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Abstract

A novel methodology is developed for the solution of the data-driven Monge optimal transport barycenter

problem, where the pushforward condition is formulated in terms of the statistical independence between two

sets of random variables: the factors z and a transformed outcome y. Relaxing independence to the uncorrela-

tion between all functions of z and y within suitable inner-product spaces leads to an adversarial formulation,

for which the adversarial strategy can be found in closed form through the first principal components of a

matrix, and the resulting pure minimization problem can be solved efficiently through flows in phase space.

The methodology extends beyond scenarios where only discrete factors affect the outcome, to multivariate

sets of both discrete and continuous factors, for which the corresponding barycenter problems have infinitely

many marginals. Corollaries include a new framework for the solution of the Monge optimal transport prob-

lem, a procedure for the data-based simulation and estimation of conditional probability densities, and a

nonparametric methodology for Bayesian inference.

1 Introduction

A central problem in the analysis of data is to estimate how a set of variables x ∈ X, the outcome, depends on a

set of covariates z ∈ Z, the factors, a dependence that can be fully characterized by the conditional distribution

ρ(x|z). One seeks to extract from n observed data pairs {xi, zi}, either an evaluation procedure for ρ itself or

a procedure to draw samples {x∗j} from ρ(x|z∗) for any target value z∗. This is particularly challenging when z

includes continuous components, since any particular value z∗ has small probability of having appeared among

the {zi}, even less of having shown up in enough observational pairs to warrant a statistical analysis based on

those pairs alone.

This article develops a data-driven methodology for the estimation and simulation of conditional distribu-

tions based on the [Monge] optimal transport barycenter problem (OTBP), seeking a map

y = T (x, z) ∈ X
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that removes from x the variability that z can explain, i.e. such that the random variables y and z are

independent. In order not to remove any additional variability from x, one selects the map T that minimizes

the expected value of a total transportation cost C = Eπ[c(x, T (x, z))], where π is the joint distribution of x

and z. The pairwise cost function c(x, y) quantifies the deformation of the data incurred by moving x to y.

This results in an OTBP of the form

min
y=T (x,z)

Eπ [c (x, y)] s.t. y ⊥⊥ z, (1)

where the symbol ⊥⊥ stands for independence. We can use the solution to this problem to simulate the condi-

tional distribution ρ(x|z) for a target value z = z∗, extracting n samples {x∗i } ∼ ρ(x|z∗) through

x∗i = T−1 (yi, z∗) , yi = T (xi, zi) ,

where T and its inverse T−1 are regarded as maps between x and y parameterized by z. This procedure first

removes from xi the variability attributable to z = zi, and then restores that variability with z = z∗, while the

variable y stores the variability in x that z does not explain.

Other uses of the OTBP include the following:

1. In order to eliminate the effect of confounding variables z from the data x, we simply move the {xi} to

their counterpart in the barycenter, {yi = T (xi, zi)}. Examples include the removal of batch effects, the

consolidation of different data bases, where z represents the data source and, more generally, the removal

of the confounding effects of any set of variables z that are not considered in the study under way.

2. The explanatory power of the covariates z can be quantified by the total cost C. This ranges from the

extreme scenario where z has no explanatory value, so x is already independent of z, y = x and C = 0,

to the opposite extreme where all variability in x can be explained by z, so the barycenter reduces to a

single point ȳ, which maximizes C. Quantifying through C the explanatory power of z gives rise to a rich

methodology for factor selection and discovery [3, 4].

3. The barycenter problem permits not only simulating but also estimating conditional densities (see section

8), and therefore yields a model-free, non-parametric data-based procedure for Bayesian inference: given

a prior distribution γpr(z), a set of sample pairs {xi, zi} drawn from an unknown joint distribution π(x, z)

and the observed current value of x, estimate the posterior distribution γpos(z|x).

4. The optimal transport problem (OTP), a particular case of the OTBP with only two marginals, yields a

natural horizontal distance among distributions. It also serves as a powerful tool for density estimation
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and sampling.

This article proposes an efficient methodology to solve the OTBP, providing the capability to both simulate

and estimate ρ(x|z). It also clarifies the relation between the statistical formulation of the Monge OTBP problem

as posed above and the geometrically based Wasserstein barycenter problem [6]: while the latter addresses the

barycenter’s distribution µ, the former is centered on the underlying random variable y and its relation to x

and z. Corollaries include new methodologies for the solution of Monge’s OTP and for model-free Bayesian

inference.

The methodology’s central component is a new adversarial formulation of the pushforward condition, posed

in terms of the independence between the random variables z and y and enforced through test functions. When

these test functions are restricted to inner-product spaces, the optimal adversarial strategy can be expressed in

terms of the first principal components of a matrix, reducing the problem to a pure minimization, which can be

solved efficiently through a flow-based gradient-descent procedure. The corresponding optimal map y = T (x, z)

can be inverted in closed-form, which facilitates conditional density estimation and simulation. The closed form

inversion formula extracts from the data natural factors {fk(z)} that encode the dependence of x on z.

1.1 Relation to prior work

The Kantorovich –or Wasserstein– OTBP was introduced in [6], defining the barycenter µ∗ of a set of distri-

butions {µi} as the minimizer of a weighted sum of the squared Wasserstein distances between the {µi} and

µ∗. As discussed in section 2, the distribution underlying the solution y to Monge’s OTBP agrees with the

solution to the Wasserstein barycenter problem extended to general factors z, when the latter is supported on

z-dependent maps. The extension of the OTBP to a continuous covariate z was studied in [8] in the context of

its connection to the multimarginal optimal transport in the limit of infinitely many marginals.

There is a rich literature on the numerical solution of the OTBP, typically in their Kantorovich formulation.

While discrete methods regard the marginals as convex linear combinations of Dirac delta functions, continuous

methods assume that smooth probability density functions underly the data. The first category includes methods

that leverage the Sinkhorn algorithm [9, 10, 11] and linear programming-based methods [12, 13]. Among the

first algorithms to treat the problem in a continuous setting are [14, 15], both based on the dual of Kantorovich

formulation. Most algorithms adopting the continuous apporach parameterize the maps pushing forward each

ρ(x|z) to the barycenter via a deep neural network with problem-dependent architecture. An example of this

approach in [16] uses Convex Neural Networks to parametrize a potential related to the optimal map. A different

approach is the flow-based methodology adopted in [7] and inspired by [17, 18, 19]. Flow-based numerical solvers

do not require neural networks or any a priori parametrization of the map. They lead naturally to the adoption
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of gradient descent methods, more straightforward than saddle point optimizers, whose convergence is harder to

characterize [20, 21]. Another connected work concerns not the OTBP but the related vector quantile regression

[23]. This also transforms a random variable through a factor dependent map to another that is independent

of the factor. Unlike the barycenter, however, the target distribution –the quantile– is fixed by the user, and

the transformation proposed is linear and computed through linear programming.

