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ABSTRACT. The forced inviscid Burgers equation is studied as a model for the
nonlinear interaction of dispersive waves. The dependent variable u(z,t) is
thought of as an arbitrary mode or set of modes of a general system, and the
force is tuned to mimic the effects of other modes, which may be either near
or far from resonance with .

When the force is unimodal, a family of exact traveling waves fully de-
scribes the asymptotic behavior of the system. When the force is multimodal,
with the frequencies of the various modes close to each other, the asymptotic
solution is quasi-stationary, punctuated by faster intermittent events. The ex-
istence of these “storms” may have significant implications for energy transfer
among modes in more general systems.

1. Introduction.

The nonlinear interaction among a large set of waves is a complex phenomenon.
Among the issues involved are the tuning (or detuning) of sets of modes, depending
of how far they are from perfect resonance. This issue is subtle though, since it
depends on the time scale of the nonlinear interaction, which itself depends on the
degree of tuning among modes.

A particularly subtle issue appears in the transition from discrete to continuous
sets of waves: how to add up the effects of very many near resonances. Do they
interfere destructively or constructively? In most theories of continuous spectra,
the former is usually assumed, to the point of suppressing altogether the leading
order effect of resonances, pushing them to higher orders than those appearing in
discrete systems.

In systems that are both forced and damped, statistical cascades often appear,
carrying energy among scales, from the scales associated with the forcing, to those
where dissipation transfers the energy out of the system. When the scales of forcing
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and dissipation are many decades apart, the intermediate scales span the so—called
turbulent inertial range, where the system behaves effectively as a Hamiltonian
one, and self-similar energy spectra are often observed. Attempts to understand
the nature of these self-similar cascades gave rise to the theory of Wave Turbulence
(e.g., see [1], [2], [5], and [11].) In order to close a very complex system, this theory
makes a number of assumptions, such as phase decorrelation among the various
modes, scale separation between linear and nonlinear phenomena, and infinite size
of the system, giving rise to a continuum of modes. These assumptions are hard
to justify, and the theory, despite its beauty, has a number of problems, such as
internal inconsistencies  as when it predicts upscale energy fluxes and a mixed
record of agreement with observations and numerical simulations (e.g., see [3] and

[6].)

In this work, we consider a simple model, where surrogates for resonances and near
resonances can easily be built in: the forced inviscid Burgers equation,

(1.1.1) up + (%M)z = f(=z, t),

where f = f(z, t) is some smooth forcing, and both f and u are periodic (of period
27) in space and have vanishing mean.

Here the dependent variable u(z,t) represents a mode (or set of modes) with linear
frequency w = 0 (as follows from the zero mean condition.) On the other hand,
the externally imposed force f(x,t) represents other modes of the system, which
(depending on the scale of their dependence on time) will be close or far from
resonance with .

A vastly different reduced model for resonant energy transfer among modes was
developed in [7]. It it interesting to note that both models, though completely
different in conception and structure, contain intermittent regimes these are
strong in [7] and much milder in the present work. It appears that intermittence
is a natural occurrence in models of turbulent energy cascades.

The nonlinear term in (1.1.1) has two combined functions: to transfer energy among
the various (Fourier) components of u, and to dissipate energy at shocks. Thus the
“inertial cascade” and the system’s dissipation are modeled by a single term. This
not only implies a big gain in simplicity, but could also in fact be a rather realistic
model for fluid systems, where dissipation is almost invariably associated with some
form of wave breaking.

The model equation (1.1.1) above is a simplified version of the equations describing
the interaction among resonant triads involving a nondispersive wave [8]. The
simplification consists in freezing the two dispersive members of the triad, thus
making them act as a prescribed force on u(z,t).

It would seem that a more general model, with a non—zero linear frequency w, is
the one given by the equation

1
(1.1.2) U + wuy + <§u2> =f,
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which is equivalent to considering non-zero mean solutions to (1.1.1) — i.e.: write
u = w44, where w is the mean' of u. However, this last equation can be reduced to
equation (1.1.1) by the introduction of the new independent variable ©' =z — wt.

A resonant force f(z,t) in (1.1.1) is one that does not depend on time; a near—
resonant one, on the other hand, evolves slowly. More precisely, a near resonance
should be modeled by

(1.1.3) up + (% u2> =X f(x, et),

where 0 < € < 1 measures the degree of non resonance. The reason for the factor €
in front of the forcing term follows from considering a quasi—steady approximation
to the solution to (1.1.3), namely:

u(m)ze“?/wf(s, et) ds.

This is not quite right, but indicates the correct result: a (slow) forcing of size
O(€?) in (1.1.3), generally induces a response of amplitude € in u. This shows that
any force stronger than €2 in (1.1.3) would render its own modulation irrelevant,
since the induced nonlinearity would act on a much faster time scale than that of
the modulation.

Interestingly, the €’s above in (1.1.3) can be scaled out by a simple transformation:
let £ = et, and write u = e@. Then, in terms of these new variables, (1.1.3)
becomes (1.1.1). Hence near-resonances in (1.1.1) cannot be defined as
an asymptotic limit involving a small parameter ¢; if there is a distinction
between near resonant and nonresonant forces, it will have to arise from a finite
bifurcation in the behavior of the solutions to (1.1.1)  which in fact occurs, as we
will show in section 2.

The fact pointed out in the prior paragraph is part of a more general property of
equation (1.1.1), namely: it is a canonical system. For consider a model involving
a more general nonlinearity, such as:

(1.1.4) up + N(u)y = f(z, t),

where, generically, we can assume that N (u) = O(u?) (since any linear term can be
eliminated by a Galilean transformation.) Now consider a weakly nonlinear, nearly
resonant, situation, where u is small, the force is small and the time scales are slow.
Thus, take: u = e, f = €2f, with the time dependence via § = ef, and 0 < € < 1.
Then it is easy to see that, in terms of @, f, ¢, and z, the leading order system is
(1.1.1) — except for, possibly, a constant other than 1/2 in front of the nonlinear
term. In fact, this reduction of the equations to (1.1.1) will occur even if we have
a system (i.e.: w in (1.1.4) is a vector), as long as there is a single force (lined up
with a single mode of the system.)

!Note that, because f has a vanishing mean, the mean of the solutions to (1.1.1)
is a constant.
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Notation and general properties.
It is well known that the inviscid Burgers equation develops shocks. Throughout
this work, we shall use the following notation for various quantities at shocks:

e A plus (respectively, minus) superscript (or subscript) stands for the value
of the corresponding variable ahead (respectively, behind) of the shock.

e Brackets stand for the jump across the shock of the enclosed expression.
Specifically: the value ahead (to the right) minus the value behind (to the
left). Thus, for example:

[u] =ut —u—,

is the jump in u across the shock.
Shocks obey the following rules:

e The shock speed is given by the Rankine-Hugoniot jump conditions,
namely:

1
S:’[LZE (’U/++'U/7) .
where u is the arithmetic mean of u at the shock, and S is the shock speed.

e Shocks must satisfy an entropy condition, which for (1.1.1) states that u
should jump down across shocks, i.e.:

u < 0.
Finally, equation (1.1.1) has an energy

27 1 )
E(t) 2/0 F U (z, t)dz,

which satisfies the equation

(1.1.5) ‘Z—Jf - <%[u]3> = /:W u(z,t) f(z,t) de

where the sum on the left is over all the shocks in the solution. This sum accounts
for the dissipation of energy at the shocks, and the right hand side represents the
work by the forcing term f. That is, we have:

1 27
Ed:fZ(E[u]3)>0 and Wf:./o u fdz,

where E; is the energy dissipated per unit time and Wy is the work done by the
forcing.

Contents and plan of the paper.

Much of the contents of this paper will be concerned with the study of the energetic
interplay between the dissipation at shocks and the work done by the forcing func-
tion. Our interest lies mostly in situations where E(t) is close to stationary, so that
the work done by the forcing and the dissipation at shocks approximately balance
each other. Either of these then represents the amount of energy flowing through
the system, and the dependence of this flux on the characteristics of f(z,t) will
teach us something about the nature of the energy exchange among near resonant
modes.

