exact solution vex. We shall only need this last result for v� � p2Fcrand v+ � �p2Fcr. In this case, the proof is quite straightforward, since S3can be rewritten in the form:S3 = � Xtrans�(a+ b+ 2pFcr) �a2 + b2� pFcr + 16 �a4 + b4 + 2ab3 + 2a3b�� � 0 ;where a = v�p2 �pFcr � 0, and b = � � v+p2 +pFcr� � 0.� Finally, S4 is always non-positive, vanishing only when there areno shocks in the summation. This is obvious, since each shock in thesummation contributes an amount �+A+���A�, where A� > 0 and either:�+ = �1 and �� = 0, or �+ = 0 and �� = 1.The argument for convergence to the exact traveling wave solution vex (in this! � !cr case) will be based on the phase plane for the characteristic equations(2.2.21), corresponding to the Hamiltonian h in equation (2.2.22) | with F = Fcr.This phase plane, displayed again in �gure 5, is partitioned into two domains bythe separatrix h = 0: a domain D containing the closed periodic orbits, andits complement C(D) containing the open orbits. We will assume here thatFcr has a single maximum per period, so that there is a single critical point in D (acenter), with all the other orbits being closed and periodic (as shown in �gure 5.)We shall �rst argue that:The asymptotic behavior for the solutions to (2.2.18)cannot include any values in the interior of the domain D.(2.2.31)The argument for this goes as follows:A. First we note that: any two characteristics starting in the interior of Dcross in �nite time | even if they lie on the same contour line (orbit) for h.Furthermore: for any compact subdomain Dc of D, the crossing time canbe uniformly bounded.
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Figure 5. Bounded trajectories for the system with Hamiltonian h = 12 v2+cos z � 1. These occur in the region jvj < vcr(z) = p2Fcr(z), whereFcr = (1 � cosz). The critical trajectories v = �vcr, connecting the saddlepoints (thick solid lines), and several periodic orbits are shown, in additionto a couple of unbounded orbits (dashed lines.) Notice that, in cases whereFcr has more than one maximum per period, the bounded orbit region willbe more complicated, with saddles and more than one center in it.This is obvious from �gure 5. A formal argument goes as follows: let z1 =z1(t) and z2 = z2(t) be any two characteristics corresponding to orbits in D,with z1 the characteristic for the outermost orbit in D. Then both z1 andz2 are periodic functions of time, with max(z1) � max(z2) and min(z1) �min(z2). Then max(z1 � z2) � max(z1)�max(z2) � 0 and min(z1 � z2) �min(z1) � min(z2) � 0, so that z1 � z2 must vanish somewhere, in fact:at least twice per z1-period. Thus: a uniform bound on the crossing time



20 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERis given by the maximum of the orbit periods over the domain Dc. Notethat: as the distance of Dc to the boundary of D gets smaller, thecrossing time bound goes to in�nity, because the orbit period growsunboundedly as the separatrix is approached (points on the separatrix takean in�nite amount of time to move from saddle to saddle, while points insideD move on orbits with a �nite period.)B. Using the result in A, we argue now that any part of the initial data con-tained in a compact subdomain Dc of D, ceases to in
uence the solutionafter a �nite time. This second result, of course, implies (2.2.31).The argument here is as follows: suppose that there is a characteristicconnecting some point on the solution with the initial data in Dc. But thensome neighborhood of this point (possibly one-sided, if the point is on ashock), connected with the initial data in Dc by a \beam" of characteristics,would exist. This is clearly impossible after the time given by the uniformbound in part A above.Remark 2.5. The result in (2.2.31) is easy to visualize graphically (in termsof what the solution to equation (2.2.18) does as it evolves in time) using the phaseplane for the evolution by characteristics in (2.2.21) | as illustrated by �gure 5.It should be clear that any part of the solution curve v = v(z; t), contained insideD, will be stretched and \rolled up" (as illustrated