Our approach focuses on the statistical analysis of data with factors z that typically include continuous

components, therefore requiring the solution of OTBP problems with infinitely many marginals. A major point

distinguishing the work presented here from the existing literature is the interpretation of the pushforward

condition that drives the samples underlying the marginals towards the barycenter. As in [7], we characterize

the pushforward condition in terms of the statistical independence between two random variables: the cofactors

z and y = T (x, z). This statistical characterization of the barycenter is critical for a number of applications,

such as removal of variability and factor discovery [3, 4], and treatment effect estimation [25, 26] (See [27]

for a similar characterization of independence through reproducing kernel Hilbert spaces.) Directly related to

the statistical interpretation of the push-forward condition is the ability to solve numerically the barycenter

problem for continuous factors and under costs different from the canonical Euclidean distance. While there is

some literature dealing with more general costs (see for instance [28, 29]), to the best of our knowledge, the only

alternative work on the solution of this problem in the continuous setting –i.e. with infinitely many marginals– is

our own previous work in [24, 4, 7]. The formulations in those articles differ substantially from the current one:

the first solved a minimax problem for a potential ψ(y, z), extending the attributable component methodology

of [30] beyond nonlinear regression, the second developed BaryNet, a network-based algorithm, and the third

formulated the push-forward condition in terms of a test function of the form F (y, z) = ρ(y|z), whose estimation

through kernels has a computational cost that grows quadratically with the number of samples. By contrast,

the current proposal, which is based on flows in phase space and formulates the pushforward condition in

terms of the first principal components of a matrix, has a complexity that scales linearly with the number of

observations.

1.2 Plan of the article

This article is structured as follows. Section 2 discusses the formulation of the Monge OTBP, relates it to an

extension of the Wasserstein barycenter problem, and justifies its use to identify hidden sources of variability.

Section 3 introduces an adversarial formulation of independence, relaxed to finite dimensional inner-product

functional spaces. This gives rise to a compact formulation of the problem in terms of the singular values

of a matrix, discussed in Section 4, and an efficient procedure for its minimization through gradient descent.
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Section 5 derives a closed-form expression for the inverse x = X(y, z) of the map y = T (x, z), mediated by

extracted factors. Section 6 discusses various implementation aspects: the choice of functional spaces, the

determination of the penalization parameter and of the learning rate, the termination criteria and the solution

of various barycenter problems in a row, each contributing to further explain the variability of the outcome

x. It also discusses the algorithm’s complexity. Section 7 solves the regular [Monge] OTP through a suitable

reduction of the more general OTBP. This is used in Section 8 to perform regular and conditional density

estimation. Section 9 illustrates the methodology through numerical examples. We first use synthetic data sets

to demonstrate various aspects of the OTBP, such as the simulation and estimation of conditional densities,

model-free Bayesian inference and the uncovering of hidden explanatory factors. Then we apply the procedure

to real data sets related to weather and climate. Finally, Section 10 summarizes the procedure and suggests

avenues for further development.

2 A Monge formulation of the optimal transport barycenter problem

Given a joint distribution π(x, z) = ρ(x|z) γ(z) between two sets of variables: the outcome x ∈ X and the

covariates z ∈ Z, we seek a map y = T (x, z) ∈ X that removes from x the variability that z can explain, i.e.

such that the random variables y and z are independent. We require that the space X have the structure of

a smooth manifold, while the space Z can include both continuous and discrete components. We will further

assume that ρ(x|z) is absolutely continuous for all z, vanishing on small subsets of X. In order to remove from

x only the variability that z can account for, we select the map T that minimizes the expected value of the total

transportation cost C = Eπ[c(x, y)], where c(x, y), an externally provided pairwise cost function, measures the

deformation of the data incurred by moving x to y. The canonical choice for c is the squared distance

c(x, y) =
1

2
∥y − x∥2. (2)

More general costs C, not necessarily based on pairwise cost functions, give rise to the Distributional Barycenter

Problem [7]. Even though the methodology developed in this article applies to the more general problem almost

without changes, we restrict attention for concreteness to the pairwise canonical cost in (2).

At first sight, the resulting problem (1) looks quite different from the Wasserstein barycenter problem,

introduced in [6], which reads

µ∗ = arg inf
µ

p∑
i=1

λiW2
2 (µi, µ) , W2

2(ρ, µ) = inf
ξ(x,y)∈Π(ρ,µ)

Eξ

[
∥y − x∥2

]
, (3)
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where Π(ρ, µ) is the set of joint distributions having ρ and µ as marginals. The differences between (3) and (1)

stem from their conceptual origin: while (3) extends the geometrical notion of barycenter to sets of distributions

equipped with the Wasserstein distance, (1) uses a map T to remove from x any variability that z can explain.

Yet the two problems relate as follows. The i ∈ [1, . . . , p] in (3) correspond to the z ∈ Z in (1), their weights

{λi} to the distribution γ(z), and the {µi} to the ρ(x|z). Thus the barycenter problem in (3) is restricted to

discrete covariates z, which play the role of indexes for the distributions {µi}. By contrast, the z in (1) is

a random variable of general type linked to x through their joint distribution π. The well posedness of the

barycenter problem with infinitely many marginals has been studied in [8] in connection to the multi-marginal

OTP. Extending Kantorovich’s relaxation of the OTP [5], (3) considers general couplings ξ between the µi and

µ, while (1) extends Monge’s original formulation [31] to the barycenter problem, restricting attention to maps

T that push forward the ρ(x|z) to µ. These maps are central to the applications that motivate (1), as they

are used both for conditional density simulation and estimation. Importantly, they turn y = T (x, z) into a

random variable that derives from x and z, which leads to another critical distinction: while the argument of

the minimization in (3) is the barycenter µ∗ of the µi, the formulation in (1) does not involve the barycenter

at all. The fact that y in this formulation is a random variable gives meaning to the alternative requirement of

independence between y and z.