This paper is organized as follows. In section 2, we study the asymptotic, long
time solutions to (1.1.1), under unimodal forces f(z,t) = f(x — wt). This long
time asymptotic behavior is given by a family of exact traveling wave solutions. We



THE FORCED INVISCID BURGERS EQUATION 5

observe an interesting bifurcation between near resonant and nonresonant behavior,
taking place at a critical value of w (that depends on the form and size of the forcing
f.) If |w| is smaller than this critical value, the forcing does work on the solution;
if |w| is bigger, on the other hand, it does not. We sketch proofs for these results,
which use a novel combination of Hamiltonian formalism with breaking waves.

In section 3, we study two-modal forcings, in which f = g1(z) + ¢g2(z — wt). For
large values of w, g» has vanishingly small effect on the asymptotic, long time,
solution w(x, t). For small values of w, on the other hand, quasi-steady solutions
u = u(z, 7) arise (where 7 is a slow time), punctuated by intermittent events (which
we call “storms”) with enhanced rates of energy exchange between the forcing and
the solution, at an intermediate time scale (slow, but faster than 7.) The abnormal
rate of energy exchange during storms hints at the possibility that nonlinear wave
systems may have regimes where the energy exchange among modes is strongly
influenced by fast, intermittent events, involving coherent phase and amplitude
adjustments of the full spectrum, rather than by the slow evolution of individual
resonant sets.

We can make the statement in the prior paragraph more precise, or at least more
suggestive, as follows: We show in section 3 that the extra (integrated) energy
exchange during a storm scales like w='/2. Tn our model, however, there are only a
finite number of storms per period, which itself scales like w™'. Thus the average
energetic impact of the storms is of order w!/?, vanishing with w. Yet, in more
complex systems, there are a number of likely scenarios (involving, for instance,
random or pseudo-random events), in which the number of storms per period will
increase as the period does, at least as w~ /2. When this is the case, the energetic
impact of storms will be at least comparable to that of the quasi-steady parts of
the solution, and we will find ourselves at the threshold of an energy cascade driven
by intermittent events.

2. A Single Forcing Mode.

In this section, we consider the equation
Ly
(2.2.1) up + U = f(z — wt),
€T

where f = f(z) and u = u(z,t) are 2w-periodic in space, real functions, with zero
mean. Here we will assume that f is a sufficiently smooth function, and that the
initial conditions are such that the solution is, at all times, piece-wise smooth, with
a finite number of shocks.

As explained earlier, the forcing term is resonant if w = 0, near resonant if w is small
and far from resonant if w is big. Notice though that, from the argument above
equation (1.1.4) in the introduction, we cannot give an asymptotic meaning to this
distinction through the introduction of a small parameter, since this equation is
the canonical model for the description of systems with a fluid-like nonlinearity,
weakly forced near resonance. Interestingly, as we shall see below (remark 2.2), the
equation admits exact solutions where there is a sharp transition between resonant
and non-resonant behavior, at a critical value of the frequency w = w..

Below we consider a special set of solutions to equation (2.2.1), given by travel-
ing waves. These solutions not only can be written exactly in closed form, but have
special significance since they describe the long time behavior for the general
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solution. In subsections 2.2 and 2.3 we show —numerically and analytically— that
the solution to the initial value problem for (2.2.1) above converges to the traveling
wave solution as ¢ — oo, which is generically unique.

2.1. Exact Traveling Solutions. We shall seek traveling wave solutions to
(2.2.1) of the form

(2.2.2) u(z,t) = G(z),

where z = 2 — wt. Then equation (2.2.1) becomes the O.D.E.
d (1 .

2.2, —(z(G-w)*) = :

(223 % (36 -1) =1

This has the solutions

(2.2.4) G(z) =wx+/2F(2)
where F' = [~ f(s)ds, with the constant of integration selected so that F(z) > 0
everywhere.

(2.2.5) We shall define Fi, to be the choice of F' such that min(F..) = 0.

3

These solutions can be used to produce exact (periodic) traveling wave solutions
that both have a vanishing mean, and satisfy the entropy condition when they
include shocks. Generically, three distinct cases can arise, with the solution de-
termined uniquely by w if F,, has a single minimum per period. See
figure 1 for illustrative examples.

Case 1. If F is strictly larger than F.,, then the solution must be smooth —
with only one sign selected in (2.2.4). This follows because the entropy condition
for shocks only allows downward jumps; thus only jumps from the positive to the
negative root are allowed. Given that G must be periodic, no shocks are possible
when min(F) > 0. In this case, the sign of the square root, and the value of the
integration constant defining F', follow upon imposing the condition that the mean
of u = G must vanish.

We can write the solutions corresponding to this case as two families of solutions
(one for w > 0 and another one for w < 0) parameterized by a single parameter
0 > 0, as follows:

(2.2.6) u = w—sign(w)y/2 (0 + Fer(2)),
(2.2.7) w = :I:i ’ V20 + For(2))dz,

2 Jy
where z = x — wt and F (as defined above) is given by F(z) = § + Fi..(z). These
formulas show that
For |w| > wer, where we, is defined below in equation (2.2.8), the travel-
ing wave solutions are as smooth as F.,.. Furthermore, they are uniquely
determined by the function f and the frequency w.
Notice that uniqueness, in this case where |w| > w.,, does not depend at
all on F,, having a single minimum per period.

Case 2. For values of |w| smaller than
1 2w

(2.2.8) Wep = =— V/2F.(z)dz,

2w 0
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no F' can be found that will satisfy the zero mean condition. When this is the case,
one must take F' = F,,., and allow the solution to jump between the positive and
the negative roots. Then the solution can return (smoothly) to the positive root
through the point where F,. = 0, which is generically unique. In this case, the
tunable parameter that one can use to adjust the solution so that u = G has a
vanishing mean, is the position z = s of the shock (notice that, because u at the

shock jumps from u_ = w + \/2F..(s) to uy = w — 1/2F.,(s), the shock’s velocity
isw  therefore it remains fixed in the frame moving with the traveling wave.)

To be specific, assume that F., has a single minimum per period, and let
z = zm, be the position of the minimum. Then the equation for the shock position
z = s is given by:

1 s 1 Zm+2m
(2.2.9) w=—5 V2F..(2)dz + o / 2F..(2)dz,
i T J,

Zm
where z,, < s < z,,, + 27. Since the right hand side in this equation is a (strictly)
monotone decreasing function of s (with the values w,, for s = z,,,, and —w,, for
$ = zm + 2m) there is a unique solution for s. Thus the traveling wave solution
is unique.

REMARK 2.1. Notice that, in the (non-generic) case when F., has more than
one minimum per period, uniqueness is lost when w < w... This is because, in
this case, there is more than one possible point where a smooth switch from the
negative to the positive root in equation (2.2.4) can occur. This feature is at the
root of the behavior reported in section 3 for the response to forcings with more
than one frequency.

Case 3. In the limiting case when w = we,, the shock and the smooth transition
from negative to positive root coalesce and disappear, leaving a corner moving at
speed w, as the only singularity of the solution.

Simple example; single harmonic forcing.

Consider the case with a single sinusoidal forcing: f = f(z) = sinz (with z =
x — wt), for which F,., =1 — cos(z) = 2sin’(z/2). Then the critical value for w is

given by:
1 am z 4

(2.2.10) Wep = — 2 sin(—)‘ dz = —,
2 Jy 2 T

and we have:

Solutions with shocks for the simple example: These occur for |w| < we, =
4 /7, and have the form

T — wt

(2.2.11) u(z,t) =G(z) =w+£2

)|
In each period (say 0 < z < 2m) there is a (continuous) switch from the minus
to the plus sign as z crosses z = 0, and a switch from the plus to the minus sign

(across a shock) at some position z = s. The position of this (single) shock follows
from the zero mean condition (i.e.: equation (2.2.9) for this simple example)

sin(

(2.2.12) 0= /s GT(2)dz + /27T G (z)dz = 2mw — 8 cos(s/2),
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Traveling wave solution u = u(x - wt).
1.5 ,

w=-2.00

FiGure 1. Examples of traveling waves for the equation

ug + (0.5u?), = sin(x — wt). Three solutions are shown:

(a) Smooth solution, for w = —2.00 < —w,..

(b) Critical solution, with a corner, for w = —w,., = —4/m.