in �gure 6) by the characteristicevolution along the periodic orbits of the Hamiltonianh = 12v2 � Fcr(z) :This then leads to multiple values, which are resolved by the introduction of shocks.It should also be clear that, in this roll up process, the upper and lower envelope ofthe solution curve will be produced by stretching of the parts of the initial solutioncurve closest to the separatrix h = 0 | which will then be the only parts survivingafter the shocks are introduced.Notice that this is a very \e�cient" mechanism for the elimination of any part ofthe solution curve contained inside D. For all practical purposes, the eliminationof these parts occurs in a �nite time (roughly, the average \turn over" time forthe periodic orbits), after which only a very small region near the critical levelcurve h = 0 can remain. As pointed out at the beginning of this subsection, thisfact is clearly seen in the numerical experiments we conducted, with a very sharpseparation of scales between the convergence times for the cases j!j > !cr andj!j < !cr.Remark 2.6. The prior remark should make it clear that the key element inobtaining (2.2.31) is the existence of a small \band" of periodic orbits in D closeto the separatrix. This is true even if Fcr has more than two extremal points perperiod | leading to several critical points inside D, not just a center.The critical thing to notice is that the initial data solution curve v = v(z; 0) mustbe periodic in z. Thus it is clear that: if any part of this curve ends up insideD, then there will have to be points where the curve crosses the separatrix h = 0going from C(D) to D, and vice versa. The neighborhoods of these points inside Dwill then be stretched and \rolled up" by the characteristic evolution, so that theyare the only surviving parts of the initial data inside D (after some time.) Hence(2.2.31) will be valid, even if Fcr has many extremal points.
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Figure 6. Solution curve roll up by the characteristic 
ow with the Hamil-tonian h = 12 v2 + cos z � 1, and initial condition v(z; 0) = 0. The �gureshows the initial conditions (dashed line) and the curve, as evolved by thecharacteristic 
ow, for time t = 2�. The parts of the curve near the saddlesstretch to �ll the critical h = 0 orbit (as t ! 1), which is the only thingthat survives after the shock is put in place.The result in (2.2.31) shows that, after a long enough time, the solution can crossthe line v = 0 smoothly only in an arbitrarily small neighborhood of z = 0, whereFcr vanishes (notice that a crossing is needed when j!j < !cr, since the conditionMean(v) = �! cannot be satis�ed if either v � vcr = p2Fcr or v � �vcr =�p2Fcr.) If there is such a crossing, it must be upwards, with v returning tonegative values through a transonic shock. Moreover, the solution needs to lieentirely on C(D) or at most, if within D, in an arbitrarily small neighborhood ofthe separatrix h = 0.Once in the situation described in the prior paragraph, S1 in equation (2.2.30)becomes arbitrarily small (see remark 2.4). Since (as shown earlier) S2, S3, and S4are non-positive, it follows that the functional G, de�ned in (2.2.28), can no longer



22 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERincrease: it remains constant for solutions that are either smooth or only haveshocks from p2Fcr to �p2Fcr, and decreases for all other solutions. Furthermore,the same argument we used for the case j!j > !cr can be used to show that anyparts of the solution (in C(D)) not lying on a single contour line h = constant,necessarily break and form shocks. Hence, as long as v(z; t) stays away from vex,G decreases. Again, we conclude that the long time (t ! 1) asymptotic limit ofthe solution v = v(x; t) must be given by vex(z) (which minimizes G.)3. Two Forcing Modes.In this section, we study the e�ects | on the solutions to equation (1.1.1) | ofa forcing term consisting of the sum of two traveling waves of di�erent speeds. Forconcreteness, we shall only consider the case in which one of these speeds is zero,corresponding to a perfect resonance, and we shall observe the changes in behavioras the other speed ranges from zero to in�nity. To be speci�c, we will consider theequation 8>><>>: ut +�12u2�x = f(x; t) ;where f(x; t) = g1(x) + g2(x�
 t)(3.3.1)
 is a constant, g1 and g2 are 2� periodic smooth functions with vanishing mean,and u = u(x; t) is 2� periodic in space, with zero mean. We will assume 
 > 0,since the case 
 < 0 can be reduced to this one using the symmetry: x ! �x,u! �u, and f ! �f .When 
 is small, the two forcing modes oscillate at nearly the same [resonant]frequency. Our interest in this situation arises from the general question of thee�ects of the superposition of many near resonant interactions in general systems.In order to estimate the combined e�ect of the interaction of a mode with very manyothers, one needs to assess the degree of phase coherence among the correspondingforcing terms. Such assessment depends fundamentally on the consideration ofthree issues:8>>>>>>>><>>>>>>>>:
1. How close to each other are the linear frequencies of the forcingmodes.2. How much these linear frequencies are a�ected [\renormalized"]by nonlinear e�ects.3. How often do strong [intermittent] nonlinear events e�ectivelyreinitialize the phases of the various forcing modes. Also, dothese reinitializations tend to randomize or rather further cor-relate the various phases?(3.3.2)It should be quite clear that these questions are not easy to answer. Moreover,once answers are assumed (see next paragraph), one has only de�ned the nature ofthe forcing; its e�ects on the evolution of the forced mode still need to be assessed.Furthermore, since the forcing arises from combinations of other modes which arealso similarly forced, the problem has and enormously complicated nature.Attempts to bypass this great complexity often rely on universal assumptions, suchas randomization of the phases and separation of the linear and nonlinear scales,which are very di�cult to justify. Typically, these closures are sometimes successful| in that their predictions agree with the observed behavior of the system under



THE FORCED INVISCID BURGERS EQUATION 23study | and sometimes a radical failure, with the reasons for this disparity opento debate.Here we isolate the issue of the response to a given force, by prescribing the form ofthe forcing term. Moreover, we consider only two forcing modes, and prescribe theirform and frequency as if they were not subject to nonlinear interactions themselves.By so reducing the complexity of the problem, we are able to resolve some questionsregarding the e�ects of the degree of coherence of the forcing modes on the behaviorof the forced mode.The plan of this section is the following: First we describe certain generalfeatures of the solution to equation (3.3.1). Then we study separately two limitingregimes, corresponding to 
 either very large or very small. In each case we study(analytically and numerically) the behavior of the corresponding solutions.Let us start by noticing that the forcing term in (3.3.1) is periodic in time, ofperiod 2�=
. Since (3.3.1) is dissipative | though only through shocks, which arenot necessarily present all the time | we expect that the solution u(x; t) willconverge to a periodic pattern of the same periodicity. We have checkedthis numerically, by computing the quantityD = Z 2�0 �u(x; t+ 2�
 )� u(x; t)�2 dx :(3.3.3)In all the numerical experiments that we performed, D decreased rapidly, becominge�ectively zero in about one or two periods of the forcing function.We shall now distinguish two distinct extreme regimes, with the general case be-havior interpolating between these two. Of the two terms in the forcing, g1 = g1(x)is in resonance with u(x; t), since the latter has a vanishing mean (hence zero linearfrequency in the unforced case.) On the other hand, the forcing g2 = g2(x�
 t) willbe close to {or far from{ resonance depending on the size of 
. When 
 � 1, weexpect the leading order e�ect of g2(x�
 t) on u(x; t) to cancel, due to averaging.When 0 < 