That the two problems are much closer than they appear at first sight follows from the fact that, as proved

in [32], the solution to Kantorovich’s formulation of the OTP for smooth distributions and under quite general

assumptions, also solves Monge’s, a results that has been extended to the OTBP in [6, 8]. We put together

the connection between the two problems in the framework of this article through the discussion that follows.

First, the following lemma shows that the two characterizations of the barycenter problem: one geometrical, in

terms of the distribution with minimal Wasserstein distance from the marginals, and the other statistical, in

terms of the independence between two random variables, are equivalent.

Lemma 1. Given a joint distribution π(x, z), x ∈ X, z ∈ Z, define the marginal γ(z) = π(X, z) and the

conditional distribution ρ(x|z) = π(x,z)
γ(z) , and consider the following two problems:

1. Extended Wasserstein barycenter:

µ∗, ξ∗z = argmin
µ,ξz

CK = Eγ

[
Eξz [c(x, y)]

]
, ξz ∈ Π(ρ(x|z), µ(y))

(We call this problem “extended” because the covariates z are not necessarily discrete),

2. Monge barycenter:

T ∗ = argmin
T
CM = Eπ[c(x, y)], y = T (x, z), y ⊥⊥ z.
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If the minimizing couplings ξ∗z for the first problem are supported on maps, i.e., ξ∗z (x, y) = π(x,Z) δ (y −Qz(x)),

then T ∗(x, z) = Qz(x), and consequently CM = CK and ∀z µ∗ = T ∗(:, z)#ρ(: |z).

Proof. Since ξ∗z solves problem 1, Qz#ρ(: |z) = µ∗, so the joint distribution satisfies Θ(y, z) = µ∗(y)γ(z), which

implies that y ⊥⊥ z. If there existed another T ̸= Qz pushing forward all ρ(x|z) to a single distribution µ(y)

at a cost CM < CK , then ξz(x, y) = π(x,Z) δ (y − T (x, z)) would solve problem 1 with a smaller cost than the

optimal ξ∗z , a contradiction.

If the joint distribution π(x, z) is absolutely continuous in x for a set of z ∈ Z of nonzero measure, then the

barycenter µ(y) of the corresponding ρ(x|z) under the canonical cost in (2)) is also absolutely continuous and

the optimal couplings ξ∗z are indeed supported on maps. This result was proved for discrete z’s in [6], Theorem

5.1, and extended to continuous z in [8], see Corollary 3.3.3 and Theorem 4.2.5. We might conclude that the

Monge and [extended] Wasserstein barycenter problems are equivalent when applied to smooth distributions:

after all, their unique solutions map to each other. Yet this equivalence applies to the problems’ solutions,

not to their formulations. All the applications described in this article, as well as the methodology proposed

for solving the problem numerically, are strongly based on the map y = T (x, z) and its inverse X(y, z), both

parameterized by z and defining the random variables (x, y) in terms of each other.

The relation between a random variable x ∈ X and known covariates z ∈ Z can be specified alternatively

through the conditional distribution ρ(x|z) and through a functional relation x = ϕ(w, z), w ∈ W, w ∼ ν(: |z),

where the random variable w represents all additional causes of variability in x, which we either do not currently

consider, cannot measure or are simply not aware of. The function ϕ and the distribution ν underlying w

determine ρ(x|z) uniquely, but more than one pair (ν, ϕ) can give rise to the same ρ. One special pair is

provided by the solution to the OTBP:

Lemma 2. Given any joint distribution π(x, z) that vanishes on small sets in X for all z, the random variable

x can be written as x = X(y, z), where y = T (x, z) ∼ µ is the solution to the barycenter problem for ρ(x|z), so

X(:, z) = T−1(:, z).

Proof. Since neither ρ(x|z) (for any z) nor µ(y) assign finite measure to small sets, the fact that the least costly

map T (:, z) pushing forward ρ(: |z) to µ is invertible is a central result in optimal transport theory [5].

This lemma provides the ground for various applications.

1. In order to generate samples {x∗i } from ρ(x|z∗) for any target value z∗, it is enough to generate samples

{yi} from the barycenter µ(y) and write x∗i = X(yi, z∗). A number n of such samples is already available
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through the barycentric map acting on the available data pairs, yi = T (xi, zi). More can be obtained if

needed, performing optimal transport between µ and a given distribution ν and pushing forward samples

of the latter to µ through the inverse of the corresponding transportation map.

2. Since our algorithm provides both X(y, z) and its y-derivatives (see section 5), one can estimate ρ(x|z∗)

by the change-of-variable formula applied to an estimate for µ(y) (which can itself be obtained by optimal

transporting µ to a known ν and applying again the change-of-variable formula.)

A third application addresses the following question: assuming that there exists a “true” additional source w

of variability in x, such that that x = ϕ(w, z), how much does our y = T (x, z) teach us about the true w? (Here

the notion of a true source is field dependent; for our purposes, we just assume that such true w exists.) An

identifiability issue arises: without additional information, the conditional distribution ρ(x|z) does not suffice

to determine w. For instance, if for some value of z, ϕ (w1, z) = ϕ (w2, z), then there is no way that using x and

z alone we could distinguish between w1 and w2. More generally, any two z-dependent random variables W z
1

and W z
2 such that the distributions of both ϕ1(W

z
1 , z) and ϕ2(W

z
2 , z) agree with ρ(x|z) explain the data equally

well. In particular, y provides one such explanatory variable, with the additional property that it is necessarily

a function of w and z: y = T (x, z) = T (ϕ(w, z), z) = Y (w, z). Moreover, Y (:, z) is invertible for all values of z

for which w is identifiable, i.e. such that ϕ (w1, z) = ϕ (w2, z) ⇒ w1 = w2, since

Y (w1, z) = Y (w2, z) ⇒ T (ϕ(w1, z), z) = T (ϕ(w2, z), z) ⇒ ϕ(w1, z) = ϕ(w2, z) ⇒ w1 = w2.

Then, in order to uncover the “true” hidden explanatory w, one can use the fact that its identifiable component

must have a –possibly z-dependent– one-to-one relation to y, together with any other information available on

w, such as other variables that it may depend upon or correlate with. In the absence of any such additional

information, y is the most natural explanatory variable among all w, since by construction it is independent of

the known factors z, it is the closest to x itself, and it is the most “economical”, since it is identifiable for all

z. We illustrate these concepts through examples in Section 9.