(c) Solution with a shock, for w = —0.70 w,..

The "envelope” for the solution with a shock, given by u = w £ v/2 F is also

shown (dashed line.) In each case, the solution is plotted for a time ¢ such
that wt = 0.80 7.

where G = w + 2|sin(z/2)[, and G~ = w — 2|sin(z/2)|. Thus

(2.2.13) s = 2arccos (%w) , with 0<s<27.

We can also compute the work per unit time W; done by the external force f on
this exact solution. Since this work must agree with the energy E4 dissipated at
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the shock (given that the solution is steady), we have:

27 3/2
1. .. 16 w2

A plot of the work done by the forcing is shown in figure 2.

REMARK 2.2. For |w| > we = 4/ the solutions have no shocks (see below)
and there is no energy dissipation, nor work done by the forcing (i.e.: the solution
is orthogonal to the forcing.) This indicates a rather abrupt change in behavior,
which we interpret as the boundary of resonance. That is, a sharp transition
from resonant behavior (with the forcing continuously pumping energy into the
system, which is then dissipated by a shock) to non-resonant behavior (with no
work done by the forcing) occurs at |w| = w,,. It is easy to see that this behavior is
general, and not particular to the special harmonic forcing of this simple example.
It will occur for the traveling waves produced by any forcing of the form in equation
(2.2.1). It is interesting to note that this behavior is analogous to a third order
phase transition, with the collective behavior of the modes making up the solution
switching from a dissipative configuration to a non-dissipative one.

Smooth solutions for the simple example: These occur for |w| > w.. = 4/,
and have the form

(2.2.15) u(z,t) =w+ /2(D — cos(z — wt)),

where D > 1 and the sign of the square root follow from the condition on the mean:

27
/ u(z,t)de =0.
0

It is actually easier to write w as a function of D, as follows

1 2m
(2.2.16) w=w(D)=+— V2(D —cosz)dz, where D >1.

2T 0

This equation is the same as (2.2.7) for this simple example, with D =1 + §.

Critical solutions for the simple example: These occur for |w| = w., = 4/7,

and are given by:
‘ (m : wcrt) ‘ }
sin | ———— .
2

2.2. Numerical Experiments. In subsection 2.3 we will show (analytically)
that the solution to the general initial value problem for equation (2.2.1) converges
asymptotically (for large times) to the traveling wave solution at least in the
case where the traveling wave solution is unique, i.e.: Fi,, as defined in (2.2.5), has
a single minimum per period. In this section, we show the result of a numerical
calculation illustrating the convergence process.

(2.2.17) u==% {wcr -2

Numerical code: In both the calculations shown in this subsection, and those in
section 3, we use a (second order in time) Strang [9] splitting technique, separating
the equation into

1 .
u; = f and ut+<§u2> =0.

Then we use a second order Runge Kutta ODE solver for the first equation. For
the second equation we use a second order Godunov [4] scheme, with the van Leer
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Energy dissipated as a function of w.

FIGURE 2. Energy dissipated (as a function of w) by the traveling waves.
The energy dissipated E,; (equal to the work TW; done by the external force
f) for the equation u; + (0.5u?), = sin(z —wt), is shown as a function of w.
Notice the sharp cutoff at w = + w,,., beyond which no work is done by the
force f. This result is general and does not depend on the particular forcing
sin(z — wt) — it will occur for any forcing of the form f = f(z —wt).

[10] monotonicity switches. This yields a fairly simple and robust shock capturing
(second order, both in time and space) algorithm.

Example: Figure 3 shows an example of how a solution to equation (2.2.1) (with
f = sin(z — wt) and “arbitrary” initial data) converges to a traveling wave as
t — oo. Specifically, we take w = 0.5w.,  where w,, is given in equation (2.2.10)
— and u(z, 0) = sin(z).

The convergence to the traveling wave solution is done via the formation of shocks
(only one in this case) that dissipate energy and force the solution to converge to
its limiting shape. The arguments in subsection 2.3 give a more precise description
of this process. Notice how fast the convergence is: the period in time of the forcing
function is T = 27/w, and (even though the initial condition is O(1) away from
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Solution for time: t = 0.000 (2 TWw), with wT=2 Solution for time: t = 0.080 (2 Ww), with wt=2
3} Dashed line: steady solution envelope 1 3} Dashed line: steady solution envelope
2.5¢ L mITIIT S 1 2.5f P ney

2t

”t . 1 2t i

1.5F R 1.5
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0.5f 05f 47
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X X
Solution for time: t = 0.100 (2 TWw), with wT=2 Solution for time: t = 0.500 (2 Ww), with wt=2
3} Dashed line: steady solution envelope 1 3} Dashed line: steady solution envelope
2.5} 25F 77 i T
2F 2F
1.5F 15
u u Y
0.5 0.5f
of/ of
05} 05}
at at
-15F -15F
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FiGure 3. Forcing f = sinz in the equation, with z = =z — wt and
W = we/2 = 2/m. As t — oo the solution converges to the traveling

wave v = w * 2 sin(z/2), where the sign switch occurs at the shock posi-
tion. The traveling wave has period 27/w in time (same as the forcing.)
From left to right and from top to bottom, we plot the solution and the
"envelope” w =+ 2 sin(z/2) (dashed line) for the traveling wave: (a) Initial
conditions for t = 0. (b) Time ¢ = 0.08 (27 /w), shortly before the formation
of the shock. (c¢) Time ¢ = 0.10 (27/w), shortly after the formation of the
shock. (d) Time ¢ = 0.50 (2m/w), once the solution has converged to the
traveling wave.

the traveling wave) by ¢ = T'/2 the solution is indistinguishable from the traveling

wave.

2.3. Asymptotic behavior of the solutions. In this subsection, we show

(analytically) that the exact solutions of subsection 2.1 yield the large time (t — o0)
asymptotic behavior of the solutions to equation (2.2.1), for any initial data. First,
we show that this result holds for |w| > w.,, and initial data relatively close to
the corresponding smooth exact solution. Next we present arguments for the case
|w| < wer, and arbitrary initial data. The same type of reasoning that we use in
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this second part can be used to show global convergence when |w| > we,., but we
shall not carry out the details of such argument here.

The main mechanism involved in the convergence (as ¢ — o0) to the traveling wave
solution when |w| < w,, (see remark 2.5) is much more “efficient” than the mech-
anism involved in the case when |w| > we,. This is because the first mechanism
involves O(1) shocks at all times, while the second has shocks of vanishing ampli-
tude as t = oc. The calculation displayed in figure 3 illustrates how efficient the
mechanism in the case |w| < w,, is, as pointed out at the end of subsection 2.2.
By contrast, in numerical calculations done for |w| > w,,, we observed a very slow
approach to the limiting behavior.

REMARK 2.3. We shall restrict our arguments to the case when F,., given by
equation (2.2.5), has only two extremal points per period: a single zero, and a single
maximum. The single zero condition guarantees a unique traveling wave solution.
The single maximum condition is technical and simplifies the arguments it is
not really needed, as we point out later (see remark 2.6.)

When the single zero condition is not satisfied, so that the traveling wave solution
for |w| < we, is not unique, our numerical experiments still show convergence to a
traveling wave as t — oo, which depends on the initial conditions. Actually, the
arguments in this section for the case |w| > w,, do not depend on F., having a single
zero, while the arguments for |w| < w,, indicate convergence to some traveling wave,
even if it is not unique.

Case: |w| > wer. Local convergence to the smooth exact solution.
Preliminaries.
Let tep = ey (2) (where z =  — wt) be the exact solution introduced in subsec-
tion 2.1  see equations (2.2.6 2.2.7). Then equation (2.2.1) can be written in
the form

1.
(2.2.18) vt + <§v2 - F) =0,

where v = v(z,t) = u — w, and F = F(z) = L (ue, — w)? is the function defined
earlier in subsection 2.1. We note that

dF
min(F)>0: _:f:
dz
and that v must be a 27-periodic function of z, with Mean(v) = —w. Finally, let
Ve = Upy — w = — sign(w) \/2F(z)

be the exact solution of equation (2.2.18) corresponding to ue,  i.e.: the traveling
wave. We shall now assume that w < —w,.,, since the case w > w.. can be
obtained from the symmetry, in equation (2.2.1), given by: w — —w, u = —u,
f(z) > —f(—=2), and £ — —z. Then we can write

(2.2.19) Ver (2) = V2F .

