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1 IntroductionMany systems in Nature receive and dissipate energy in very di�erent scales, behaving like con-servative systems in between. Hence energy is permanently transferred through this intermediate,inertial range, which often includes many decades of spatial and temporal scales. Typically, thepath among scales that this 
ux of energy adopts is not deterministic and orderly, but rather chaoticand noisy. When this is the case, the 
ux is said to occur through a turbulent cascade of energy. Themost famous example of such a cascade lies in the �eld of isotropic 
uid turbulence, widely studiedsince the pioneering work of Kolmogorov. Many others, however, take place in Nature. The ocean,for instance, displays a very rich set of highly anisotropic cascades, whose variation with scale isthought to be determined by a changing balance between the e�ects of rotation, strati�cation, andwave breaking.For dispersive systems, such as surface and internal waves in the ocean, energy transfer amongscales is thought to occur largely through resonant sets, typically triads or quartets. A rich body oftheory has been developed concerning such systems, under the name of Wave (or Weak) Turbulence.The theory predicts kinetic equations for the evolution of the energy spectrum, and self-similar sta-tionary solutions to these equations ([1], [2], [3], [4].) However, the complexity of the systems understudy make many of the hypothesis underlying these results necessarily heuristic. In fact, recentstudies of a simple, one-dimensional model for dispersive waves, show an incredibly rich behavior,with a number of [often coexistent] self-similar spectra, some of them apparently inconsistent withthe existing theory ([5], [6]).Our purpose here is to consider even simpler models of energy transfer, involving as few modes aspossible, in order to isolate the roots of this variety of regimes. To this end, starting from a relativelygeneral dispersive system, we single out a resonant quartet, with two modes forced by white noiseand two damped. Then we invoke a symmetry of the quartet equations to reduce the system evenfurther, to a system that we call a \forced and damped resonant duo", which exhibits, when freedfrom forces and dissipation, the Hamiltonian structure and conserved quantities that characterizefar more complex dispersive systems. This system is so reduced though, that its numerical solutionis quite straightforward, and much can be understood even on purely theoretical grounds. Yetthe system's behavior is surprisingly rich, with a transition between Gaussian, near-equilibrium2



behavior, to highly intermittent. This suggests strong analogies to similar, largely unexplainedtransitions in much more complex systems.The plan of this paper is the following. After this introduction, in section 2, we describe the mainfeatures of a resonant quartet, and justify the introduction of white noise as the most controllableenergy source. In section 3, we reduce the system even further, to a forced and damped resonantduo, and derive some expected values and bounds for its statistically steady states. In section 4, wesolve the reduced system numerically, and show the existence of two distinct regimes: one Gaussianand close to equilibrium, the other highly intermittent and non Gaussian. In sections 5 and 6,the [approximate] invariant measures for both regimes are explicitly obtained as [near] solution tothe system's Fokker-Planck equation. The mechanisms underlying transport of energy in the tworegimes are discussed in section 7. Finally, in section 8, we summarize our conclusions, and suggestsome further work.2 A Forced and Damped Resonant QuartetFor concreteness, we shall start with a one-dimensional partial integro-di�erential equation of theform i @	@t = L	+ 
 j	j2	 plus forcing and dissipation; (2.1)where L is an Hermitian linear operator with symbol L̂ = !(k). In the inertial range, this systemcan be written in the Hamiltonian form i @	@t = �H� �	where H = Z !(k)j	̂(k)j2dk + 
2 Z j	(x)j4dx:Even this relatively simple one-dimensional system, with ! = jkj1=2 and a slightly more generalnonlinearity, has been recently shown to display a very rich and puzzling phenomenology, with anumber of self-similar statistically steady states [6]. These states often coexist, occupying disjointranges in Fourier space, while sometimes one of them takes over the whole inertial range. Theunderlying bifurcations appear to depend very delicately on the nature and strength of the forcingand dissipation, on the sign of the parameter 
 tuning the nonlinearity, and, since all numerical3