3 Adversarial characterization of independence

Posing the Monge OTBP (1) in data-driven scenarios, where the joint distribution π(x, z) is only known through

n sample pairs {xi, zi}, requires a sample-friendly formulation of the independence condition between the random

variables y and z. We will use a weak characterization based on test functions [33, 7]: two variables y ∈ Y and

z ∈ Z with joint distribution π(y, z) are independent if and only if any two bounded measurable functions g(y)
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and f(z) satisfy

Eπ[g(y)f(z)] = Eρ[g(y)] Eγ [f(z)], ρ(y)
def
= π(y,Z), γ(z)

def
= π(Y, z).

We can restrict the functions f and g to smaller spaces F and G, provided that they contain suitable approx-

imations to the delta function. To prove this, notice that if π (y, z) > ρ (y) γ (z) in a neighborhood U∗ of the

pair (y∗, z∗), then g(y) = δy∗ (y), f(z) = δz∗ (z) satisfy Eπ[g(y)f(z)] > Eρ[g(y)] Eγ [f(z)], where δy∗ and δz∗ are

non-negative functions whose product is positive at (y∗, z∗) and vanishes outside of U∗.

Substractig the mean of f(z) yields the following equivalence statement: two variables y and z are inde-

pendent if and only if, for all functions g(y) ∈ G and f(z) ∈ F with Eγ [f(z)] = 0, Eπ[g(y)f(z)] = 0. This

equivalence gives rise to the following adversarial formulation of the barycenter problem (1):

min
y=T (x,z)

max
g,f,λ

L = Eπ

[
c(x, y) + λ Eπ[g(y)f(z)

]
, Eγ [f ] = 0, ∥f∥ = ∥g∥ = 1, (4)

where we have decoupled the amplitude of f and g from their shape, absorbing their amplitude in the factor

λ. Moreover, we can replace the maximization over λ by the external provision of a a penalization parameter

λ≫ 1 for non-compliance of the independence condition, a relaxation that converges to (4) as λ→ ∞.

If we defined the norms of f and g in (4) through the canonical inner products

(f1, f2) = E [f1, f2] , (g1, g2) = E [g1, g2] , (5)

these norms would represent the standard deviation of f and g, since not only Eγ [f ] = 0 by construction,

but also Eρ[g] = 0 holds at the optimal solution: a constant added to g does not affect the value of L, and

the norm of g − a is smallest when a = ḡ. It follows that we could read the problem as the minimization of

the transportation cost subject to the condition that the correlation between any two functions f(z) and g(y)

vanishes [33]. Yet adopting this choice for a norm is neither required nor convenient for g(y), since it depends

on the unknown distribution ρ underlying y, which evolves through the optimization procedure. We propose

an alternative norm below.

A data-driven formulation of (4) replaces expected values by empirical means,

min
yi=T (xi,zi)

max
g,f

L =
1

n

n∑
i=1

[
c (xi, yi) + λ g (yi) f (zi)

]
,

n∑
i=1

f (zi) = 0, ∥f∥ = ∥g∥ = 1. (6)

Since we cannot enforce infinitely many constraints on the finite set {yi} without trivializing the solution, we

supplement (6) with the specification of two finite dimensional inner-product spaces of functions F and G over
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which to perform the maximization, writing

f(z) = F (z)a, g(y) = G(y)b, a ∈ Rmz , b ∈ Rmy ,

where the mz columns of F and the my columns of G are functions respectively of z and y (both have n rows

when evaluated at the sample points) and the functions acting as columns of F have zero mean. Choices for

the functions defining F and G will be discussed in Section 6.4. Independently of their choice, some further

processing is required, which we describe here in terms of G, since the same process applies to F.

A first requirement is to eliminate redundancy: since the columns of the matrix G typically consist of

smooth functions that we only evaluate at a finite set of points, the dimension of the effective range of G can

be much smaller than my, particularly when the latter is chosen large so as to accommodate for a rich set of

candidate test functions. Eliminating such redundancy makes the maximization problem over b smaller and

better posed. The second requirement also relates to the ease of optimization over b: enforcing the requirement

that ∥g(y)∥ = 1 would be much easier if G –an operator from Rmy to G– were orthogonal, as it would directly

translate into the condition that ∥b∥ = 1. Enforcing the orthogonality of G requires that we fix an inner product

in G. The canonical one, ⟨ϕ, ψ⟩ =
∑

i ϕ (yi)ψ (yi), the empirical version of (5), has the problem that its very

definition depends on the unknown {yi}. We can stick to the canonical inner product in z-space, since the {zi}

are fixed, but we should use a different one for functions of y. We need a functional norm such that a function

g(y) of norm 1 cannot be very large on the data. As a counterexample, consider an inner product of the form

(ϕ, ψ) =
∫
ϕ(y)ψ(y) w(y)dy, where the weighting function w(y), though everywhere positive, is very small in

at least one area where the true distribution ρ(y) is not. Since the requirement that ∥g∥ = 1 will effectively

only constrain g(y) in areas where w(y) is comparatively large, the algorithm’s variables b can make L large by

choosing test functions g(y) not based on their correlation with f(z) but on their amplitude in areas where ρ is

large but w is small. Then the weight w(y) should be such that the Radon–Nikodym derivative dρ
dw is bounded.

We adopt an inner product that is fixed through stages of the procedure:

⟨ϕ, ψ⟩ =
∑
i

ϕ
(
y0i
)
ψ
(
y0i
)
, (7)

where y0i is initially set to xi and updated between stages, to reflect the evolving distribution of the {yi} ∼ ρ(y).

In order to replace G(y) by a smaller dimensional, orthogonal operator Qy(y) that spans the same effective

range, we perform the reduced singular-value decomposition Gj
i

def
= Gj

(
y0i
)
≈
∑ny

k=1 σk uki vkj , with ny ≤

my chosen that the sum
∑ny

k=1 (σk)
2 is larger that a fraction of the squared norm of ∥G∥2 =

∑
i,j

(
Gj

i

)2
=∑my

k=1 (σk)
2, and we adopt Qy(y) = G(y)By, By

jk = 1
σk
vkj (Notice that, in particular, Qk

y

(
y0i
)
= uki .) With
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a fixed inner product, the matrix By is computed only once per stage, when the y0 are updated. The sense

in which this Qy is orthogonal is not the conventional one: its columns represent the evaluation at arbitrary

positions {yi} of a set of functions that are orthonormal under an inner product based on the {y0i }.

The same procedure applied to F produces an orthogonal matrix Qz of rank nz and corresponding matrix

Bz. For z, the distinction between matrices and operators is immaterial, since F (z) and Qz(z) are only applied

at the fixed set of points {zi}.