The argument of convergence to the traveling wave solution as ¢ — oo, in this
|w| > wer case, is divided in two parts. In part I we show that the initial data can
be restricted so that the solution remains positive (and bounded away from zero)
for all times, and that such solutions always break and develop shocks  with the



THE FORCED INVISCID BURGERS EQUATION 13

sole exception of the traveling wave (which has no shocks.) In part IT we construct
a (convex) Hamiltonian functional, which decreases for solutions with shocks, and
is minimized by the traveling wave solution.

Case: |w| > wep. Part I
Along characteristics, equation (2.2.18) takes the form

dz dv dF
2.2.2 @ _ w _akb
( 0) p” v, and " - (2)
This can be written in the Hamiltonian form

dz Oh dv oh
2.2.21 — = d — = —
( ) dt Ov’ an dt 0z’
with Hamiltonian

1

(2.2.22) h=h(z,v) = 51)2 - F(z).

This is the standard Hamiltonian for a particle in a one-dimensional potential field
V(z) = —F(z). We shall use this Hamiltonian formulation to derive the following
two results:

I. We can constrain the initial data v = v(z,0), so that v =
v(z,t) remains positive (and bounded away from zero) for all
IT. Smooth initial data v = v(z,0), different from wve, (but con-

strained so that v > 0 for all ¢ > 0), necessarily develop
shocks.

These two results will be used in Part II to show convergence of v to v.,, as t — oo.

For both results, we turn to the phase plane for the Hamiltonian system (2.2.21)
(see figure 4). To prove the first result, notice that, because the characteristic
evolution is given by this Hamiltonian system, if the initial data are such that
v(z,0) > vo(2z) (where v = vo(z) > 0 is an orbit for the system), then v > v, for all
times (hence it remains positive and bounded away from zero.) This is easy to see
from the example in figure 4. Therefore, we shall (from now on) assume that v
is greater than zero.

To prove the second result, notice that, because here we consider only values of
v greater than zero, all centers are excluded, and the trajectories of (2.2.21) are
all open in the plane (though, of course, closed in the cylinder defined by the 27
periodicity of z). Several such trajectories, corresponding to different values of
h, are displayed in figure 4. The point we need to make is that any two such
trajectories always have different periods, for the period T'(h) is given by

1 2 dz

:75 o Vh+F(z)

T(h)

so that
dT

B 1 / am dz <0
dh 2v2 Jo  (h+ F(2)*?

This means that any two characteristics with different values of h necessarily meet
(the one with the shorter period catches up to the other one.) Therefore a shock
must form (since two values of h at a single position z imply two distinct values of

v.)
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v > 0 trajectories for Hamiltonian.
3.5— ; . . .

3 ......... +>;.FIQW..[éire.ct.i'ogn.....

-0.5

FIGURE 4. Unbounded, v > 0 trajectories, for the system with Hamiltonian
h = $v? +cosz — 1. These occur for v > vep(2) = /2 Fer(2), where
F., = (1 — cosz). (a) Critical trajectory v.,, connecting the saddle points
(thick solid line.) (b) A trajectory v, slightly above critical (dashed line.)
(c) Two typical trajectories v, and vy (solid lines.) For the P.D.E. v; +
(1 v? + cosz). = 0, whose characteristic form is given by this Hamiltonian
system, it is clear that: If the initial data for v are above a curve such as v,
then the solution remains above vy for all times.

Hence the only case in which characteristics do not cross is the one in which the
initial data lies on a contour line h = constant. However, such initial data is given

by
v(z,0) = \/2(F + h),

and the condition that the average of v be equal to —w implies that h = 0, i.e.,
¥ = ve;. Hence all initial data different from v., develop shocks.
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Case: |w| > w,.. Part IL

For the second part of the argument, we need a different Hamiltonian structure,
the one given by the integral

2m
(2.2.24) H :/ <1v3 —vF) dz.
0 6

Using H, equation (2.2.18) can be written in the Hamiltonian form

0 (0H

We notice that H is convex for positive functions v = v(z) (of mean equal to
—w), with a unique absolute minimum given by v(z) = v/2F = v,,. Furthermore,
because of the Hamiltonian structure (2.2.25), H is conserved while v(z,t) remains
smooth. On the other hand (see equation (2.2.27) below) H is dissipated at shocks.
Hence, since all v’s different from wv., develop shocks (as shown earlier in part I),
H cannot settle down until it reaches its minimum value, corresponding to v = ve,.

We show now that H decreases when there are shocks. We have:

N

dH sitt §H ds; [1
2.2.2 == = = — 3y F
(2.2.26) dt 2 (/S 5ot T {6” Y }) ’

j=1 i J
where we have assumed that there are N shocks per period (for some N), with
sj = s;(t) the position of the j-th shock, s1 < sy < -+ < sy, and syy1 = 51 + 27

(from the periodicity.) Substitute now into this last expression v; from (2.2.25),
and the Rankine-Hugoniot jump conditions for the shock velocities:

ds; 1, _
d—tJZE('UJ +'Uj+)7

where vji denote the values of v ahead and behind the shock. Then

N . 2
aH 1 sivt [ (6H I S
W T (/ ((5_>> ol g ‘”FD

=1
N 2
1 SH 1 1
=[G o] e
j=1 j
1 (1
_ Ez(bw} vy o [ﬁ]j)
j=1 J
1 N
(2.2.27) = ﬂZ[v]j [v?*], <0
j=1

The last inequality follows from the entropy condition, that states that v (therefore

v?, since v > 0) decreases from left to right across shocks. This concludes the

argument of convergence to the traveling wave in the case |w| > we.
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Case: |w| < wer. Global convergence to the non-smooth traveling waves.

Here we shall consider the case with |w| < w., (when F' = F,,. > 0) and general
initial data. We shall require that the zero value of F., be achieved only once per
period in z (for concreteness take this value to be z = 0.) The reason for this
restriction  which is satisfied by generic functions F., = F.,(z) is that: when
F., vanishes at more than one position per period, there is more than one steady
solution to equation (2.2.1), and this renders the issue of ultimate convergence to
one of the steady solutions more cumbersome. We shall also require that F,, have
only one local maximum per period, since this simplifies the arguments (but this
condition is not strictly needed, as we point out later, in remark 2.6.)

We shall use the following functional G, a modification of the Hamiltonian H in
(2.2.24):

27 1
(2.2.28) G =/ (—v3 - chr> dz.
o \6

Notice that G is minimized pointwise by functions of the form v(z) = +£+1/2F,, =
+|ve,|. In particular, the exact steady solution to equation (2.2.1) is the only
minimizer of G consistent with the entropy condition for shocks (v never jumps
upwards) and with the requirement that its average be equal to — w. This follows
from the condition that there is only one point where F,,(z) = 0, which is the only
place at which v(z) can switch smoothly from negative to positive. Hence there
can be only one shock switching v(z) back to negative. The position of this shock
is then determined by the condition that v(z) + w must have a vanishing mean. In
particular, for |w| = w,,, this last condition determines that the sign of v(z) never
changes, and the only singularity of the solution is a corner at the position of the
zero of F., (with no shocks.)

The argument for convergence to v., will be based on the fact that, after
an initial transient period, G necessarily decays when v(z, 0) # v¢z.