experiments take place in �nite domains, on the size of these domains (or, correspondingly, on thespacing between modes in Fourier space.)Our goal here is to isolate a simpler subsystem of (2.1) where the issue of energy transfer amongmodes is more transparent. To this end, we shall consider a single resonant quartet, i.e. a set offour modes 	̂j, such that the resonant conditionsk1 + k4 = k2 + k3!1 + !4 = !2 + !3are satis�ed. When this is the case, and those four modes are the only ones excited {at least toleading order{ in the initial conditions, the 	̂j's are approximated, in the limit of small amplitudes,by 	̂j(t) = �aj(�)e�i(!j�2� 
m)t, where � = �2t, m = P4j=1 jajj2 and the a's obey the resonantequations ([7], [8]) ida1d� = 2
 �a4a2a3 � 
ja1j2a1ida2d� = 2
 �a3a4a1 � 
ja2j2a2 (2.2)ida3d� = 2
 �a2a4a1 � 
ja3j2a3ida4d� = 2
 �a1a2a3 � 
ja4j2a4These equations are also Hamiltonian, withH = 4
 �1�2�3�4 cos(��)� 
2 ��41 + �42 + �43 + �44� : (2.3)Here aj = �je�j and �� = �1 + �4 � �2 � �3. In addition to preserving H, the solutions satisfy the\Manley-Rowe" relations dja1j2d� = dja4j2d� = �dja2j2d� = �dja3j2d� ; (2.4)from which conservation of mass m = P4j=1 jajj2, momentum p = P4j=1 kjjajj2 and linear energye =P4j=1 !jjajj2, follow. In fact, one can solve these equations analytically. Settingja1j2(�) = X(�) + c1;ja2j2(�) = X(�) + c2;ja3j2(�) = �X(�) + c3;ja1j2(�) = �X(�) + c4;4



where c1 + c2 � c3 � c4 = 0, one obtains, after some manipulation,X(�) = � cos(
� + �) + � ;with �, �, 
 and � determined by the initial data.In order to study energy transfer, one needs to force some of the modes of the system (2.2), anddissipate some others. In order to control the amount of energy going through the system, it is bestto force it through white noise, since, when a system is forced deterministically, it is not clear apriori how much energy the forces provide. Typically, such systems will reach equilibrium even inthe absence of dissipation. A single nonlinear oscillator forced sinusoidally, for instance, will reacha steady state by detuning from the frequency of the forcing. Hence thinking of deterministic forcesas permanent energy sources is not necessarily accurate. On the other hand, when either the forcesor the system become more irregular (the latter case arising when the system's internal dynamics ischaotic), the forces do behave systematically as an energy source. In the extreme example providedby white noise, the amount of energy input to the system is strictly controllable, as the followingtheorem shows:Theorem: Consider a dynamical system of the formduidt = F (u; t) + �i _wi ;where _wi stands for white-noise. Then the energy of the system, E = Pi juij2, evolves in thefollowing, separable way: ddt hEi = hEd(u; t)i+ Ew ;where Ed(u; t) is the deterministic rate of energy change, that would take place even without thewhite noise, and Ew = P�2i (the brackets in the expressions above represent ensemble averages).Thus, for instance, if the unforced system is conservative, Ed is zero, and the energy grows linearlyin time. If, on the other hand, the unforced system includes dissipation, and if a state of statisticalequilibrium is achieved, then we must have hEd(u; t)i+ Ew = 0.Proof : This theorem is a simple corollary of Ito Calculus. For readers unfamiliar with it, weprove a discrete analogue for the systemun+1i � uni = Fi(un; n)�t+ �iwni p�t ; (2.5)5



where hwni i = 0, 
wni wmj � = �ji �mn , and the total energy is de�ned to beEn =Xi juni j2 : (2.6)From (2.5) and (2.6), we obtain
En+1 � En� = Re*Xi �un+1i � uni � �un+1i + uni �+= Re*Xi �Fi(un; n)�t+ �iwni p�t��2 uni + Fi(un; n)�t + �iwni p�t�+= Xi �Re�DFi(un; n)(2 uni +�tFi(un; n))E� + �2i ��t= (hEd(u; t)i+ Ew)�t ;which concludes the proof. For instance, if Fi(un; n) consists of an energy preserving part plusdissipative terms of the form ��i uni , thenhEn+1 � Eni =Xi ��2i � 2�ijuij2� �t+Xi �2i juij2 (�t)2and, in the continuous limit, dhEidt =Xi ��2i � 2�ijuij2� :Thus, for a single, nonlinear damped oscillator forced by white noise,id dt = (! + F (j j)� i �) + � _w ; (2.7)(F real), if a statistically steady state is reached, it necessarily satis�es
j j2� = �22� :Based on these considerations, we shall study the following generalization of (2.2):ida1dt = 2
 �a4a2a3 � 
ja1j2a1 + � _w1(t);ida2dt = 2
 �a3a4a1 � 
ja2j2a2 � i� a2; (2.8)ida3dt = 2
 �a2a4a1 � 
ja3j2a3 � i� a3;ida4dt = 2
 �a1a2a3 � 
ja4j2a4 + � _w4(t) ;6