� 1, on the other hand, the e�ect of g2 can no longer be neglected. Inthis second case we expect g1 and g2 to combine into a single, quasi-steady force,yielding a quasi-steady solution u = u(x; 
 t) | very much a modulated version ofthe steady solution to (2.2.1), studied in section 2, for ! = 0. Namely, in this lastcase we expect: �12 u2�x � g1(x) + g2(x�
 t) :(3.3.4)That this is roughly the case, yet with some interesting quali�cations, will becomeclear in the analysis that follows.3.1. Case: 
 � 1; g2 far away from resonance. In this subsection, weshow that, when 
 is large, the solution u = u(x; t) to (3.3.1) is close to thesolution that one would obtain if the only forcing term were g1(x) | that is (toleading order) g2 has no e�ect. To see this, introduce the small parameter� = 1
 :



24 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERThen equation (3.3.1) takes the formut +�12 u2�x = g1(x) + g2(x� �) ;(3.3.5)where � = t� is a fast time variable. We now propose the following asymptoticexpansion: u = u0(x) + � u1(x; �) +O(�2) ;(3.3.6)where the dependence on � is 2�{periodic. Then, at leading order, equation (3.3.5)yields @u1@� +�12 u20�x = g1(x) + g2(x� �) = @G1(x)@x � @G2(x� �)@� ;(3.3.7)where G1 and G2 are the integrals of g1 and g2, respectively (uniquely de�nedby the condition that both should have a vanishing mean.) We will assume the(generic) condition that G1 has a single minimum per period.Integrating equation (3.3.7) over one period (in �), we obtain�12 u20�x = @G1(x)@x =) u0(x) = �p2 (D +G1(x)) ;(3.3.8)where D = �min(G1), the solution crosses (continuously) from the negative to thepositive root at the position of the minimum of G1, and has a shock (jumping fromthe positive to the negative root) at a position determined by the requirement thatthe average of u0 = u0(x) should vanish. This leading order solution agrees withthe solution that one would obtain if the forcing consisted exclusively of g1 (seesection 2, for ! = 0.)Substituting (3.3.8) into (3.3.7) we then �nd thatu1(x; �) = �G2(x� �) + p(x) ;(3.3.9)where p = p(x) is a 2�{periodic function of vanishing mean, that is determined atthe next order in the asymptotic expansion. Numerical experiments | not shownhere | corroborate the results of this asymptotic analysis.3.2. Case: 0 < 
 � 1; quasi{steady forcing. When 0 < 
 � 1, we can(in principle) think of the solution to equation (3.3.1) as frozen in time near eachvalue t = t0. This yields a quasi{steady leading order solution u = u(x; 
 t), whereu(x; 
 t0) is given by the steady state solution (section 2, case ! = 0) to the casewith a single forcing mode, with f = f(x) = g1(x)+g2(x�
 t0). In this subsection,we shall discuss this quasi-steady solution in some detail.We begin with a simple asymptotic expansion that implements the idea in theparagraph above. Using 
 as the small parameter, we writeu(x; t) = u0(x; �) + 
u1(x; �) +O(
2) ;(3.3.10)where the dependence on � is 2�{periodic and � = 
 t is a slow time variable.Then, at leading order, (3.3.1) yields�12 u20�x = g1(x) + g2(x� �) :(3.3.11)



THE FORCED INVISCID BURGERS EQUATION 25Thus u0(x; �) = �p2G(x; �) ;(3.3.12)where G = G(x; �) is de�ned (for each �) by@G@x = g1(x) + g2(x� �) and min0�x<2�(G) = 0 :(3.3.13)In each period 0 � x < 2� the solution crosses (continuously) from the negative tothe positive root at the point x = xm(�) where G = 0, and has a shock (jumpingfrom the positive to the negative root) at a position x = s(�), chosen so that themean of u0 vanishes.The solution (3.3.12) above works as long as G has a single minimum per period,in which case xm = xm(�) and s = s(�) are well de�ned and depend smoothlyon � . However, there will generally be some special times, � = �c, at which thisfails. Generically G will have several local minimums, evolving in time, with one ofthem smaller than all the others. The (generic) special times occur when two localminimums exchange the property of being the global minimum. At these times xmceases to be smooth, jumps discontinuously from one position to another, and theexpansion in (3.3.10) becomes inconsistent and fails.Remark 3.1. As pointed out at the beginning of