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Abstract

A new model for studying energy transfer is introduced. It consists of a “resonant duo” a
resonant quartet where extra symmetries support a reduced subsystem with only two degrees
of freedom—, where one mode is forced by white noise and the other one is damped. This
system has a single free parameter: the quotient of the damping coefficient to the amplitude
of the forcing times the square root of the strength of the nonlinearity. As this parameter
varies, a transition takes place from a Gaussian, high-temperature, near equilibrium regime,
to one highly intermittent and non Gaussian. Both regimes can be understood in terms of

appropriate Fokker-Planck equations.
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1 Introduction

Many systems in Nature receive and dissipate energy in very different scales, behaving like con-
servative systems in between. Hence energy is permanently transferred through this intermediate,
inertial range, which often includes many decades of spatial and temporal scales. Typically, the
path among scales that this flux of energy adopts is not deterministic and orderly, but rather chaotic
and noisy. When this is the case, the flux is said to occur through a turbulent cascade of energy. The
most famous example of such a cascade lies in the field of isotropic fluid turbulence, widely studied
since the pioneering work of Kolmogorov. Many others, however, take place in Nature. The ocean,
for instance, displays a very rich set of highly anisotropic cascades, whose variation with scale is
thought to be determined by a changing balance between the effects of rotation, stratification, and
wave breaking.

For dispersive systems, such as surface and internal waves in the ocean, energy transfer among
scales is thought to occur largely through resonant sets, typically triads or quartets. A rich body of
theory has been developed concerning such systems, under the name of Wave (or Weak) Turbulence.
The theory predicts kinetic equations for the evolution of the energy spectrum, and self-similar sta-
tionary solutions to these equations ([1], [2], [3], [4].) However, the complexity of the systems under
study make many of the hypothesis underlying these results necessarily heuristic. In fact, recent
studies of a simple, one-dimensional model for dispersive waves, show an incredibly rich behavior,
with a number of [often coexistent] self-similar spectra, some of them apparently inconsistent with
the existing theory ([5], [6]).

Our purpose here is to consider even simpler models of energy transfer, involving as few modes as
possible, in order to isolate the roots of this variety of regimes. To this end, starting from a relatively
general dispersive system, we single out a resonant quartet, with two modes forced by white noise
and two damped. Then we invoke a symmetry of the quartet equations to reduce the system even
further, to a system that we call a “forced and damped resonant duo”, which exhibits, when freed
from forces and dissipation, the Hamiltonian structure and conserved quantities that characterize
far more complex dispersive systems. This system is so reduced though, that its numerical solution
is quite straightforward, and much can be understood even on purely theoretical grounds. Yet

the system’s behavior is surprisingly rich, with a transition between Gaussian, near-equilibrium



behavior, to highly intermittent. This suggests strong analogies to similar, largely unexplained
transitions in much more complex systems.

The plan of this paper is the following. After this introduction, in section 2, we describe the main
features of a resonant quartet, and justify the introduction of white noise as the most controllable
energy source. In section 3, we reduce the system even further, to a forced and damped resonant
duo, and derive some expected values and bounds for its statistically steady states. In section 4, we
solve the reduced system numerically, and show the existence of two distinct regimes: one Gaussian
and close to equilibrium, the other highly intermittent and non Gaussian. In sections 5 and 6,
the [approximate] invariant measures for both regimes are explicitly obtained as [near| solution to
the system’s Fokker-Planck equation. The mechanisms underlying transport of energy in the two
regimes are discussed in section 7. Finally, in section 8, we summarize our conclusions, and suggest

some further work.

2 A Forced and Damped Resonant Quartet

For concreteness, we shall start with a one-dimensional partial integro-differential equation of the
form

ov
i 5 = LU+ ~|¥ ¥ plus forcing and dissipation, (2.1)

where £ is an Hermitian linear operator with symbol £ = w(k). In the inertial range, this system

can be written in the Hamiltonian form

OV 0H
Yor T 5v

H = / k)W (k) Pdk + = /\IJ )|*dx.

Even this relatively simple one-dimensional system, with w = |k|'/? and a slightly more general

where

nonlinearity, has been recently shown to display a very rich and puzzling phenomenology, with a
number of self-similar statistically steady states [6]. These states often coexist, occupying disjoint
ranges in Fourier space, while sometimes one of them takes over the whole inertial range. The
underlying bifurcations appear to depend very delicately on the nature and strength of the forcing

and dissipation, on the sign of the parameter v tuning the nonlinearity, and, since all numerical



experiments take place in finite domains, on the size of these domains (or, correspondingly, on the
spacing between modes in Fourier space.)