where _w1(t) and _w4(t) represent white noise. The reasoning behind the new terms added to (2.2) isthe following: Once one has decided to force one of the modes {say a1 for concreteness{ with whitenoise, then a4 needs to be forced also {and with white noise of the same amplitude{ if there is to beany hope for the system to reach statistical equilibrium (for otherwise the Manley{Rowe relations(2.4), combined with the theorem above applied to the equations for a1 and a4 separately, implythat hja1j2 � ja4j2i will necessarily diverge.) Similarly, once a2 is damped, so should a3. Here it isnot crucial that the two damping coe�cients be equal, but there does not seem to be much point inbreaking the system's symmetry by deciding otherwise (in fact, we shall use this symmetry belowto reduce our model even further.)3 Reduction to a Forced and Damped DuoThe symmetries between a1 and a4 and between a2 and a3 in the system (2.8) suggest a furtherreduction to two variables, by using a single random process for w1(t) and w4(t), and consideringinitial data such that a1 = a4 and a2 = a3. After renaming the variables, one ends up with thesystem for a resonant duo: ida1dt = 2
 a22�a1 � 
ja1j2a1 + � _w(t); (3.1)ida2dt = 2
 a21�a2 � 
ja2j2a2 � i� a2 : (3.2)A disclaimer seems appropriate here: resonant quartet equations such as (2.8) arise naturallyas asymptotic reductions of larger systems, when only a handful of modes is initially excited. Theresonant duo proposed here, on the other hand, represents only a particularly symmetric instanceof a resonant quartet. It should not be considered as a reduced model for the interaction amongonly two modes in a larger system, since the implication would be that the two modes have thesame wavenumber and frequency. This is not totally unthinkable, since many systems are indexedby wavenumber (with corresponding frequency) and something else, but it is certainly not the caseof models such as (2.1), where each wavenumber points to a single degree of freedom.When both � and � are set to zero, the system in (3.1, 3.2) is Hamiltonian, withH = 
 �a22�a21 + a21�a22�� 
2 �ja1j4 + ja2j4� ;7



and it has exact solutions of the formja1j2 = � cos(
t + �) + �1ja2j2 = �� cos(
t + �) + �2Notice that there is a single non-dimensional parameter in (3.1, 3.2):D = ��p
 : (3.3)Thus all but one of 
, �, or � can be made equal to one by a suitable rescaling of time andamplitudes, and D serves as a single control parameter for the system.In the remaining of this paper, we shall study the properties of the statistically steady solutionsto (3.1, 3.2). If such state is achievable, the theorem in the previous section, applied to the fullsystem, implies that 
ja2j2� = �22� ; (3.4)which states that the system's energy input �2 needs to be fully dissipated by the damping of thesecond oscillator. The same theorem applied to either of the two equations alone, on the otherhand, yields �4
 