subsection 2.3 (and remark 2.5)the convergence of the solution to a steady state | when the forcing is time inde-pendent | is generally very fast. Thus, we can be pretty sure that (3.3.10) willdescribe the behavior of the solution away from the critical times �c. The question(which we will address below) now becomes: what happens for � � �c?On each side of a critical time �c, the expansion in (3.3.10) is valid, but the positionof the shock (x = s(�)) and the zero (x = xm(�)) jump across � = �c, implyinga discontinuous global change in the solution u. Hence, there is a set of discretetimes when the solution u needs to adjust \rapidly" from one quasi{steady state toanother (O(1) away) one. The existence of these adjustment processes, whichwe will call \storms", raises the following questions:8>>>>>>>>><>>>>>>>>>:
1. What is the time{scale (i.e., the duration) of a storm?2. During a storm: are there signi�cant e�ects in the energyexchange between the forcing function f = f(x; t) in (3.3.1)and the solution u = u(x; t)? That is to say: is the work perunit time Wf = Z 2�0 f u dx ;done by the external force, signi�cantly a�ected by the storm?(3.3.14)Remark 3.2. Notice that the total energy (as follows from equation (3.3.12))E � Z 2�0 12 u20(x; �) dx = Z 2�0 G(x; �) dx(3.3.15)is a continuous function of � for the quasi{steady solution, even though u0 itselfis not. This implies that any extra energy exchange between u and the forcing fduring a storm will need to be matched by extra dissipation over the course of thestorm.



26 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNERRemark 3.3. Away from the storms, the asymptotic solution in (3.3.10) showsthat there is a leading order balance between the work Wf done by the forcing fon the solution u, and the energy Ed dissipated at the shocks. Namely:Ed �Wf = O(
) :(3.3.16)This, of course, is in agreement with the fact that the total energy E is a slowfunction of time (E = E(�), as shown by equation (3.3.15).) This suggests thefollowing extra question, related to 2 in (3.3.14) above: How is the balance in(3.3.16) a�ected by a storm?Before attempting to answer these questions analytically, let us set up a simpleexample, that will help both make the discussion concrete, and verify its resultsthrough numerical experiments. Let us select a forcing term of the formf(x; t) = sin(x) + 2 sin(2(x�
 t)) ;(3.3.17)in equation (3.3.1). Then G, as de�ned in (3.3.13), is given by:G = Z f(x; t) dx = C (
 t)� (cos(x) + cos(2(x�
 t))) ;(3.3.18)where C = maxx (cos(x) + cos(2(x�
 t))). The critical times at which the zero ofG jumps are given by tn = (2n+ 1)�2
 ;(3.3.19)where n is an integer. At these timesG(x; 
 tn) = 18 (1� 4 cos(x))2 ;(3.3.20) and u0(x; 
 tn) = � 12 j1� 4 cos(x)j ;(3.3.21)with two candidate crossings of zero.At the critical times tn (of which there is one per period), there are two solutionsu0(x) of the form (3.3.21), in which u0 switches from negative to positive at oneof the zeros, has a corner at the other, and switches once from positive to negativethrough a shock, at a position determined by the condition that u0 has a vanishingaverage. The quasi{steady solution given by the asymptotic expansion in (3.3.10)approaches one (or the other) of these two solutions as t ! tn from below (orabove.)Remark 3.4. In addition to the two special solutions mentioned in the priorparagraph, there is a full one{parameter family of solutions (of which the twosolutions just described are extreme cases.) In this family, both zeros of u0 areused for upward (negative to positive) crossings, and there are consequently twoshocks switching the solution back to negative. The positions of these two shocksare related by the constraint on the average of u0, which leaves one free parameter.The relevance of this one parameter family of solutions is that, during a \storm", theactual solution u(x; t) sweeps this family, one member at a time, at an intermediaterate, faster than O(
 t), but slower than O(t). Before showing this curious resultthrough an asymptotic expansion, we illustrate it with a numerical solution.