4 A flow-based methodology

Replacing in (6) f(zi) by Qz(zi)a and g(yi) by Qy(yi)b yields

min
{yi}

{
max
a,b

n∑
i=1

c (xi, yi) + λ

nz∑
h=1

ny∑
l=1

(
n∑

i=1

Qh
z (zi)Q

l
y(yi)

)
ahbl, ∥a∥ = ∥b∥ = 1

}
.

The maximization over a and b can be carried out explicitly: they must align with the left and right first

principal components of the nz ×ny matrix Ahl def
=
∑

iQ
h
z (zi)Q

l
y (yi), and the penalty term is given by the first

singular value σ1(y) of A. It follows that we can write the problem as a minimization over y alone:

min
{yi}

L =

n∑
i=1

c (xi, yi) + λ ∥A(y)∥ , ∥A∥ def
= σ1 = max

∥a∥=∥b∥=1
a′Ab. (8)

We can interpret the corresponding functions f(z) = Qz(z)a, g(y) = Qy(y)b as the features whose correlation

most strongly displays the current dependence between z and y.

This suggests a flow-based procedure, whereby y, initially set equal to x, follows gradient descent of (8),

yn+1
i = yni − ηn

[
1

n
∇y c (xi, y)|yni + λ a′ ∇yA|yni b

]
, ∇yA

hl
∣∣∣
yni

= Qh
z (zi)

∑
j

∇Gj(y)
∣∣
yi
By

jl, (9)

for which all {yi} decouple, and a and b are updated in an alternate step.

It might appear that we are taking an uncontrolled approximation to the y-gradient of L in (8) by differen-

tiating only A in (9) at fixed a and b. The principal components of A do of course depend on A, so they too

change when A varies. Yet this way of computing derivatives is exact:

Lemma 3. The derivative of the k-th principal value σk of a matrix A with respect to any parameter s on which

A may depend, is given by

∂

∂s
σk = a′

(
∂

∂s
A

)
b,

where a and b are the left and right kth principal components of A.
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Proof. By definition, σk = a′Ab, so

∂

∂s
σk = a′

(
∂

∂s
A

)
b+

(
∂

∂s
a

)′
Ab+ a′A

(
∂

∂s
b

)
.

But the principal components satisfy Ab = σka, A
′a = σkb and ∥a∥ = ∥b∥ = 1, so

(
∂

∂s
a

)′
Ab = σk

(
∂

∂s
a

)′
a = σk

∂

∂s

∥a∥2

2
= 0 and a′A

(
∂

∂s
b

)
= σkb

′
(
∂

∂s
b

)
= σk

∂

∂s

∥b∥2

2
= 0.

The penalty term σ1(y) is not smooth at its arg-min y = y∗: for y and z to be independent, A must vanish,

and the first singular value σ1(y) of a matrix that depends smoothly on y typically has corners where A(y)

vanishes (The simplest example is the 1×1 matrix A = y ∈ R, whose only singular value σ = |y| has a corner at

y = 0.) To address this, we square the penalty term: min{yi} L =
∑n

i=1 c (xi, yi) + λ σ21(y). There still remains

one issue to address to make the methodology fully functional. Because every step of the algorithm brings down

the largest singular value of A(y), the first few of those singular values will tend to coalesce at convergence at a

common value σ∗ ≪ 1. Then the derivatives of the penalty term with respect to the {yi} are not well defined, as

they depend on the arbitrary choice of one pair among the various singular components (a, b) associated to the

singular value σ∗. In terms of test functions, more that one pair of functions (f, g) have reached the threshold

correlation σ∗. To address this, we modify the algorithm so that it tracks the first K pairs (ak, bk) of principal

component of A, where K = min(rank(A),Kmax), with Kmax fixed by the user. Then we descend over y

min
{yi}

L =
n∑

i=1

c (xi, yi) + λ
K∑
k=1

σk
2 (y) , σk (y)

def
= ak

′A(y)bk. (10)

Notice that this extension carries little computational cost, since the A(y) to differentiate is common to all the

{σk}. If performed using reproducing Kernel Hilbert spaces, this extension could be thought as interpolating

between COCO [27] and HSIC [34], where it is shown both that the penalty term vanishes if and only if y and

z are independent, and that its empirical estimate converges to the population value at a rate 1√
n
.

5 Map inversion

The procedure described so far finds n samples yi = T (xi, zi) of the barycenter µ(y). In order to simulate

ρ(x|z∗) for a target z∗, we need to invert T to obtain n samples {x∗i } from ρ(: |z∗) through

x∗i = X (yi, z∗)
def
= T−1 (yi, z∗) .
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Since we do not know T (x, z) in closed form, it could appear that we can only invert it by learning X(y, z) from

its n available samples {xi, yi, zi}, for instance through kernel regression, nearest neighbor or neural networks.

Yet we can do much better than that and obtain a closed form for T−1, exploiting the fact that the penalization

parameter λ is large but finite. Since at convergence the gradient ∇yL is zero, or at least sufficiently small

to satisfy a termination criterion, we have ∇yic (xi, yi) + 2λ
∑K

k=1 σk∇yσk

∣∣∣
yi,zi

= 0, which for the canonical

quadratic cost in (2) yields xi = yi + 2λ
∑K

k=1 σk∇yσk

∣∣∣
yi,zi

. In order to invert the map for arbitrary values of

y and z, we extend the validity of this expression and write

X(y, z) = y + 2λ
K∑
k=1

σk∇yσk

∣∣∣
y,z
, where ∇yσk

∣∣∣
y,z

= fk(z)∇gk(y), (11)

an expression that is smooth in (y, z) and yields X(yi, zi) = xi on all the available samples.

The inversion formula in (11) provides us with a valuable bonus: it shows that the dependence of x on z

that our algorithm has uncovered is mediated by the K functions {fk(z)}, so we have inadvertently performed

factor extraction. These factors bring in insights about the mechanisms of the dependence of x on z, while their

gradient inform us of the sensitivity of x with respect to changes in z. When we consider density estimation in

Section 8, it will be useful to notice that we have access not only to X(y, z) but also to its derivatives,

∂Xp(y, z)

∂yq
= δqp + 2λ

K∑
k=1

σk
∂2

∂yp∂yq
σk

∣∣∣
y,z
,

∂2

∂yp∂yq
σk

∣∣∣
y,z

= fk(z)

(
∂2G(y)

∂yp∂yq

)
Bybk. (12)

6 Implementation

We minimize the objective function L in (10) through gradient descent: yn+1
i = yni − ηn ∇yiL|yn , back-tracking

the learning rate ηn from θηn+1, θ > 1, through the Armijo-Goldstein rule [1, 2].