Our goal here is to isolate a simpler subsystem of (2.1) where the issue of energy transfer among
modes is more transparent. To this end, we shall consider a single resonant quartet, i.e. a set of

four modes W;, such that the resonant conditions

]{31+k4 - k2+l€3

W) +ws = Wy + ws

are satisfied. When this is the case, and those four modes are the only ones excited —at least to
leading order— in the initial conditions, the \ilj’s are approximated, in the limit of small amplitudes,
by U;(t) = ea;(t)e @20t where 7 = €t, m = ijl laj|* and the a’s obey the resonant

equations ([7], [8])

.dal — 2
i— = 2vyasasaz — y|ar| o,
dr
da _
zd—Z = 2yazasa; — v|as|’as (2.2)
T
_da: _
i — 2 ayaga; — y|as|tas
dr
da _
zd—4 = 2ya,asa3 — Y|as|’ay
T

These equations are also Hamiltonian, with

H = 47 p1 papsps cos(A0) — % (b} + 05+ p3 + 1) - (2.3)

Here a; = pjeaf and Al = 6, + 6, — 6, — O3. In addition to preserving H, the solutions satisfy the

“Manley-Rowe” relations
dla* dlag*  dlag*  dlag?
dr  dr dr dr ’

. . - 4 2 - 4 2 .
from which conservation of mass m = }_,_ [a;|*, momentum p = >, kj|a;* and linear energy

(2.4)

e = Z;Zl wjla;|?, follow. In fact, one can solve these equations analytically. Setting

al(r) = X(7)+a,
(1) = X(7)+e,
as*(r) = —X(7) +c5,
al(r) = —X(7) +e,



where ¢; + ¢o — ¢3 — ¢4 = 0, one obtains, after some manipulation,
X(1) = acos(Q1 + @) + 3,

with «a, (8, Q2 and ¢ determined by the initial data.

In order to study energy transfer, one needs to force some of the modes of the system (2.2), and
dissipate some others. In order to control the amount of energy going through the system, it is best
to force it through white noise, since, when a system is forced deterministically, it is not clear o
priori how much energy the forces provide. Typically, such systems will reach equilibrium even in
the absence of dissipation. A single nonlinear oscillator forced sinusoidally, for instance, will reach
a steady state by detuning from the frequency of the forcing. Hence thinking of deterministic forces
as permanent energy sources is not necessarily accurate. On the other hand, when either the forces
or the system become more irregular (the latter case arising when the system’s internal dynamics is
chaotic), the forces do behave systematically as an energy source. In the extreme example provided
by white noise, the amount of energy input to the system is strictly controllable, as the following

theorem shows:

Theorem: Consider a dynamical system of the form

dui
dt

= F(u,t) + o;u;,

where «; stands for white-noise. Then the energy of the system, F = Y, |u;|*, evolves in the

following, separable way:

d
dt

where E,(u,t) is the deterministic rate of energy change, that would take place even without the

(E) = (Eq(u, 1)) + B ,

white noise, and E,, = > o7 (the brackets in the expressions above represent ensemble averages).
Thus, for instance, if the unforced system is conservative, Ej is zero, and the energy grows linearly
in time. If, on the other hand, the unforced system includes dissipation, and if a state of statistical

equilibrium is achieved, then we must have (E4(u,t)) + E, = 0.

Proof: This theorem is a simple corollary of Ito Calculus. For readers unfamiliar with it, we

prove a discrete analogue for the system

uttt o = Fi(u",n) At + o; w VAL, (2.5)

) )



where (w]') = 0, (wiw!") = 676 and the total energy is defined to be

= |uf]?. (2.6)

From (2.5) and (2.6), we obtain
(E™*' — E") = Re <Z (uft! — ) (upt! + uf)>

= <Z Fi(u",n) At + o; w? \/_> <2u + Fi(u™, n) At + o; w! \/_>>

)

_ Z Re Fl ,n)(2ul + AtF;(un ))>)+022) At

[

= ((Ed(u,t t

which concludes the proof. For instance, if F;(u™, n) consists of an energy preserving part plus

dissipative terms of the form —u; u], then

(B — By = (07 = 2uifu?) At+ Y vl || (At)”
and, in the continuous limit,

d(F)