ja1j2ja2j2 sin(2��)� = �2 ; (3.5)where �� = �2 � �1, and we are writing aj = �j ei�j . The left hand side of this equation representsnonlinear energy transfer among the two modes, which has to equal the total energy input fromwhite noise. To obtain a lower bound for ja1j, one derives, from equation (3.2), the identityddt log �ja2j2� = �4
 ja1j2 sin(2��)� 2�which, after taking averages and looking for a statistically steady state, yields
ja1j2� � �2
 : (3.6)Another conjectured lower bound for a1, of a more \thermodynamical" nature, states that
ja1j2� � 
ja2j2� = �22� ; (3.7)since a situation in which forcing and dissipation on an otherwise symmetric duo should yield ahigher mean square amplitude for the dissipated mode than for the forced one would contradict thesecond principle of thermodynamics (energy would be transferred \up" from the less to the moreexcited state). 8
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Figure 1: hja1j2i (stars) and hja2j2i (circles) as functions of D = �=�p
. Also plotted are thetwo lower bounds (3.6) and (3.7) in solid line, and hja1j2i = �=p3
 (dotted). The results areaverages over time and about 800 realizations of white noise from �xed initial data a1 = 0:1 + 0:2i,a2 = 0:15� 0:1i, with time averaging from t = 2500 to t = 5000.4 Numerical SimulationsSimulating numerically the system in (3.1, 3.2) is a rather straightforward task. Since our interesthere lies in energy transfer over long time intervals, a simplectic procedure appears appropriate.We have adopted a simplectic second order (implicit) Runge{Kutta for the deterministic part ofthe system, and alternated it with an explicit addition of white noise. Thus the algorithm becomesa�1 = a1n � i�t �2
 �ah2�2 �ah1 � 
 jah1 j2ah1�a�2 = a2n � i�t �2
 �ah1�2 �ah2 � 
 jah2 j2ah2 � i � ah2� (4.1)an+11 = a�1 +p�t � wnan+12 = a�2 ;where ahj = 12 �anj + a�j� and wn is a random complex variable drawn from a Gaussian distributionwith variance one.Figure 1 shows the results of a series of experiments, in which 
 has been kept �xed at 
 = 1,the amplitude of the white noise at � = 0:02, and � has been varied from � = 0:00125 to � = 0:1,9
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Figure 2: An individual realization of the resonant duo, with D = 0:25. The two modes a1 anda2 oscillate around each other much as in the unforced, undissipated system, but with less orderlypaths.which corresponds to the non-dimensional parameter D in (3.3) ranging from D = 0:0625 to D = 5.We have typically run 800 realizations of white noise from �xed initial data (a1 = 0:1 + 0:2i,a2 = 0:15� 0:1i) up to t = 5000, and computed time (as well as ensemble) averages from t = 2500(longer times and more realizations where needed for the very large and very small values of �, forreasons that will become clear below), with �t = 0:0025. We have plotted hja1j2i with stars, hja2j2iwith circles, and the two lower bounds for hja1j2i from (3.6) and (3.7) in solid line (the second lowerbound agrees, of course, with the expected value of ja2j2 from (3.4).) In addition, there is a dottedline, corresponding to hja1j2i = �=p3
, that will be explained below.We can see the nearly perfect agreement of the numerical results for hja2j2i with their exact value(3.4), and the sharp nature of the two bounds (3.6) and (3.7), which all but de�ne the dependenceof hja1j2i on the parameters 
, �, and �. There are clearly two di�erent regimes, depending onwhich lower bound is enforced. For small values of D, hja1j2i � hja2j2i, and we are close tothermodynamical equilibrium. For large values of D, on the other hand, hja1j2i � hja2j2i, and thesharp nature of the lower bound (3.7) suggests that the relative phase of the two oscillators is lockednear �� = ��=4 whenever a2 is active. In fact, the dotted line, which �ts very well the asymptotic10
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Figure 3: An individual realization of the resonant duo, with D = 5. ja2j is essentially zero mostof the time, with intermittent, brief outbursts of energy. a) A relatively long interval, with a fewtransfer events. b) Detail of one the events.
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Figure 4: Numerical invariant measure for D = 0:25, and Gaussian measures with the same vari-ance. The distributions of both a1 and a2 are indistinguishable from [complex] Gaussian, and theirvariances are equal.behavior of hja1j2i, corresponds to a value �� = ��=6, which will be shown below to arise fromsimple theoretical considerations.Figures 2 and 3 display individual realizations of the two regimes, corresponding to D = 0:25and D = 5. In the former, the two modes oscillate around each other much as in the unforced,undissipated system, but with more noisy paths. In the latter, ja2j is essentially zero most of thetime, with intermittent, brief outbursts of energy.Figures 4 and 5 show the (numerical) invariant measures for the same two values of D, contrastedwith Gaussian measures with the same variance. We see that, for D = 0:25, the distributions ofboth a1 and a2 are indistinguishable from Gaussian, while for D = 5, a1 is still Gaussian, but a2 isfundamentally di�erent, with a sharp peak at ja2j = 0 and a very long tail.These behaviors will be fully accounted for in sections 5, 6, and 7.
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Figure 5: Numerical invariant measure for D = 5, contrasted with Gaussian measures with thesame variance. a1 is still Gaussian, but a2 is fundamentally di�erent, with a sharp peak at ja2j = 0,and a very long tail.5 The Near-Equilibrium, High-Temperature RegimeThe system (3.1, 3.2) has four real degrees of freedom, which can be taken to be the amplitudes andphases of the two modes. However, only the di�erence between the two phases, �� = �2� �1 entersthe dynamics of the amplitudes, so the system can be further reduced to the three-dimensional oned�1dt = 2
 �22�1 sin(2��) + �24�1 + �p2 _w1 (5.1)d�2dt = �2
 �21�2 sin(2��)� ��2 (5.2)d(��)dt = 
 ��22 � �21� (1 + 2 cos(2��)) + �p2�1 _w2 ; (5.3)where _w1 and _w2 stand for two independent real white-noises.The corresponding Fokker-Planck operator isL = LH + LF (5.4)
13