6.1 Choices for the functional spaces F and G

The methodology is not fully specified until we select the functional spaces F and G. When X = Rd, the

simplest choice for G is the space of linear functions, enforcing independence between any f(z), f ∈ F and

the conditional mean of y. Then, from (11), X(y, z) = y + h(z), where h(z) = 2λ
∑K

k=1 σk fk(z) vk and

vk
def
= ∇ygk(y) is a constant, since gk(y) is linear. It follows that h(z) = x̄(z)− ȳ, so for a rich enough space F,

the procedure captures –and removes from x– the conditional mean x̄(z), i.e. it performs [nonlinear] regression,

as in the “poorest man solution” of [3]. When the columns of G span a general quadratic function of y, not only

the conditional mean but also the conditional covariance matrix of y is independent of z, and (11) implies that

the relation between x and y = T (x, z) is linear (with z-dependent coefficients), as in the “poor man solution”
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of [3]. We typically start our experiments with a first run where the columns of G span all quadratic functions

of y, to capture the conditional mean and covariance matrix of x, leaving a more detailed characterization of

ρ(x|z) to subsequent runs.

One could extend the choices above and fill all columns of G with externally provided functions, such as

Hermite polynomials of a given degree. Similarly, we could use as columns of F polynomials when z ∈ Rd ,

trigonometric functions when z is a periodic variable and indicator functions when z can only adopt a finite set

of categorical values. Yet it is generally preferable to use a less parametric approach and let the data dictate the

form of the functions to use. For our experiments, we have used a simple class of data-adapted spaces described

in the appendix, where the columns of F and G are given by asymmetric kernel-like functions with column

dependent center and bandwidths, a flexible and economic variation of reproducing kernel Hilbert spaces:

F j(z) = Kz
(
z, zcj

)
, Gj(z) = Ky

(
y, ycj

)
.

Even though the {yi} evolve, the centers {ycj} are fixed throughout stages of the procedure, so as to have a fixed

functional space G. Their cardinality does not need to match that of the {yi}, it is typically much smaller.

6.2 Choice of the penalization parameter

The penalization parameter λ establishes a balance at the final y = y∗ between the gradients of the transporta-

tion cost function and the penalization term. It follows from (10) that, in order for the σk (y
∗) to have values

smaller than σ∗ ≪ 1, the parameter λ must satisfy

√∥∥∥∇yc (x, y)
∣∣
y∗

∥∥∥2 = 2λ

√√√√√∥∥∥∥∥∑
k

σ̃k∇yσk(y)
∣∣
y∗

∥∥∥∥∥
2

,

where σ̃k
def
= min(σk, σ∗) and ∥s∥2 def

= 1
n

∑n
i=1 ∥si∥2. Based on this characterization of λ at convergence, we

adopt a state-dependent penalization parameter that evolves over algorithmic time:

λ =
1

2

√
∥∇yc (x, y)∥2 + 0.1var(x)√∥∥∥∑k,l σ̃k∇yσlk(y)

∥∥∥2 .

The addition of a small fraction of the variance to the numerator addresses the fact that ∇yc = 0 at the onset of

the algorithm, when x = y. The variance is a natural reference value, since ∥∇yc (x, y)∥2 = 1
n

∑
i ∥xi − yi∥2 ≤

1
n

∑
i ∥xi − x̄∥2 = var(x).
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6.3 Termination criterion

At convergence, y = y∗ must satisfy two natural criteria for termination:

1. Any remaining dependence of y on z must be within an acceptable range:

∀k σk (y∗) < σ∗ ≪ 1. (13)

In order to assign a value to σ∗, notice that σk represents the empirical correlation between fk(z) and

gk(y
∗), which should be uncorrelated for all f ∈ F, g ∈ G. It follows that a reference value for σ∗ is the

standard deviation of the empirical correlation between two independent variables, which equals 1√
n
. We

have adopted in our experiments

σ∗ =
ν√
n
, ν = 0.2. (14)

Once the criterion in (13) is satisfied, we freeze λ at its current value until criterion 2 (below) is satisfied.

2. The gradient ∇yL of the objective function must be sufficiently small for the inversion formula (11) to be

valid. Since the error in the determination of xi from this formula is given by

∥xi −X(yi, zi)∥ =
∥∥∥∇yiL

∣∣
y∗

∥∥∥
and a natural reference scale for the square of this error is the variance of x, we use as termination criterion

1

n

∑
i

∥∥∥∇yiL
∣∣
y∗

∥∥∥2 < α var(x), (15)

with α≪ 1. We end the run when both (13) and (15) are satisfied.

Another, internal termination criterion starts a new stage once the current y differ significantly from their

values y0 at the outset of the current stage, i.e. when
∑n

i=1

∥∥yi − y0i
∥∥2 > δ

∑n
i=1

∥∥y0i − ȳ0
∥∥2 , 0 < δ < 1. We

have adopted in our experiments α = 0.0025 and δ = 0.1.

6.4 Successive barycenter problems

Since the barycenter problem removes from x any z-dependence detectable through the functional spaces F

and G, y = T (x, z) can still depend on z in ways that F and G do not capture. For instance, if G consists only

of quadratic function of y, just the conditional mean and covariance of x are removed, leaving in y any other

z-dependent property of ρ(x|z), such as higher moments or the distribution’s modality. Similarly, if F includes

only functions of a subset of the {zl}, y may still depend on the remaining ones, if F includes only functions
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of the individual {zl}, any non-additive dependence of x on the {zl} will remain in y, and if the bandwidths of

the functions in F are large, only long-scale trends are removed, leaving small-scale signals unresolved.

This suggests proceeding in Ns stages: calling y0 = x, we compute in stage l the barycenter of the yl−1

over z, as captured through the functional spaces Fl and Gl. The final yNs are not samples of the barycenter of

the original x, since the composition of optimal maps is not necessarily optimal. However, since we know how

to invert each of the maps, we can still simulate and estimate by composition ρ(x|z∗) for any target z∗. This

procedure resembles boosting [35], in which multiple models are trained sequentially so that each new problem

removes further variability from the barycenter of the prior one.