Tl Z (O’Z~2 — 2Vi|uz~\2) :

Thus, for a single, nonlinear damped oscillator forced by white noise,

i%:(w+F(|z/))—iv)1/)+aw, (2.7)

(F real), if a statistically steady state is reached, it necessarily satisfies

([vf*) =

Based on these considerations, we shall study the following generalization of (2.2):

2

da,q _ 2 :
ZE = 27 a,a903 — ’Y|a1| ay + O-wl(t)ﬂ

da
Z% = 2yazasar — y]ay|*ay — iv as, (2:8)
dag _ 2 ;

d = 2vasaqa; — 7|a3| as — v as,

t

da _ ;
zd—: = 2vaiaqa3 _7|a4|2a4+aw4(t) )



where 1 (t) and w,4(t) represent white noise. The reasoning behind the new terms added to (2.2) is
the following: Once one has decided to force one of the modes —say a; for concreteness— with white
noise, then a4 needs to be forced also and with white noise of the same amplitude if there is to be
any hope for the system to reach statistical equilibrium (for otherwise the Manley Rowe relations
(2.4), combined with the theorem above applied to the equations for a; and a4 separately, imply
that (Ja;|* — |a4|?) will necessarily diverge.) Similarly, once ay is damped, so should as. Here it is
not crucial that the two damping coefficients be equal, but there does not seem to be much point in
breaking the system’s symmetry by deciding otherwise (in fact, we shall use this symmetry below

to reduce our model even further.)

3 Reduction to a Forced and Damped Duo

The symmetries between a; and a4 and between ay and az in the system (2.8) suggest a further
reduction to two variables, by using a single random process for w; (t) and wy(t), and considering
initial data such that a; = a4 and ay = a3. After renaming the variables, one ends up with the

system for a resonant duo:

da

2% = 2vaia, — v|ai|fa; + o i(t), (3.1)
da

z% = 2yaiay — v|asPay —iva,. (3.2)

A disclaimer seems appropriate here: resonant quartet equations such as (2.8) arise naturally
as asymptotic reductions of larger systems, when only a handful of modes is initially excited. The
resonant duo proposed here, on the other hand, represents only a particularly symmetric instance
of a resonant quartet. It should not be considered as a reduced model for the interaction among
only two modes in a larger system, since the implication would be that the two modes have the
same wavenumber and frequency. This is not totally unthinkable, since many systems are indexed
by wavenumber (with corresponding frequency) and something else, but it is certainly not the case
of models such as (2.1), where each wavenumber points to a single degree of freedom.

When both o and v are set to zero, the system in (3.1, 3.2) is Hamiltonian, with

H =~ (a;d% + a%dg) —

2 (" +las|")



and it has exact solutions of the form

> = acos(Qt+ ¢) + B

|a2|2 = —acos(QU + @) + Gy

Notice that there is a single non-dimensional parameter in (3.1, 3.2):
v
oy

Thus all but one of v, o, or v can be made equal to one by a suitable rescaling of time and

D =

(3.3)

amplitudes, and D serves as a single control parameter for the system.

In the remaining of this paper, we shall study the properties of the statistically steady solutions
to (3.1, 3.2). If such state is achievable, the theorem in the previous section, applied to the full
system, implies that )

o
<|a,2|2> =5, (3.4)
which states that the system’s energy input o2 needs to be fully dissipated by the damping of the
second oscillator. The same theorem applied to either of the two equations alone, on the other
hand, yields
—47y (Ja1*|az|? sin(2A0)) = o7, (3.5)
where Af = 6, — 6, and we are writing a; = p; ¢?%7. The left hand side of this equation represents

nonlinear energy transfer among the two modes, which has to equal the total energy input from

white noise. To obtain a lower bound for |a|, one derives, from equation (3.2), the identity

% log (as|’) = —4v|a;:|” sin(2A0) — 2v

which, after taking averages and looking for a statistically steady state, yields

9 v
, > —. 3.6
(Jonl?) > - (36)
Another conjectured lower bound for a;, of a more “thermodynamical” nature, states that
2 2 o’
, > (la = —, 3.7
Jorf?) > (Jaof?) = 2 3.7

since a situation in which forcing and dissipation on an otherwise symmetric duo should yield a
higher mean square amplitude for the dissipated mode than for the forced one would contradict the
second principle of thermodynamics (energy would be transferred “up” from the less to the more

excited state).