where LH = 2
 �1�2 sin(2��)��2 @@�1 � �1 @@�2�+
 ��22 � �21� (1 + 2 cos(2��)) @@�� (5.5)represents the Hamiltonian component of the evolution, andLF = �24�1 @@�1 � ��2 @@�2 + �24 @2@�21 + �24�21 @2@(��)2 (5.6)represents the e�ects of forcing and damping. An invariant measure of the evolution f(�1; �2;��)solves L�f = 0 ; (5.7)where the operator L� is the adjoint of L.Let us consider �rst the regime D � 1, for which the numerical experiments suggest a nearGaussian invariant measure with h�21i � h�22i = �2=2�, that is,f(�1; �2;��) = C�1�2e�2�(�21+�22)=�2 : (5.8)We now show that the density in (5.8) is indeed the leading order term of an expansion in D. Uponrescaling �1 ! �p� ~�1; �2 ! �p� ~�2; t! ~t=�;and dropping the tildes, the equation in (5.7) reduces to� 1D2 �L�H + �L�F�f = 0 ; (5.9)where the operators �L�H and �L�F are L�H and L�F with �, 
, � set to one. We look for a solution of(5.9) of the form f = f0 +D2f1 +O(D4): (5.10)Inserting this expansion into (5.9) and equating coe�cients of equal powers of D, we obtain�L�Hf0 = 0; (5.11)�L�Hf1 = ��L�Ff0: (5.12)14



(5.11) implies that f0 belongs to the null-space of �L�H , f0 2 Ker �L�H . Since the Hamiltonian dynamicsconserves both the Hamiltonian and the energyH = �12 ��41 + �42�+ 2�21�22 cos(2��); E = �21 + �22;the null-space of �L�H is spanned by functions of the type �1�2 times an arbitray function of E andH, i.e. (5.11) yields f0 = �1�2 g (E;H) ; (5.13)where g(�) is arbitrary except for the boundary conditions for (5.11),lim�21+�22!1 f0 = 0; lim�1!0 �1f0 = 0; lim�2!0 �2f0 = 0:We determine g(�) from the solvability condition for (5.12),�L�Ff0 2 Ran �L�H = (Ker �LH)?: (5.14)By an argument similar to the one above, it follows that the null-space of �LH is spanned by thefunctions of the form h(E;H), where h(�) is arbitrary. Thus, the solvability condition in (5.14) isgiven by 0 = Z 2�0 ZR2+ h(E;H)�L�F (�1�2g (E;H)) d�1d�2d(��):We claim that this integral equation can be transformed into a partial di�erential equation in E, Hfor g(E;H). To see this, change the integration variables in order to integrate �rst on the regionswhere E and H are constant, then on E, H. Since both h(E;H) and g(E;H) depend only on Eand H, the �rst integral can be performed explicitly, and the resulting integral equation can bewritten as 0 = Z 10 Z E2=4�3E2=4 J(E;H)h(E;H)L1g(E;H)dHdE: (5.15)where J is some Jacobian and L1 is an operator in E, H whose explicit form must be obtained byintegrating �L�F (�1�2 �) at E, H constant. Since h(E;H) is arbitrary in (5.15), the factor L1g(E;H)must be identically zero, which gives indeed a partial di�erential equation in E, H for g(E;H). Thefull operator L1 is rather complicated and we shall not write it here explicitly, since we only needits restriction on functions depending only on E. Indeed, under the consistent assumption that gdepends on E alone, the integral in (5.15) reduces to0 = Z 10 �h(E)�4Eg(E) + 2(E + E2)g0(E) + E2g00(E)�dE; (5.16)15