Unlike H, G is not a Hamiltonian, yet it allows us to write equation (2.2.18) in the
following pseudo-Hamiltonian form (valid wherever v # 0):

0 (0G
2.2.29 =—0—|—
(2.2.20) =0 ( M) 7
where
1 ifo>0.
o = sign(v) = 0 ifv=0.
-1 ifv<0.
Assume now that there are IV shocks per period, with s; = s;(t) the location of the
j-th shock, where s1 < s9 < -+ < sy and syy1 = s1 (periodicity.) Furthermore,
introduce the functions h = h(z,t) = 3 v? — F,, and g = £ |v|® — |v| F,,,. We notice
that
9y

Ut = 7h’27

1 1 1
P =och, and ohh,= <§av4 — 50v2FCT> + 50 (Ffr)z ,
z
where the last equation applies away from the shocks (in particular, it is valid when
o is discontinuous due to a zero of v.)
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Using the formulas above, we write below an equation for the time evolution of
the functional G. Here, as usual, the brackets stand for the jump — front to
back  of the enclosed quantities across the shock, the superscripts + are used to
indicate values immediately ahead and behind a shock, and a subscript j indicates
evaluation at the j-th shock. We have:

N .
dG i+t ds;
— = —2(/ thzdz-l-ﬁ[g]j)

1 27 ) N )
= _5/0 U(Fcr)zd’z_—;[UFcr]]+
N
1 1 1
Z ([g””4§UU2Fcr+§UFc2r} D) (U;—-'_UJ) [Q]J>
Jj=1 J
1 27 N
_ 2 2
= _5/0 U(Fcr)zdz__Z[UFcr]]+
=1
N
I 4 1.5 o+ 2
(e (e 3)] o (330
Jj=1 J
(2.2.30) = S1+S+53+ 85,
where
1 27 ) 1 N )
8 = _5/0 J(FCT)Zdz—Ejzzl[oFm,]j,
S = 5p Y (ol [2))
24 i’
local
S; = Z {v*v (11)_2—F )—(iv_“—}-Fz)}
. 6 cr 12 cr o
transonic J
and
Sy = Z o i1)4—|—1F2
‘ 24 27 ).
to zero J

Here the sum Sy is carried over all the “local” shocks (where v™ and v~ both have
the same sign: v™ v~ > (), the sum Ss is carried over all the “transonic” shocks
(where vT < 0 < v7), the sum Sy is carried over all shocks where either v* or
v~ vanishes, and the overbars indicate the average value across the shock of the
appropriate quantity.

REMARK 2.4. Notice that only the values of F,. at the points where o jumps,
and are not shocks, contribute to S; (that is, the places where v changes sign
“smoothly”.) This is because only the points where ¢ jumps contribute to the
integral that appears in the definition of Sy, with the sum in the same definition
subtracting any contributions that arise at the shocks. In fact, (generically) we can
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write:

N

Si=5 | Dlri = Y| =5 (X (05, - X (7

neD j=1 neD j=1

where D is a set of indexes for all the positions across which v switches sign.

It should be clear that

e S; does not have a definite sign, since its overall sign depends on the relative
sizes of F?2. at the places where v crosses zero upwards (from negative to
positive, so that [¢] = 2) versus the places where it crosses zero downwards,
so that [o] = —2.

e On the other hand, S, is always non-positive, vanishing only when
there are no local shocks (as it is the case for the exact traveling wave
solution v,,.) This follows because, when v > 0 on both sides of the shock:
o = 1 and the entropy condition yields [v?] < 0. Similarly, when o = —1,
the entropy condition yields [v?] > 0.

e S; is always non-positive, vanishing only when v~ = /2F,, and
vt = —/2F,, (or there are no transonic shocks), as it is the case for
the exact solution v.,. We shall only need this last result for v= > /2F,,
and v+ < —+/2F,,. In this case, the proof is quite straightforward, since Ss
can be rewritten in the form:

> <a+b+2\/ o) (a® + 1) CT+%(a4+b4+2a63+2a36)> <0,

trans

+
wherea— —VF., >0, andb—<—-|— F>20.
f V2

e Finally, S, is always non-positive, vanishing only when there are
no shocks in the summation. This is obvious, since each shock in the
summation contributes an amount 0y Ay —o_A_, where AL > 0 and either:
or =—lando_=0,0oro4 =0and o_ = 1.

S3

The argument for convergence to the exact traveling wave solution v., (in this
w < we, case) will be based on the phase plane for the characteristic equations
(2.2.21), corresponding to the Hamiltonian h in equation (2.2.22) — with F' = F,..
This phase plane, displayed again in figure 5, is partitioned into two domains by
the separatrix h = 0: a domain D containing the closed periodic orbits, and
its complement C(D) containing the open orbits. We will assume here that
F,, has a single maximum per period, so that there is a single critical point in D (a
center), with all the other orbits being closed and periodic (as shown in figure 5.)
We shall first argue that:

(2.2.31) The asymptotic behavior for the solutions to (2.2.18)
o cannot include any values in the interior of the domain D.

The argument for this goes as follows:

A. First we note that: any two characteristics starting in the interior of D
cross in finite time  even if they lie on the same contour line (orbit) for A.
Furthermore: for any compact subdomain D. of D, the crossing time can
be uniformly bounded.
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Bounded trajectories for Hamiltonian.
2.5 ; . : :

- .y

2
15
1

FIGURE 5. Bounded trajectories for the system with Hamiltonian h = 1 v? +

cosz — 1. These occur in the region |v| < v..(z) = /2 F..(z), where
F.. = (1 — cosz). The critical trajectories v = +v,,, connecting the saddle
points (thick solid lines), and several periodic orbits are shown, in addition
to a couple of unbounded orbits (dashed lines.) Notice that, in cases where
F,, has more than one maximum per period, the bounded orbit region will
be more complicated, with saddles and more than one center in it.

This is obvious from figure 5. A formal argument goes as follows: let z; =
z1(t) and z2 = 25(t) be any two characteristics corresponding to orbits in D,
with z; the characteristic for the outermost orbit in D. Then both z; and
z9 are periodic functions of time, with max(z;) > max(z2) and min(z;) <
min(zy). Then max(z; — z2) > max(z;) — max(zz) > 0 and min(z; — z2) <
min(z;) — min(z2) < 0, so that z; — zo must vanish somewhere, in fact:
at least twice per zj-period. Thus: a uniform bound on the crossing time
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is given by the maximum of the orbit periods over the domain D.. Note
that: as the distance of D, to the boundary of D gets smaller, the
crossing time bound goes to infinity, because the orbit period grows
unboundedly as the separatrix is approached (points on the separatrix take
an infinite amount of time to move from saddle to saddle, while points inside
D move on orbits with a finite period.)

B. Using the result in A, we argue now that any part of the initial data con-
tained in a compact subdomain D. of D, ceases to influence the solution
after a finite time. This second result, of course, implies (2.2.31).

The argument here is as follows: suppose that there is a characteristic
connecting some point on the solution with the initial data in D.. But then
some neighborhood of this point (possibly one-sided, if the point is on a
shock), connected with the initial data in D, by a “beam” of characteristics,
would exist. This is clearly impossible after the time given by the uniform
bound in part A above.

REMARK 2.5. The result in (2.2.31) is easy to visualize graphically (in terms
of what the solution to equation (2.2.18) does as it evolves in time) using the phase
plane for the evolution by characteristics in (2.2.21) — as illustrated by figure 5.
It should be clear that any part of the solution curve v = v(z, t), contained inside
D, will be stretched and “rolled up” (as illustrated in figure 6) by the characteristic
evolution along the periodic orbits of the Hamiltonian

h = %1}2 — F..(2).

This then leads to multiple values, which are resolved by the introduction of shocks.
It should also be clear that, in this roll up process, the upper and lower envelope of
the solution curve will be produced by stretching of the parts of the initial solution
curve closest to the separatrix h =0  which will then be the only parts surviving
after the shocks are introduced.

Notice that this is a very “efficient” mechanism for the elimination of any part of
the solution curve contained inside D. For all practical purposes, the elimination
of these parts occurs in a finite time (roughly, the average “turn over” time for
the periodic orbits), after which only a very small region near the critical level
curve h = 0 can remain. As pointed out at the beginning of this subsection, this
fact is clearly seen in the numerical experiments we conducted, with a very sharp
separation of scales between the convergence times for the cases |w| > w., and
lw] < wep.

REMARK 2.6. The prior remark should make it clear that the key element in

obtaining (2.2.31) is the existence of a small “band” of periodic orbits in D close
to the separatrix. This is true even if F,,. has more than two extremal points per
period  leading to several critical points inside D, not just a center.
The critical thing to notice is that the initial data solution curve v = v(z,0) must
be periodic in z. Thus it is clear that: if any part of this curve ends up inside
D, then there will have to be points where the curve crosses the separatrix h = 0
going from C(D) to D, and vice versa. The neighborhoods of these points inside D
will then be stretched and “rolled up” by the characteristic evolution, so that they
are the only surviving parts of the initial data inside D (after some time.) Hence
(2.2.31) will be valid, even if F., has many extremal points.
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Curve roll up by characteristic flow.