THE FORCED INVISCID BURGERS EQUATION 27Figure 7 displays the [numerical] solution to equation (3.3.1) with the forcing givenby (3.3.17), starting from the asymptotic solution shortly before the critical timet1, for a value of the frequency 
 = 0:01, not exceedingly small. The dottedline gives the envelope for the asymptotic, quasi-steady solution u0(x; �) (i.e.: thecurves u = �p2G.) In this �gure we can see the actual solution u = u(x; t)switching its upward crossing point from one zero ofG(x; 
 t1) to the other, througha relatively fast transition, involving the development, growth, travel and eventualdisappearance of a second shock. During this transition, the solution sticks veryclosely to the envelope of the quasi-steady solution. The slight disagreement, mostvisible in frame (e), is due to the �nite size of 
: as 
 gets smaller, the full \storm"takes place with the envelope nearly constant, and we should compare it with the\critical" envelope (that has two zero crossings per period.)Figure 8 shows the total energy of the solution as a function of time, for a fullperiod2 in time �=
, and four values of the frequency, from 
 = 1=50 to 
 = 1=400.Note that this �gure shows the energy converging to a function of time with a cornerat t1, as the frequency 
 tends to zero (the limit is the function given by equation(3.3.15), for this special case when G is given by (3.3.18).) Such a cornered energyfunction corresponds to an instantaneous storm, which changes the phase of thesolution discontinuously at t = t1.A more thorough understanding of the energetics of a storm is gained by lookingat either the energy dissipation rate Ed = Ed(t) (caused by the shocks), or thework Wf =Wf (t) done by the forcing (see �gures 9 and 10). Both show a markedspike during the storm, approximately duplicating the regular amount of workand dissipation. The doubling of the energy dissipation rate is easily explained asarising from the appearance of an extra shock during a storm, of a size comparableto the regular one. The close agreement between the energy dissipated and thework performed by the forcing, on the other hand, can be explained by the slowevolution of storms, faster than the regular O(
 t) rate, but clearly slower than aO(t) rate. Hence, at any particular time, the energy input and output need to bein balance to leading order. In other words: even during a storm the solutionis quasi{steady (as we will show below.)The points just raised bring us back to the natural question of what is the time{scalefor a storm (namely, question 1 in (3.3.14).) Quantifying this time{scale will tell ushow signi�cant storms are from the viewpoint of energy exchange: fast storms donot have time to a�ect the energy exchange signi�cantly, while slower storms do.Notice that the storms have a very de�nite duration in �gures 9 and 10: they startand end rather abruptly. Measuring these durations suggests that they scale withthe square{root of the frequency 
. That this is precisely the case can be inferredfrom the following asymptotic argument:Consider, during a storm3 an asymptotic expansion of the formu(x; t) = u0(x; T ) + � u1(x; T ) +O(�2) ;(3.3.22)where T = � (t � tc), and 
 � � � 1 is a small parameter to be determined (�gives the storm time scale.) The right hand side f = f(x; �) in equation (3.3.1)2Note that, because g2 in (3.3.17) has period �, in this case the long time asymptotic solutionto (3.3.1) has period �=
 in time | not 2�=
, as in the general case.3Taking place for t � tc = �c=
, where �c is de�ned below equation (3.3.13).