where �h(E) = Z E2=2�E2=2 h(E;H)J(E;H)dH;Since �h is arbitrary, (5.16) is equivalent to the di�erential equation4Eg(E) + 2(E + E2)g0(E) + E2g00(E):whose only bounded solution is g(E) = Ce�2E. It follows thatf0 = C�1�2e�2(�21+�22); (5.17)which in the original dimensional variables yields (5.8).6 The Intermittent Regime: An Exactly Solvable ModelFrom the numerical experiments, we know that, when D � 1, we reach a highly intermittentregime, with �1 � �2 on the average and a nearly locked phase ��. Notice that this is consistentwith equation (5.3), when it is dominated by the deterministic part. The locked phase then needsto satisfy 1 + 2 cos(2��) = 0 ;so sin(2��) = �p32 :Moreover, only the phase yielding the sine with the minus sign is stable under the [deterministic]dynamics of (5.3). This suggests replacing the system (5.1, 5.2, 5.3) by the reducedd�1dt = �2�
�22�1 + �24�1 + �p2 _w1 (6.1)d�2dt = 2�
�21�2 � ��2 : (6.2)Here the constant �, with 0 � � � p3=2, measures the e�ectiveness of phase locking, and shouldapproach the value p3=2 as D goes to in�nity. Equivalently, this amounts to saying that, in thelimit of large D, the invariant measure for the original system (5.1, 5.2, 5.3) satis�esf(�1; �2;��) � �f(�1; �2)�(�� + �=6); (6.3)16



where �(�) is the delta function and �f(�1; �2) is the invariant measure for the approximate systemin (6.1, 6.2).For this model, it is still true that, if a statistically steady state is achieved, it must have
�22� = �22� : (6.4)Moreover, from ddt log ��22� = �4�
�21 � 2� ;one obtains, instead of a lower bound for �1 as in (3.6), the sharper result that
�21� = �2�
 : (6.5)Finally, looking at the energy transfer among modes, one obtains�4�
 
�21�22� = �2 ; (6.6)which, together with (6.4) and (6.5), implies that
�21�22� = 
�21� 
�22� ; (6.7)strongly suggesting that �1 and �2 are independent random variables.In fact, one can �nd an exact invariant measure for the system in (6.1, 6.2) satisfying theseproperties. The Fokker-Planck operator for the new system in (6.1, 6.2) is given byL = 2�
 �1�2��2 @@�1 � �1 @@�2� + �24�1 @@�1 � ��2 @@�2 + �24 @2@�21 ; (6.8)which, consistently with (6.7), has a separable invariant measure of the form�f(�1; �2) = C�1��1+2�
�2=�22 e�2�
(�21+�22)=�: (6.9)The higher temperature mode, �1, is Gaussian, as observed in the numerics. For �2 � p�=2�
the distribution for the lower temperature mode, �2, is essentially a power law with exponent� = �1 + 2�
�2=�2 = �1 + 2�=D2, which approaches �1 as D goes to in�nity. This is consistentwith the observed sharp peak at �2 = 0 and very long tail, since �=2�
 � h�22i = �2=2� for large D.In fact, this distribution agrees nearly to perfection with the observed one, as the plots in Figure17
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Figure 6: Numerical invariant measure for ja2j, D = 5, compared with the theoretical prediction in(6.9). The value of � � 0:82 was drawn from the observed mean of �1, and then used to build thedistribution for �2.6 show for D = 5. Here the value of � � 0:82 was drawn from the observed mean of �1, and thenused to build the distribution for �2.The intermittent behavior of individual realizations is also easier to understand in the simpli�edmodel in (6.1, 6.2). Notice that, whenever �21 is smaller than �=2�
, equation (6.2) predicts dampingof �2. Hence the situation is the following: �2 is pinned near zero most of the time by the strongdamping, while �1 undergoes free Brownian motion. However, as soon as �1 crosses the thresholdof instability �21 = �=2�
, �2 grows explosively, and soon starts to drag �1 down, back to the stableregime. White noise is not important during this bursts of energy transfer, so we can set � = 0.With this, the system in (6.1, 6.2) is exactly solvable; its solution for the initial condition �1(0) = r1,�2(0) = r2 is given implicitly byt = 12�
 Z r1�1 dzz (r22 + r21 � z2 + (�=�
) ln(z=r1)) ;�22 = r22 + r21 � �21 + ��
 ln(�1=r1); (6.10)A plot comparing this solution with the energy outburst of �gure 3b is shown in Figure 7 (we pickedthe initial values for (6.10) to �t �1 and �2 at time t=4185). The very close agreement between18
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Figure 7: Comparison of the exact solution (6.10) with the energy outburst of �gure 3b. The initialvalues for (6.10) were picked to �t �1 and �2 at time t=4185.the two curves leaves little doubt that the scenario just described applies to the original equationsin (5.1, 5.2, 5.3) as well. Notice incidentally that the threshold of instability �21 = �=2�
 yieldsthe mean value h�21i in the intermittent regime; hence h�21i settles at a value such that �2 = 0 isneutrally stable.7 DiscussionThe behaviors observed in sections 5 and 6 can be explained by comparing various time-scales or,equivalently, various rates associated with transport of energy in the system. The �rst one is �,giving the rate at which energy is removed from the system by means of dissipation. We shallcompare � with �? = 4
 