Figure 1: (|a1|?) (stars) and (|ag|*) (circles) as functions of D = v/o,/7. Also plotted are the
two lower bounds (3.6) and (3.7) in solid line, and (|a;|?) = v/v/3y (dotted). The results are

averages over time and about 800 realizations of white noise from fixed initial data a; = 0.1 + 0.21,

as = 0.15 — 0.17, with time averaging from ¢ = 2500 to ¢ = 5000.

4 Numerical Simulations

Simulating numerically the system in (3.1, 3.2) is a rather straightforward task. Since our interest
here lies in energy transfer over long time intervals, a simplectic procedure appears appropriate.
We have adopted a simplectic second order (implicit) Runge-Kutta for the deterministic part of

the system, and alternated it with an explicit addition of white noise. Thus the algorithm becomes
* . 2 5
a; = a" —iAt <2fy (ah)"ahy — v \aﬂ%?)
ay = a" —iAt <2fy (a’ll)2c;h2 — v |al?al —izuz'j) (4.1)

aitl = ai + VAtow"

n+l1 *
) = G,
where a,;? = % (a? + a;‘) and w™ is a random complex variable drawn from a Gaussian distribution

with variance one.
Figure 1 shows the results of a series of experiments, in which « has been kept fixed at v = 1,

the amplitude of the white noise at ¢ = 0.02, and v has been varied from v = 0.00125 to v = 0.1,
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Figure 2: An individual realization of the resonant duo, with D = 0.25. The two modes a; and
as oscillate around each other much as in the unforced, undissipated system, but with less orderly

paths.

which corresponds to the non-dimensional parameter D in (3.3) ranging from D = 0.0625 to D = 5.
We have typically run 800 realizations of white noise from fixed initial data (a; = 0.1 + 0.2i,
as = 0.15 — 0.17) up to ¢ = 5000, and computed time (as well as ensemble) averages from ¢ = 2500
(longer times and more realizations where needed for the very large and very small values of v, for
reasons that will become clear below), with At = 0.0025. We have plotted (|a;|*) with stars, (Jas|*)
with circles, and the two lower bounds for (|a;|?) from (3.6) and (3.7) in solid line (the second lower
bound agrees, of course, with the expected value of |ay|? from (3.4).) In addition, there is a dotted
line, corresponding to {|a;|?) = v/v/37, that will be explained below.

We can see the nearly perfect agreement of the numerical results for (|ay|?) with their exact value
(3.4), and the sharp nature of the two bounds (3.6) and (3.7), which all but define the dependence
of (|a;|*) on the parameters v, o, and v. There are clearly two different regimes, depending on
which lower bound is enforced. For small values of D, (|a;[*) =~ {(|as|?), and we are close to
thermodynamical equilibrium. For large values of D, on the other hand, (Ja;|?) > (|ay|?), and the
sharp nature of the lower bound (3.7) suggests that the relative phase of the two oscillators is locked

near A = —7/4 whenever as is active. In fact, the dotted line, which fits very well the asymptotic

10
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Figure 3: An individual realization of the resonant duo, with D = 5. |ay] is essentially zero most
of the time, with intermittent, brief outbursts of energy. a) A relatively long interval, with a few

transfer events. b) Detail of one the events.
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Figure 4: Numerical invariant measure for D = 0.25, and Gaussian measures with the same vari-
variances are equal.

ance. The distributions of both a; and ay are indistinguishable from [complex| Gaussian, and their

behavior of (Ja;|?), corresponds to a value A@ = —7 /6, which will be shown below to arise from
simple theoretical considerations.

Figures 2 and 3 display individual realizations of the two regimes, corresponding to D = 0.25
and D = 5. In the former, the two modes oscillate around each other much as in the unforced,
undissipated system, but with more noisy paths. In the latter, |as| is essentially zero most of the

time, with intermittent, brief outbursts of energy.
Figures 4 and 5 show the (numerical) invariant measures for the same two values of D, contrasted
with Gaussian measures with the same variance. We see that, for D = (.25, the distributions of

both a; and ay are indistinguishable from Gaussian, while for D =5, a; is still Gaussian, but as is
fundamentally different, with a sharp peak at |a3] = 0 and a very long tail.