6.5 Complexity

One major advantage of the new methodology is its efficiency, which makes it applicable to large data sets. This

efficiently derives from formulating the independence conditions between y and z in terms of the uncorrelation

between test functions and subsequently relaxing it to the vanishing of the singular values of a matrix A(y)

whose rank does not depend on the sample size. Previous methods [7] used kernels where every data point acted

as a center, yielding at least O(n2) time complexity. By contrast, the new algorithm’s time complexity scales

bilinearly with the number of samples (n) and the dimension of the data (dx). The algorithm’s operations can

be broken into those performed only once per run, those performed once per stage, and those performed at each

descent step. Even though it is only the third category that determines the time complexity of the algorithm

in practice, we analyze all three for completeness.

Since the factors z do not evolve through a run, the orthogonal matrix Qz is computed only once, making

the algorithm’s complexity insensitive to the dimensionality of z. When using kernels, calculating Qz requires

k-means clustering to determine the centers for z, which with a fixed maximum number of iterations requires

O(n ∗ dz ∗mz) operations. Evaluating the kernel function also requires O(n ∗ dz ∗mz) operations. A standard

singular value decomposition of the matrix F ∈ Rn×nz requires O(n ∗ n2z) steps where nz is a user’s provided

input. Therefore, the number of operations performed only once scales as O(n∗dz ∗mz). For very large data-sets

with high-dimensional factors z, this number can be further reduced by adopting state-of-the-art methodologies

for finding the first few principal components of large matrices [36, 37].

To recall, a new stage is started when the average squared distance between the current values of the {yi}

and their values {y0i } at the start of the current stage is larger than a prescribed fraction of the variance of

the latter. At the beginning of each stage, the orthogonal matrix Qy needs to be computed. The same scaling

arguments apply here as for the calculations of Qz, yielding a total of O(n ∗ dy ∗my) operations per stage.

The main loop iteration requires calculating derivatives of the cost function and of the penalty function.
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The complexity of the former is O(n ∗dy ∗my)). The latter requires calculating the gradient of the matrix G(y)

which, when using kernels, involves calculating the kernel in y and its derivatives, with complexity O(n∗dy ∗my)

if the number of kernel centers is fixed. This is followed by a matrix multiplication which is O(n). So overall

each iteration performs O(n ∗ dy ∗ my) operations, which decouple among the sample points, making them

trivially parallelizable.

Not captured by the complexity analysis above is the number of iterations required for convergence. Ad-

ditionally, in practice one may adopt larger values of ny and nz for problems with more complex dependence

between x and z. Yet, for a fixed problem, the number of iterations should not depend on the number of data

points n, an observation confirmed in our numerical experiments. We verify the algorithm’s complexity by

plotting the time of the pre-calculations, stage calculations, average descent iteration and total time as n, dx

and dz vary. In each case, each factor zl is a normal random variable with mean 0 and variance 0.25 and x is

drawn from the z-dependent isotropic gaussian

x ∼ N

(
cos
(
2π

dz∑
l=1

zl
)
1⃗dx , 0.05

[[
sin
(
0.1 ∗

( dz∑
l=1

zl + 0.2
)2)

+ 0.25
]−1
]
Idx

)
.

Figure 1 displays the data and barycenter for dx = dz = 1 and figure 2 shows the running times for various

values of n, dx, and dz. Each data point displayed is the median across 10 trials of the mean time spent in each

portion of the algorithm. When the dependence on n is being considered, dx and dz are both kept at 1. When

either dx or dz are being varied, the other is kept at 1 and n is kept at 2000. The first two rows use kernel based

functions for both F and G while the third row uses only linear and quadratic functions of y for G, which has

the same complexity but with lower constants and thus is much faster. These experiments confirm that the

complexity of all stages grow linearly with the number of samples and that the descent steps contribute most

heavily to the total run time. They also show that, as predicted, the dimension of x increases linearly the time

complexity of the main descent steps and the calculations per stage, and the dimension of z increases linearly

the complexity of the pre-calculations.

Figure 1: Data points {xi} and corresponding barycenter samples {yi} with dx = dz = 1.
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Figure 2: Median time dependency on number and dimension of data. The top and bottom rows display the
run-time dependence of the pre-calculations, calculations per stage, calculations per time-step and total run-
time, on the number of samples n, with dx = dz = 1, the top one using kernels in y, the bottom only linear and
quadratic functions. The middle row displays the relevant dependences on dx and dz, with the other fixed at 1
and n at 2000.

7 The optimal transport problem

The methodology developed for the OTBP can be easily adapted to solve regular [Monge] OTP. The OTP is

simpler than the OTBP, as it involves only two distributions, a source ρ0 and a target ρ1:

min
w=Q(x)

Eρ0 [c (x,w)] , Q#ρ0 = ρ1. (16)

For the purpose of relating them to the barycenter problem, we introduce a binary covariate z ∈ {0, 1},

and think of the source and target distributions as instances of the single conditional distribution ρ(x|z):

ρ0(x) = ρ(x|z = 0), ρ1(x) = ρ(x|z = 1). Then the map y = T (x, z) that solves the barycenter problem

for ρ(x|z), automatically provides the solution to (16) through Q(x) = T−1 (T (x, 0), 1), a standard result in

interpolation displacement [5].

In the data-driven case, we have n0 samples {x0i } from ρ0 and n1 samples {x1j} from ρ1, for a total of

n = n0 + n1 pairs {xi, zi} from π(x, z). Since our methodology provides all the values yi = T (x0i , 0) and an

explicit formula for T−1 (yi, 1), we have direct access to all Q(x0i ) and, mutatis mutandis, we have also access

18



to its inverse, Q−1(x1j ). Under the canonical cost, the corresponding formula simplifies to

Q(x0i ) = T
(
x0i , 0

)
− n0
n1

(
x0i − T

(
x0i , 0

))
,

as follows from the fact that every point in the barycenter is the weighted geometrical c-barycenter of its pre-

images [14]. Then, with only two distributions, a point at the barycenter and one of its pre-images suffice to

find the other.

The fact that there is only one, binary covariate z simplifies our methodology considerably, since except

for an arbitrary sign, there is only one function f(z) with zero mean and norm one: f(z) ∝


1
n0

for z = 0

− 1
n1

for z = 1

.