j�21�22 sin(2��)j� = 
�21 + �22� : (7.1)Since d�21dt = 4
�21�22 sin(2��) + �2 +p2��1 _w1;d�22dt = �4
�21�22 sin(2��)� 2��22;19



�? gives a measure of the [averaged] rate at which energy is transported between the modes bymeans of the Hamiltonian part of the dynamics, normalized by the total energy of the system.In the Gaussian regime, we have h�21i � h�22i = �2=2� and4
hj�21�22 sin(2��)ji � 4
h�21ih�22ihj sin(2��)ji � 2
�4��2 ;which, since D � 1, implies �? � 2
�2�� � �:It follows that any blob of energy fed into the system on either of the modes will bounce back andforth between them many times by means of oscillations before being dissipated. In other words,the system is able to \thermalize" the modes, h�21i � h�22i, and the actual temperature is �xed bythe amount of forcing and damping applied to the system. In fact, consistently with this picture,the Gaussian measure in (5.8) might also have been predicted by a rough application of equilibriumstatistical mechanics as the least biased measure given the information in the conserved quantity,�21 + �22 [9].In the intermittent regime, one observesh�22i = �2=2� � h�21i � �=p3
;4
hj�21�22 sin(2��)ji � �2;and D� 1, so �? � p3
�2� � �:In words, any amount of energy transferred from mode a1 to mode a2 is dissipated there almostimmediately, with no time to backscatter to mode a1. Notice that, unlike the original system in(5.1,5.2), the approximate system in (6.1,6.2) possesses a Maxwell demon which strictly forbidstransfer of energy from mode a2 to mode a1. In view of the ordering between the �'s occurring asD � 1, this leads to no practical di�culty in the regime where the system in (6.1,6.2) is relevant.However, an interesting consequence of the presence of the Maxwell demon is that the system in(6.1,6.2) predicts h�22i � h�21i in the range D � 1 (see (6.4) and (6.5)). In other words, theapproximate system never thermalizes and the energy keeps 
owing the same way from a1 to a2even if a1 becomes the lower temperature mode.20



8 Conclusions and Further ExtensionsA system with only two free modes is, presumably, the simplest model for energy transfer. Here wehave introduced one such model, with a number of pleasant properties:� The unforced, undissipated system has the Hamiltonian structure and conserved quantitiestypical of more general dispersive systems.� The forcing, in the form of white noise, permits a strict control of the energy 
ux through thesystem.� There is a single free parameter, the quotient of the damping coe�cient to the amplitude ofthe forcing times the square root of the strength of the nonlinearity.� Many properties of the statistically steady states of the system can be easily estimated. Yetthere is one important output {the mean amplitude of the forced mode{ which does not fallo� a preliminary analysis.A numerical study of the system shows a clear transition between Gaussian, near equilibriumbehavior at high temperatures, to highly intermittent, non Gaussian behavior when the rate ofdissipation is high. Both behaviors can be understood even quantitatively from an analysis of theFokker-Planck equation of the system. We think that this \solvable" model may shed light onsimilar transitions to intermittency taking place in many [far more complex] turbulent scenarios.There are two obvious extensions that we plan to investigate in the near future: the inclusionof an intermediate, inertial range (modes that are neither forced nor damped), and the e�ects ofnon-resonant interactions. Both extensions are necessary if one hopes to fully understand the richphenomenology of wave turbulence. AcknowledgmentsThe work of P. A. Milewski was partially supported by NSF grant DMS-9401405; the work of E.G. Tabak was partially supported by NSF grant DMS-9501073; and the work of E. Vanden Eijndenwas partially supported by NSF grant DMS-9510356.21
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