These behaviors will be fully accounted for in sections 5, 6, and 7.

12
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Figure 5: Numerical invariant measure for D = 5, contrasted with Gaussian measures with the

same variance. a; is still Gaussian, but a, is fundamentally different, with a sharp peak at |ay| = 0,

and a very long tail.

5 The Near-Equilibrium, High-Temperature Regime

The system (3.1, 3.2) has four real degrees of freedom, which can be taken to be the amplitudes and
phases of the two modes. However, only the difference between the two phases, A = 0, — 6; enters
the dynamics of the amplitudes, so the system can be further reduced to the three-dimensional one

2

dpl 92 . o o .
— = 2 2A0) + — + — 5.1
P v papr sin(2A0) + A (5.1)
o = " 2vpip2sin(246) —vp (5.2)

d(A) 5 o o
= — 1+ 2cos(2A60)) + Wy , 5.3
T = ) 1 2es(00) + i, (53
where w; and ws stand for two independent real white-noises.
The corresponding Fokker-Planck operator is

13



where

. 0 0
Ly = 2vpip: SIH(QAQ) <P a P1—>

’ om Op2
+v(p5 — p7) (1+2 cos(er))% (5.5)
represents the Hamiltonian component of the evolution, and
o? 0 0 o? 9 o? 0

+

= —— — — =t = 5.6
! 4p1 Opy v dpa 4 0pj " 4pt O(A0)? (56)

represents the effects of forcing and damping. An invariant measure of the evolution f(p1, p2, Af)
solves

L'f=0, (5.7)

where the operator L* is the adjoint of L.
Let us consider first the regime D < 1, for which the numerical experiments suggest a near

Gaussian invariant measure with (p?) &~ (p3) = 0?/2v, that is,
f(p1, p2, AO) = Cplp2€72y(p%+p%)/02- (5.8)

We now show that the density in (5.8) is indeed the leading order term of an expansion in D. Upon

rescaling
N 25 t—t/
— — v
P1 NG P1; P2 NG P2; ;
and dropping the tildes, the equation in (5.7) reduces to
1 T * T *

where the operators L} and L% are L% and Lj with v, v, o set to one. We look for a solution of
(5.9) of the form
f=fo+ D*fi+0(DY). (5.10)

Inserting this expansion into (5.9) and equating coefficients of equal powers of D, we obtain

L fo=0, (5.11)

Ly = —Lifo. (5.12)

14



(5.11) implies that fy belongs to the null-space of L};, fo € Ker L. Since the Hamiltonian dynamics

conserves both the Hamiltonian and the energy

1
H = -3 (p1 + p3) + 205 p5 cos(2A0), E = pi +ps,

the null-space of L3 is spanned by functions of the type p;p, times an arbitray function of E and
H,ie. (5.11) yields
fo=pip2g(E,H), (5.13)

where ¢(-) is arbitrary except for the boundary conditions for (5.11),

Jlim - fo =0, lim py fo =0, lim py fo = 0.
pi+p5—00 p1—0 p2—0

We determine ¢(-) from the solvability condition for (5.12),
Ly fo € Ran L} = (Ker Ly) ™. (5.14)

By an argument similar to the one above, it follows that the null-space of Ly is spanned by the
functions of the form h(E, H), where h(-) is arbitrary. Thus, the solvability condition in (5.14) is
given by ,
0= [ [ ELL (g (B, 1) dpidpud(29),
7

We claim that this integral equation can be transformed into a partial differential equation in £, H
for g(FE, H). To see this, change the integration variables in order to integrate first on the regions
where E and H are constant, then on £, H. Since both h(FE, H) and g(E, H) depend only on FE
and H, the first integral can be performed explicitly, and the resulting integral equation can be

written as

o rE%/4
0= / / J(E, HYh(E, H)L1g(E, H)dHdE. (5.15)
0 J-3m2/4

where J is some Jacobian and L; is an operator in F, H whose explicit form must be obtained by
integrating L3 (p1p2 +) at E, H constant. Since h(F, H) is arbitrary in (5.15), the factor Lig(E, H)
must be identically zero, which gives indeed a partial differential equation in E, H for g(E, H). The
full operator L; is rather complicated and we shall not write it here explicitly, since we only need
its restriction on functions depending only on E. Indeed, under the consistent assumption that ¢

depends on FE alone, the integral in (5.15) reduces to

0= /Oo h(E) (4Eg(E) 2B+ EYg'(B) + EZg”(E))dE, (5.16)

15



where
- E?/2
h(E) :/ hE,H)J(E,H)dH,

E?/2

Since h is arbitrary, (5.16) is equivalent to the differential equation

4Fq(E) +2(E + E*)g'(E) + E*¢"(E).

whose only bounded solution is g(E) = Ce 2¥. Tt follows that
Jo= CP1P2€72(p%+p§)= (5.17)

which in the original dimensional variables yields (5.8).