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Figure 7. Asymptotic t ! 1 solution to the equation ut + ( 12 u2)x =sin(x) + 2 sin(2 (x � 
 t)), with 
 = 0:01. Time slices of the solutionare shown for t near the critical time tc = �=(2
), when Fcr has a dou-ble zero. The asymptotic solution is periodic in time, of period �=
.Because 
 is small, the solution is quasi-steady at all times. The plots hereillustrate the evolution in the time scale O(p
t), with corrections of orderO(p
), for t near tc (when a double shock arises.) For t away from tc thesolution is close to the unique quasi-steady solution of the problem. For tclose to tc the solution evolves following the one parameter family of quasi-steady solutions possible when t = tc. Two shocks arise in this stage.Left to right and top to bottom, the �gures show the solution (and theenvelope �p2Fcr for the quasi-steady solution, in a dashed line) for thetimes: (a) t = 0:480 (�=
), (b) t = 0:500 (�=
), (c) t = 0:510 (�=
), (d)t = 0:520 (�=
), (e) t = 0:575 (�=
), and (f) t = 0:584 (�=
).
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Figure 8. Energy E = E(t) | shown over one period 0 � (
=�)t � 1 intime | for the t! 1 asymptotic solution for the equation ut + ( 12 u2)x =sin(x) + 2 sin(2 (x � 
 t)). Left to right and top to bottom, plots for thecases 
 = 1=50, 
 = 1=100, 
 = 1=200, and 
 = 1=400 are shown.can expanded in the formf(x; �) = f(x; �c) + 
� T f� (x; �c) + : : : ;(3.3.23)where � = 
 t, as in the expansion in (3.3.10). Substituting (3.3.22) and (3.3.23)into equation (3.3.1) we obtain, to leading order:u0(x; T ) = �p2Gc(x) ;(3.3.24)where Gc = G(x; �c), and G is as in (3.3.13). Because � = �c, generically Gc willhave two zeros per period, and the dependence of u0 on T is through the positionof the two shocks in (3.3.24). That is: u0 must be a member of the one parameterfamily of solutions that the steady state problem has at the critical times (seeremark 3.4), with the parameter a function of T .
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Figure 9. Energy dissipation rate Ed = Ed(t) | shown over one period0 � (
=�)t � 1 in time | for the t ! 1 asymptotic solution for theequation ut + ( 12 u2)x = sin(x) + 2 sin(2 (x � 
 t)). Left to right and topto bottom, plots for the cases 
 = 1=50, 
 = 1=100, 
 = 1=200, and
 = 1=400 are shown. The width of the dissipation spike near the timewhere the shock in the quasi-steady solution changes location, behaves like�t � 1=p
. The energy dissipation rate for the quasi-steady solution isshown by the dotted line.At the next order in the expansion we have, on each side of the equation:� (u0T + (u0 u1)x) = 
� T f� (x; �c) ;(3.3.25)which requires � = p
 in order to balance. Hence the (intermediate) time{scale,valid during storms, is given by T = p
 t, as suggested by the numerical experi-ments. Answers to the questions posed earlier.
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Figure 10. Work done by the forcing Wf = Wf (t) | shown over oneperiod 0 � (
=�)t � 1 in time | for the t ! 1 asymptotic solution forthe equation ut + ( 12 u2)x = sin(x) + 2 sin(2 (x � 
 t)). Left to right andtop to bottom, plots for the cases 
 = 1=50, 
 = 1=100, 
 = 1=200, and
 = 1=400 are shown. Note how closely the work done and the dissipationmatch, as a consequence of the fact that the solution, at all times, is fairlyclose to a quasi-steady solution.We can now answer the questions that were posed earlier in this subsection asfollows: 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
A. Storms have a typical duration �t = 1=p
, evolving onan (intermediate slow) time{scale T = p
 t (question 1 in(3.3.14).)B. During a storm both: the work per unit time Wf by theforce f , and the energy dissipation rate Ed by the shocks are(roughly) twice as large as their values away from a storm,since the solution has two shocks during a storm, and onlyone away from it (question 2 in (3.3.14).)C. Combining the answers in A and B, we see that the overallexcess dissipation caused by a storm is O(1=p
).D. Storms alter the balance between dissipation and work givenby (3.3.16), replacing it byEd �Wf = O(p
) :

(3.3.26)
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, not 
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