F1GURE 6. Solution curve roll up by the characteristic flow with the Hamil-
tonian h = 3 v? + cosz — 1, and initial condition v(z,0) = 0. The figure
shows the initial conditions (dashed line) and the curve, as evolved by the
characteristic flow, for time ¢ = 2. The parts of the curve near the saddles
stretch to fill the critical h = 0 orbit (as ¢ — o0), which is the only thing

that survives after the shock is put in place.

The result in (2.2.31) shows that, after a long enough time, the solution can cross
the line v = 0 smoothly only in an arbitrarily small neighborhood of z = 0, where
F,, vanishes (notice that a crossing is needed when |w| < w.,., since the condition
Mean(v) = —w cannot be satisfied if either v > v, = V2 F, or v < —w, =
—+/2 F.,.) If there is such a crossing, it must be upwards, with v returning to
negative values through a transonic shock. Moreover, the solution needs to lie
entirely on C'(D) or at most, if within D, in an arbitrarily small neighborhood of
the separatrix h = 0.

Ounce in the situation described in the prior paragraph, S; in equation (2.2.30)
becomes arbitrarily small (see remark 2.4). Since (as shown earlier) S», Sz, and Sy
are non-positive, it follows that the functional G, defined in (2.2.28), can no longer
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increase: it remains constant for solutions that are either smooth or only have
shocks from +/2F,, to —/2F,,, and decreases for all other solutions. Furthermore,
the same argument we used for the case |w| > wer can be used to show that any
parts of the solution (in C(D)) not lying on a single contour line h = constant,
necessarily break and form shocks. Hence, as long as v(z,t) stays away from ve,,
G decreases. Again, we conclude that the long time (¢ — oc) asymptotic limit of
the solution v = v(z, t) must be given by v,,(z) (which minimizes G.)

3. Two Forcing Modes.

In this section, we study the effects  on the solutions to equation (1.1.1)  of
a forcing term consisting of the sum of two traveling waves of different speeds. For
concreteness, we shall only consider the case in which one of these speeds is zero,
corresponding to a perfect resonance, and we shall observe the changes in behavior
as the other speed ranges from zero to infinity. To be specific, we will consider the
equation

(3.3.1) U (%“2>w = f(x, 1),

where
f(z.t) = gi(z) + g2(z — Q1)

 is a constant, g1 and g are 27 periodic smooth functions with vanishing mean,
and u = u(z, t) is 27 periodic in space, with zero mean. We will assume Q > 0,
since the case 2 < 0 can be reduced to this one using the symmetry: =z — —z,
u — —u, and f — —f.

When € is small, the two forcing modes oscillate at nearly the same [resonant]
frequency. Our interest in this situation arises from the general question of the
effects of the superposition of many near resonant interactions in general systems.
In order to estimate the combined effect of the interaction of a mode with very many
others, one needs to assess the degree of phase coherence among the corresponding
forcing terms. Such assessment depends fundamentally on the consideration of
three issues:

( 1. How close to each other are the linear frequencies of the forcing
modes.
2. How much these linear frequencies are affected [“renormalized”]
(3.3.2) by nonlinear effects.

3. How often do strong [intermittent] nonlinear events effectively
reinitialize the phases of the various forcing modes. Also, do
these reinitializations tend to randomize or rather further cor-

| relate the various phases?

It should be quite clear that these questions are not easy to answer. Moreover,
once answers are assumed (see next paragraph), one has only defined the nature of
the forcing; its effects on the evolution of the forced mode still need to be assessed.
Furthermore, since the forcing arises from combinations of other modes which are
also similarly forced, the problem has and enormously complicated nature.

Attempts to bypass this great complexity often rely on universal assumptions, such
as randomization of the phases and separation of the linear and nonlinear scales,
which are very difficult to justify. Typically, these closures are sometimes successful

in that their predictions agree with the observed behavior of the system under
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study — and sometimes a radical failure, with the reasons for this disparity open
to debate.

Here we isolate the issue of the response to a given force, by prescribing the form of
the forcing term. Moreover, we consider only two forcing modes, and prescribe their
form and frequency as if they were not subject to nonlinear interactions themselves.
By so reducing the complexity of the problem, we are able to resolve some questions
regarding the effects of the degree of coherence of the forcing modes on the behavior
of the forced mode.

The plan of this section is the following: First we describe certain general
features of the solution to equation (3.3.1). Then we study separately two limiting
regimes, corresponding to () either very large or very small. In each case we study
(analytically and numerically) the behavior of the corresponding solutions.

Let us start by noticing that the forcing term in (3.3.1) is periodic in time, of
period 27/Q. Since (3.3.1) is dissipative  though only through shocks, which are
not necessarily present all the time — we expect that the solution u(z, t) will
converge to a periodic pattern of the same periodicity. We have checked
this numerically, by computing the quantity

(3.3.3) D= /0277 <u(:ﬂ, t+ %”) — u(z, t)>2 dz .

In all the numerical experiments that we performed, D decreased rapidly, becoming
effectively zero in about one or two periods of the forcing function.

We shall now distinguish two distinct extreme regimes, with the general case be-
havior interpolating between these two. Of the two terms in the forcing, g1 = ¢1(z)
is in resonance with u(z,t), since the latter has a vanishing mean (hence zero linear
frequency in the unforced case.) On the other hand, the forcing go = go(z—Qt) will
be close to or far from resonance depending on the size of 2. When 2 > 1, we
expect the leading order effect of go(x — 2¢) on u(x,t) to cancel, due to averaging.
When 0 < Q < 1, on the other hand, the effect of go can no longer be neglected. In
this second case we expect g; and g» to combine into a single, quasi-steady force,
yielding a quasi-steady solution v = u(z, Qt)  very much a modulated version of
the steady solution to (2.2.1), studied in section 2, for w = 0. Namely, in this last
case we expect:

(3.3.4) <1 u2> ) ~ g1(z) + go(z — Q).

That this is roughly the case, yet with some interesting qualifications, will become
clear in the analysis that follows.

3.1. Case: ) > 1; g, far away from resonance. In this subsection, we
show that, when  is large, the solution u = w(z,t) to (3.3.1) is close to the

solution that one would obtain if the only forcing term were g;(x)  that is (to
leading order) go has no effect. To see this, introduce the small parameter
1
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Then equation (3.3.1) takes the form

(3.3.5) us + (% u2>m =g1(z) + g2z — 1),

where 7 = ! is a fast time variable. We now propose the following asymptotic
expansion: ‘

(3.3.6) u = ug(z) + eui(z, 7) + O(e?),

where the dependence on 7 is 27 periodic. Then, at leading order, equation (3.3.5)
yields

% 1 2 _ _ _ 8G1($) _ aGg(ﬂf — 7')
(3.3.7) 5 + <2 u0>z =gqi(z)+g(z—1) = pe 57 ,

where G; and G2 are the integrals of g1 and g», respectively (uniquely defined
by the condition that both should have a vanishing mean.) We will assume the
(generic) condition that G; has a single minimum per period.

Integrating equation (3.3.7) over one period (in 7), we obtain

(3.3.8) (%ué) - 5%1355”) —  u(z) = £/2(D + Gy (2)),

where D = —min(G}), the solution crosses (continuously) from the negative to the
positive root at the position of the minimum of GGy, and has a shock (jumping from
the positive to the negative root) at a position determined by the requirement that
the average of ug = ug(x) should vanish. This leading order solution agrees with
the solution that one would obtain if the forcing consisted exclusively of g; (see
section 2, for w = 0.)

Substituting (3.3.8) into (3.3.7) we then find that
(3.3.9) ui(z, 7) = —Ga(z — 7) + p(z),

where p = p(z) is a 27 periodic function of vanishing mean, that is determined at
the next order in the asymptotic expansion. Numerical experiments  not shown
here  corroborate the results of this asymptotic analysis.

3.2. Case: 0 < ) < 1; quasi—steady forcing. When 0 < <« 1, we can
(in principle) think of the solution to equation (3.3.1) as frozen in time near each
value t = to. This yields a quasi steady leading order solution u = u(z, 2t), where
u(x, Qto) is given by the steady state solution (section 2, case w = 0) to the case
with a single forcing mode, with f = f(z) = g1 (x) + g2(x — Q). In this subsection,
we shall discuss this quasi-steady solution in some detail.