6 The Intermittent Regime: An Exactly Solvable Model

From the numerical experiments, we know that, when D > 1, we reach a highly intermittent
regime, with p; > py on the average and a nearly locked phase Af. Notice that this is consistent
with equation (5.3), when it is dominated by the deterministic part. The locked phase then needs
to satisfy

1+ 2cos(2A0) =0,

SO

sin(2A0) = i\/Tg.

Moreover, only the phase yielding the sine with the minus sign is stable under the [deterministic]
dynamics of (5.3). This suggests replacing the system (5.1, 5.2, 5.3) by the reduced

2

dp 2 g g .

= = -9 + + 6.1
o VPPt T (6.1)
d

% = 20ypip2 — vp2 - (6.2)

Here the constant o, with 0 < a < \/3/2, measures the effectiveness of phase locking, and should
approach the value v/3/2 as D goes to infinity. Equivalently, this amounts to saying that, in the

limit of large D, the invariant measure for the original system (5.1, 5.2, 5.3) satisfies

f(pr, pa, AO) = f(p1, p2)0(A0 + 7/6), (6.3)

16



where 6(-) is the delta function and f(p, p2) is the invariant measure for the approximate system
in (6.1, 6.2).

For this model, it is still true that, if a statistically steady state is achieved, it must have

() = Z. (6.4

Moreover, from

d
77 108 (p2) = —dayp] —2v,
one obtains, instead of a lower bound for p; as in (3.6), the sharper result that

v

(pi) = 207 (6.5)

Finally, looking at the energy transfer among modes, one obtains

—day (pipy) = o*, (6.6)

which, together with (6.4) and (6.5), implies that

(pirz) = (p1) (r2) . (6.7)

strongly suggesting that p; and py are independent random variables.
In fact, one can find an exact invariant measure for the system in (6.1, 6.2) satisfying these

properties. The Fokker-Planck operator for the new system in (6.1, 6.2) is given by

I —o < 0 8>+02 0 6+0262 (6.8)
=2« — — pi=— —— —Vpy— + ——, .
TP dp1 o dpa 4p1 Opy P dpa 4 d0pj
which, consistently with (6.7), has a separable invariant measure of the form
F(p1,p2) = Cprpy 20771 2 (o) 1 (6.9)

The higher temperature mode, p;, is Gaussian, as observed in the numerics. For py, < \/W
the distribution for the lower temperature mode, po, is essentially a power law with exponent
B =—1+2ay0?/v? = —1 + 2a/D? which approaches —1 as D goes to infinity. This is consistent
with the observed sharp peak at po = 0 and very long tail, since v/2ay > (p3) = o2 /2v for large D.

In fact, this distribution agrees nearly to perfection with the observed one, as the plots in Figure

17
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Figure 6: Numerical invariant measure for |as|, D = 5, compared with the theoretical prediction in
(6.9). The value of o &~ 0.82 was drawn from the observed mean of p;, and then used to build the

distribution for p,.

6 show for D = 5. Here the value of @ &~ 0.82 was drawn from the observed mean of p;, and then
used to build the distribution for p,.

The intermittent behavior of individual realizations is also easier to understand in the simplified
model in (6.1, 6.2). Notice that, whenever p? is smaller than v/2a-y, equation (6.2) predicts damping
of ps. Hence the situation is the following: p, is pinned near zero most of the time by the strong
damping, while p; undergoes free Brownian motion. However, as soon as p; crosses the threshold
of instability p? = v/2ary, ps grows explosively, and soon starts to drag p; down, back to the stable
regime. White noise is not important during this bursts of energy transfer, so we can set o = 0.
With this, the system in (6.1, 6.2) is exactly solvable; its solution for the initial condition p; (0) = rq,
p2(0) = ry is given implicitly by

1

" dz
t =
20y /p1 z(ri4+ri—22+ (v/avy)In(z/r))’

v
ps = 15471l —pl+ g In(py/r1), (6.10)