We begin with a simple asymptotic expansion that implements the idea in the
paragraph above. Using () as the small parameter, we write

(3.3.10) u(z, t) = ug(z, 7) + Quy(z, 7) + O(Q?),
where the dependence on 7 is 2w—periodic and 7 = Q¢ is a slow time variable.
Then, at leading order, (3.3.1) yields

Ly

(3.3.11) (5 u0>z =g1(x) + g2(z — 7).
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Thus
(3.3.12) uo(z, 7) = £/2G(x, 7),
where G = G(z, 7) is defined (for each 7) by
oG .
(3.3.13) Er () + g2(x — 1) and OSrrg}1<n27T(G) =0.

In each period 0 < z < 27 the solution crosses (continuously) from the negative to
the positive root at the point x = x,,(7) where G = 0, and has a shock (jumping
from the positive to the negative root) at a position z = s(7), chosen so that the
mean of ug vanishes.

The solution (3.3.12) above works as long as G has a single minimum per period,
in which case x,,, = x,,,(7) and s = s(7) are well defined and depend smoothly
on 7. However, there will generally be some special times, 7 = 7., at which this
fails. Generically G will have several local minimums, evolving in time, with one of
them smaller than all the others. The (generic) special times occur when two local
minimums exchange the property of being the global minimum. At these times z,,
ceases to be smooth, jumps discontinuously from one position to another, and the
expansion in (3.3.10) becomes inconsistent and fails.

REMARK 3.1. As pointed out at the beginning of subsection 2.3 (and remark 2.5)
the convergence of the solution to a steady state — when the forcing is time inde-
pendent — is generally very fast. Thus, we can be pretty sure that (3.3.10) will
describe the behavior of the solution away from the critical times 7.. The question
(which we will address below) now becomes: what happens for 7 =~ 7.7

On each side of a critical time 7., the expansion in (3.3.10) is valid, but the position
of the shock (z = s(7)) and the zero (z = z,,(7)) jump across T = 7., implying
a discontinuous global change in the solution u. Hence, there is a set of discrete
times when the solution w needs to adjust “rapidly” from one quasi steady state to
another (O(1) away) one. The existence of these adjustment processes, which
we will call “storms”, raises the following questions:

(1. What is the time scale (i.e., the duration) of a storm?

2. During a storm: are there significant effects in the energy
exchange between the forcing function f = f(z, t) in (3.3.1)
and the solution u = u(x, t)? That is to say: is the work per
unit time

(3.3.14)
2m

Wy = / fudez,
0

done by the external force, significantly affected by the storm?

REMARK 3.2. Notice that the total energy (as follows from equation (3.3.12))

21 27
1 .
(3.3.15) E= / 3 ug(z, 7)dr = G(z,7)dz
0 0

is a continuous function of 7 for the quasi—steady solution, even though wg itself
is not. This implies that any extra energy exchange between u and the forcing f
during a storm will need to be matched by extra dissipation over the course of the
storm.
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REMARK 3.3. Away from the storms, the asymptotic solution in (3.3.10) shows
that there is a leading order balance between the work W; done by the forcing f
on the solution u, and the energy E; dissipated at the shocks. Namely:

(3.3.16) Eq— Wy =0(9).

This, of course, is in agreement with the fact that the total energy FE is a slow
function of time (F = E(7), as shown by equation (3.3.15).) This suggests the
following extra question, related to 2 in (3.3.14) above: How is the balance in
(3.3.16) affected by a storm?

Before attempting to answer these questions analytically, let us set up a simple
example, that will help both make the discussion concrete, and verify its results
through numerical experiments. Let us select a forcing term of the form

(3.3.17) f(z,t) =sin(z) + 2 sin(2(x — Q t)),
in equation (3.3.1). Then G, as defined in (3.3.13), is given by:
(3.3.18) G= /f(a:,t) dx = C (Qt) — (cos(z) + cos(2(z — Q1)) ,

where C' = max(cos(z) + cos(2(z — Q¢))). The critical times at which the zero of

G jumps are given by

2n+1)m
3.3.19 t, = ———,
( ) 50
where n is an integer. At these times
1 .
(3.3.20) G, Qtn) = 2 (1 —4cos(z))”,
and

1

(3.3.21) ug(z, Qt,) = = 3 |1 —4cos(z)] ,

with two candidate crossings of zero.

At the critical times t¢,, (of which there is one per period), there are two solutions
uo(z) of the form (3.3.21), in which ug switches from negative to positive at one
of the zeros, has a corner at the other, and switches once from positive to negative
through a shock, at a position determined by the condition that wg has a vanishing
average. The quasi—steady solution given by the asymptotic expansion in (3.3.10)
approaches one (or the other) of these two solutions as t — ¢, from below (or
above.)

REMARK 3.4. In addition to the two special solutions mentioned in the prior
paragraph, there is a full one—parameter family of solutions (of which the two
solutions just described are extreme cases.) In this family, both zeros of ug are
used for upward (negative to positive) crossings, and there are consequently two
shocks switching the solution back to negative. The positions of these two shocks
are related by the constraint on the average of ug, which leaves one free parameter.
The relevance of this one parameter family of solutions is that, during a “storm”, the
actual solution u(z,t) sweeps this family, one member at a time, at an intermediate
rate, faster than O(Q2¢), but slower than O(t). Before showing this curious result
through an asymptotic expansion, we illustrate it with a numerical solution.
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Figure 7 displays the [numerical] solution to equation (3.3.1) with the forcing given
by (3.3.17), starting from the asymptotic solution shortly before the critical time
t;, for a value of the frequency 2 = 0.01, not exceedingly small. The dotted
line gives the envelope for the asymptotic, quasi-steady solution ug(z, 7) (i.e.: the
curves u = ++/2G.) In this figure we can see the actual solution u = u(z, t)
switching its upward crossing point from one zero of G(z, {2 1) to the other, through
a relatively fast transition, involving the development, growth, travel and eventual
disappearance of a second shock. During this transition, the solution sticks very
closely to the envelope of the quasi-steady solution. The slight disagreement, most
visible in frame (e), is due to the finite size of Q: as 2 gets smaller, the full “storm”
takes place with the envelope nearly constant, and we should compare it with the
“critical” envelope (that has two zero crossings per period.)

Figure 8 shows the total energy of the solution as a function of time, for a full
period? in time 7/, and four values of the frequency, from Q = 1/50 to © = 1/400.
Note that this figure shows the energy converging to a function of time with a corner
at t1, as the frequency ) tends to zero (the limit is the function given by equation
(3.3.15), for this special case when G is given by (3.3.18).) Such a cornered energy
function corresponds to an instantaneous storm, which changes the phase of the
solution discontinuously at t = ;.

A more thorough understanding of the energetics of a storm is gained by looking
at either the energy dissipation rate E; = E4(t) (caused by the shocks), or the
work Wy = Wy (t) done by the forcing (see figures 9 and 10). Both show a marked
spike during the storm, approximately duplicating the regular amount of work
and dissipation. The doubling of the energy dissipation rate is easily explained as
arising from the appearance of an extra shock during a storm, of a size comparable
to the regular one. The close agreement between the energy dissipated and the
work performed by the forcing, on the other hand, can be explained by the slow
evolution of storms, faster than the regular O(Q2¢) rate, but clearly slower than a
O(t) rate. Hence, at any particular time, the energy input and output need to be
in balance to leading order. In other words: even during a storm the solution
is quasi—steady (as we will show below.)

The points just raised bring us back to the natural question of what is the time scale
for a storm (namely, question 1 in (3.3.14).) Quantifying this time scale will tell us
how significant storms are from the viewpoint of energy exchange: fast storms do
not have time to affect the energy exchange significantly, while slower storms do.
Notice that the storms have a very definite duration in figures 9 and 10: they start
and end rather abruptly. Measuring these durations suggests that they scale with
the square root of the frequency 2. That this is precisely the case can be inferred
from the following asymptotic argument:

3

Consider, during a storm® an asymptotic expansion of the form

(3.3.22) u(z,t) = up(z, T) + Sui(z, T) + O(5?),

where T' = § (t — t.), and 2 <€ § < 1 is a small parameter to be determined (0
gives the storm time scale.) The right hand side f = f(x, 7) in equation (3.3.1)

2Note that, because g2 in (3.3.17) has period =, in this case the long time asymptotic solution
to (3.3.1) has period 7/ in time — not 27 /€2, as in the general case.
3Taking place for t & t. = 7. /S, where 7. is defined below equation (3.3.13).
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F1GURE 7. Asymptotic ¢ — oo solution to the equation u; + (]5712)95 =
sin(z) + 2sin(2 (z — Qt)), with @ = 0.01. Time slices of the solution
are shown for ¢ near the critical time t. = 7/(2Q), when F,,. has a dou-
ble zero. The asymptotic solution is periodic in time, of period 7 /€.
Because 2 is small, the solution is quasi-steady at all times. The plots here
illustrate the evolution in the time scale O(v/Qt), with corrections of order
O(V/Q), for t near t. (when a double shock arises.) For ¢ away from t, the
solution is close to the unique quasi-steady solution of the problem. For ¢
close to t. the solution evolves following the one parameter family of quasi-
steady solutions possible when ¢ = ¢.. Two shocks arise in this stage.
Left to right and top to bottom, the figures show the solution (and the
envelope ++/2F,, for the quasi-steady solution, in a dashed line) for the
times: (a) t = 0.480 (x/Q), (b) t = 0.500 (7/9), (c¢) t = 0.510 (7/Q), (d)
t =0.520 (7 /), (e) t =0.575 (7 /Q), and (f) t = 0.584 (7 /).
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FIGURE 8. Energy E = E(t) — shown over one period 0 < (Q/7)t < 1 in
time — for the ¢ — oo asymptotic solution for the equation u; + (% u?), =
sin(z) + 2sin(2 (z — Qt)). Left to right and top to bottom, plots for the
cases () = 1/50, Q2 = 1/100, @ = 1/200, and 2 = 1/400 are shown.

can expanded in the form
Q
(3.3.23) flz, 7) = f(z, Tc)"’ETfT(:U: Te) e,

where 7 = Q0 ¢, as in the expansion in (3.3.10). Substituting (3.3.22) and (3.3.23)
into equation (3.3.1) we obtain, to leading order:

(3.3.24) ug(z, T) = £/2G.(2),

where G. = G(z,7.), and G is as in (3.3.13). Because 7 = 7, generically G, will
have two zeros per period, and the dependence of ug on T is through the position
of the two shocks in (3.3.24). That is: up must be a member of the one parameter
family of solutions that the steady state problem has at the critical times (see
remark 3.4), with the parameter a function of 7.



30 F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNER

Energy Dissipation Rate.
14

Energy Dissipation Rate.

Dashed line: w=0.02

Quasi-Steady.

Solid line:
Solution.

14

12

Dashed line:
Quasi-Steady.

Solid line:
Solution.

w=0:.01

Energy Dissipation Rate.
14

o] 0.2

0.4 0.6 0.8 1

Energy Dissipation Rate.

Dashed line: = 0.005

Quasi-Steady.

Solid line:
Solution.

14

12

Dashed line:
Quasi-Steady.

Solid line:
Solution.

®=0.0025

.6 0.8

0 0.2 0.

4 0
(g t

o] 0.2

0.4 0.6 0.8 1
(wm t

FIGURE 9. Energy dissipation rate E; = E4(t) — shown over one period
0 < (Q/m)t < 1 in time — for the ¢ — oo asymptotic solution for the
equation u; + (3 u?), = sin(z) + 2sin(2 (z — Q). Left to right and top
to bottom, plots for the cases Q = 1/50, @ = 1/100, 2 = 1/200, and
2 = 1/400 are shown. The width of the dissipation spike near the time
where the shock in the quasi-steady solution changes location, behaves like
At =~ 1/\/5 The energy dissipation rate for the quasi-steady solution is

shown by the dotted line.

At the next order in the expansion we have, on each side of the equation:

(3.3.25)

5 (o + (wown),) = 5 T (o),

which requires § = v/Q in order to balance. Hence the (intermediate) time-scale,

valid during storms, is given by T = v/Qt, as suggested by the numerical experi-

ments.

Answers to the questions posed earlier.
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FI1GURE 10. Work done by the forcing Wy = Wy (t) — shown over one
period 0 < (Q/7)t < 1 in time — for the ¢ — oo asymptotic solution for
the equation u; + (1 u?), = sin(z) + 2sin(2 (z — Q1)). Left to right and
top to bottom, plots for the cases @ = 1/50, 2 = 1/100, 2 = 1/200, and
1 = 1/400 are shown. Note how closely the work done and the dissipation
match, as a consequence of the fact that the solution, at all times, is fairly
close to a quasi-steady solution.

We can now answer the questions that were posed earlier in this subsection as
follows:

( A. Storms have a typical duration At = 1/\/@, evolving on

an (intermediate slow) time scale T = v/Qt (question 1 in
(3.3.14).)

B. During a storm both: the work per unit time Wy by the
force f, and the energy dissipation rate E; by the shocks are
(roughly) twice as large as their values away from a storm,

(3.3.26) since the solution has two shocks during a storm, and only
one away from it (question 2 in (3.3.14).)

C. Combining the answers in A and B, we see that the overall
excess dissipation caused by a storm is O(1/VQ).

D. Storms alter the balance between dissipation and work given
by (3.3.16), replacing it by

Eq—W;=0(W0Q).
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As pointed out in the introduction to this paper, the fact that the effects caused by
a storm scale with v/, not Q, may have important consequences when considering
the effects of a complex set of near-resonances (something that escapes the scope
of this present paper, and which we plan on investigating in future work.)

References

[1] Benney, D.J. and Newell, A.C., “Random wave closures”, Stud. Appl. Math, vol. 48 (1969),
29-53.

[2] Benney, D.J., and Saffman, P.G., “Nonlinear interactions of random waves in a dispersive
medium”, Proc. Roy. Soc. A, vol. 289 (1965), 301.

[3] Cai, D., Majda, A.J., McLaughlin, D.W. and Tabak, E.G., “Spectral Bifurcations in Disper-
sive Wave Turbulence” PNAS, vol. 96 (1999), 14216-14221.

[4] Godunov, S. K., “A difference scheme for numerical computation of discontinuous solutions
of equations of fluid dynamics”, Mat. Sb., vol. 47 (1959), 271-306.

[5] Hasselmann, K., “On the nonlinear energy transfer in a gravity wave spectrum. Part I: General
theory”, J. Fluid Mech., vol. 12 (1962), 481-500.

[6] Majda, A.J., McLaughlin, D.W. and Tabak, E.G, “A one-dimensional model for dispersive
wave turbulence”, J. Nonlinear Sci., vol. 7 (1997), 9-44.

[7] Milewski, P.A., Tabak, E.G. and Vanden Eijnden, E., “Resonant wave interaction with random
forcing and dissipation”, to appear in Stud. Appl. Math. (2001).

[8] Rosales, R.R., Tabak, E.G. and Turner, C.V., “Resonant triads involving a nondispersive
wave”, to appear in Stud. Appl. Math. (2001).

[9] Strang, G., “On the construction and comparison of difference schemes”, STAM J. Num. Anal.,
vol. 5 (1968), 506-517.

[10] van Leer, B., “Towards the ultimate conservative difference scheme V. A second order sequel
to Godunov’s method”, J. Comput. Phys., vol. 32 (1979), 101-136.

[11] Zakharov, V.E., Lvov, V. and Falkovich, G., Wave Turbulence, Springer, New York, 1992.

F. A. M. A. F. , UNIVERSIDAD NACIONAL DE CORDOBA, CORDOBA, ARGENTINA
E-mail address: Menzaque@mate.uncor.edu

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE,
MA 02139
E-mail address: rrr@math.mit.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NY
10012
E-mail address: tabak@cims.nyu.edu

F. A. M. A. F. — CIEM-CONICET, UNIVERSIDAD NACIONAL DE CORDOBA, CORDOBA,
ARGENTINA
FE-mail address: turner@mate.uncor.edu