A plot comparing this solution with the energy outburst of figure 3b is shown in Figure 7 (we picked

the initial values for (6.10) to fit p; and p, at time t=4185). The very close agreement between
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Figure 7: Comparison of the exact solution (6.10) with the energy outburst of figure 3b. The initial
values for (6.10) were picked to fit p; and po at time t=4185.

the two curves leaves little doubt that the scenario just described applies to the original equations
in (5.1, 5.2, 5.3) as well. Notice incidentally that the threshold of instability p? = v/2a~y yields
the mean value (p?) in the intermittent regime; hence (pf) settles at a value such that p, = 0 is

neutrally stable.

7 Discussion

The behaviors observed in sections 5 and 6 can be explained by comparing various time-scales or,
equivalently, various rates associated with transport of energy in the system. The first one is v,
giving the rate at which energy is removed from the system by means of dissipation. We shall

compare v with

V' =4y (|pipgsin(240)]) / (o7 + p3) - (7.1)
Since

W : _

o Ypip3sin(2A0) + o + V20 i,

dT[f = —dypip;sin(2A0) — 2vp;,
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v* gives a measure of the [averaged] rate at which energy is transported between the modes by
means of the Hamiltonian part of the dynamics, normalized by the total energy of the system.

In the Gaussian regime, we have (p?) ~ (p3) = 0?/2v and

X ) 2y0!
47(|pip3 sin(2A0)]) ~ dy(pi){p3)(| sin(2A0)[) ~

)
Tv?

which, since D < 1, implies
2v0?

*
V=

> .
TV

It follows that any blob of energy fed into the system on either of the modes will bounce back and
forth between them many times by means of oscillations before being dissipated. In other words,
the system is able to “thermalize” the modes, (p?) = (p3), and the actual temperature is fixed by
the amount of forcing and damping applied to the system. In fact, consistently with this picture,
the Gaussian measure in (5.8) might also have been predicted by a rough application of equilibrium
statistical mechanics as the least biased measure given the information in the conserved quantity,
pi + o3 [9].

In the intermittent regime, one observes
() = o®/2v < (pf) = v/V3,

47(|pipa sin(2A0)]) ~ o,

and D > 1, so
3vo?
\/_Z 2

* A~
~

In words, any amount of energy transferred from mode a; to mode a, is dissipated there almost
immediately, with no time to backscatter to mode a;. Notice that, unlike the original system in
(5.1,5.2), the approximate system in (6.1,6.2) possesses a Maxwell demon which strictly forbids
transfer of energy from mode a, to mode a;. In view of the ordering between the v’s occurring as
D > 1, this leads to no practical difficulty in the regime where the system in (6.1,6.2) is relevant.
However, an interesting consequence of the presence of the Maxwell demon is that the system in
(6.1,6.2) predicts (p3) > (p?) in the range D < 1 (see (6.4) and (6.5)). In other words, the
approximate system never thermalizes and the energy keeps flowing the same way from a; to as

even if a; becomes the lower temperature mode.
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8 Conclusions and Further Extensions

A system with only two free modes is, presumably, the simplest model for energy transfer. Here we

have introduced one such model, with a number of pleasant properties:

e The unforced, undissipated system has the Hamiltonian structure and conserved quantities

typical of more general dispersive systems.

e The forcing, in the form of white noise, permits a strict control of the energy flux through the

system.

e There is a single free parameter, the quotient of the damping coefficient to the amplitude of

the forcing times the square root of the strength of the nonlinearity.

e Many properties of the statistically steady states of the system can be easily estimated. Yet
there is one important output —the mean amplitude of the forced mode— which does not fall

off a preliminary analysis.

A numerical study of the system shows a clear transition between Gaussian, near equilibrium
behavior at high temperatures, to highly intermittent, non Gaussian behavior when the rate of
dissipation is high. Both behaviors can be understood even quantitatively from an analysis of the
Fokker-Planck equation of the system. We think that this “solvable” model may shed light on
similar transitions to intermittency taking place in many [far more complex] turbulent scenarios.

There are two obvious extensions that we plan to investigate in the near future: the inclusion
of an intermediate, inertial range (modes that are neither forced nor damped), and the effects of
non-resonant interactions. Both extensions are necessary if one hopes to fully understand the rich

phenomenology of wave turbulence.
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