Then the barycenter problem reduces to

min
yi

L =

n∑
i=1

c (xi, yi) + λ
∥∥f ′Qy(y)

∥∥2 , fi = f(zi), (17)

where we have used the fact that, since f is fixed, the maximizing vector b replacing the right principal

component of A is proportional to Qy
′f :

arg max
∥b∥=1

f ′Qyb =
Q′

yf

∥Q′
yf∥

⇒ σ
def
= max

∥b∥=1
f ′Qyb = ∥f ′Qy∥.

Other than the simplifying facts that we do not need to update a and b and the matrix Qz consists of a single

column, the procedure to solve (17) follows the same steps as the one for the full barycenter problem (10).

We can bypass the barycenter µ in the procedure above, finding a map Q(x) = T (x, 0) that pushes forward

ρ0 to ρ1 directly, by minimizing L in (17) only over the yi with corresponding zi = 0, i.e. over T (x, 0), leaving

the remaining yi fixed at x, i.e. setting T (x, 1) = x. This enforces the condition that T (x, 0)#ρ0 = ρ1, since the

final y∗i =


T (xi, 0) for zi = 0

xi for zi = 1

must be independent of z. This procedure, while lacking the symmetry of the

prior one with respect to ρ0,1, is more straightforward, and is particularly well-suited for density estimation.

8 Conditional density estimation

Our methodology simulates ρ(x|z), by producing n samples {x∗i } from ρ(x|z∗) for any target z∗. Simulation is

at the core of many applications, but others, such as Bayesian inference, require the evaluation of ρ(x|z) for

arbitrary values of x and z. The fact that typically there is none or at most one observation available for any

target value z makes estimating ρ(x|z) directly from the data {xi, zi} challenging. A slight extension of our
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procedure produces such conditional density estimation.

Regular –as opposed to conditional– density estimation can be obtained through the OTP as follows. Given

n samples {xi} drawn from the unknown distribution ρ(x) that we seek to estimate, select a target distribution

µ(y) that one can easily both evaluate and sample, such as a Gaussian, and find the optimal map Q(x) pushing

forward ρ to µ. Then

ρ(x) = |det (∇xQ)| µ(Q(x)), ρ(X(y)) =
1

|det (∇yX)|
µ(y), X = Q−1,

so for any x,

ρ(x) =
1∣∣∣det(∇yX(y)
∣∣
y=Q(x)

)∣∣∣ µ(Q(x)).

In our procedure, Q(x) = T (x, 0), and ∇yX(y) is known from (12).

If the density ρ(x) is sought for values of x different from the {xi}, one can carry these values through the

procedure to their final y = Q(x) as passive tracers that do not affect L in (17). Alternatively, one can solve

the reciprocal OTP from µ to ρ, and then write ρ(x) = |det (∇xY (x))| µ(Y (x)) for any value of x sought.

This density estimation procedure requires selecting a target measure µ = ρ1. We can either adopt a fixed

target, such as a standard Gaussian, or adapt it to the data, using for instance a Gaussian with the same mean

and covariance matrix as the data or a Gaussian mixture fitted to the data through Expectation Maximization.

The advantage of such more tailored approaches is that the corresponding OTP becomes easier, since even the

trivial map Q(x) = x provides a regular parametric density estimation.

We can apply this procedure to conditional density estimation, i.e. estimate ρ(x|z) from n samples {xi, zi}

in at least two distinct ways:

1. Obtain n samples {x∗i } from ρ(x|z∗) and apply density estimation to these directly.

2. Estimate the density µ(y) of the barycenter, and then compute

ρ (X(y, z)|z) = 1

|∇yX(y, z)|
µ(y),

with X(y, z) given by (11) and ∇yX(y, z) by (12).

One would choose the first approach when seeking ρ(x|z) for many values of x and only a handful of values of

z, and the second when exploring the dependence of the conditional density on z, as in Bayesian inference.
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9 Numerical examples

We illustrate the methodology through numerical examples, using both synthetic and real data.

9.1 A Gaussian distribution with z-dependent mean and variance

As a first example, we draw 1500 independent samples from the distribution

x ∼ N
(
µ(z), σ2(z)

)
, µ(z) = cos (2πz1) + sin (πz2) , σ(z) = 0.2

√
(1− 2z1) (1− 2z2),

with z = (z1, z2) uniformly distributed in the square −1
2 ≤ z1,2 ≤ 1

2 , displayed on the top left panel of figure 3a.

Since for each value of z the distribution for x is Gaussian, it can be fully captured using the two-dimensional

test function space G(y) spanned by the functions y and y2, while keeping for F(z) a general adaptive space based

on kernels. We display the results of the run in figure 3a through the corresponding {yi} and the simulation

and estimation of ρ(x|z∗) for two selected values of z∗, with the true underlying distribution also drawn for

comparison.

(a) First Example. The leftmost column displays the sam-
ples {xi} in the top row and the {yi} in the barycenter
in the bottom row, with corresponding histograms show-
ing that the final barycenter converges to a Gaussian. The
middle and rightmost columns show the simulated samples
{x∗i } and the estimated versus the true density ρ(x|z∗) for
z∗ = (0.2, 0.3) and z∗ = (−0.2,−0.3).

(b) One-dimensional Gaussian mixture. The leftmost col-
umn displays the data samples in the top row and the
barycenter in the bottom row. The middle and rightmost
columns show the simulated samples and the estimated
versus the true density for z∗ = 0.5 and z∗ = −0.5.

Figure 3: 1D Examples.

9.2 Two z-dependent Gaussian mixtures

In order to consider non-Gaussian examples –more generally, examples where the dependence of x on z cannot

be reduced to a z-dependent linear transformation– we perform first a one-dimensional experiment, drawing
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1500 samples from the z-dependent Gaussian mixture, displayed on the top left panel of figure 3b:

x ∼
2∑

k=1

γk N
(
µk(z), σ

2
k(z)

)
, γ1 = γ2 =

1

2
,

µ1(z) = 3 + 2z, σ21(z) =
1

2
ez, µ2(z) =

z

2
− z2, σ22(z) = 0.25− 0.1z, z ∼ U([−2.5, 2.5]).

This example requires a test function space G(y) that goes beyond linear and quadratic functions. We performed

four successive barycenter problems, the first with just linear and quadratic G(y), the rest with adaptive kernels,

with the bandwidths of the kernels for both G(y) and F(z) adopted smaller for each successive run. The results,

displayed in figure 3b, show how the simulated samples and conditional density estimation recover the original

z-dependent Gaussian mixture.

We extend this example to the two-dimensional Gaussian mixture, visualized in panel (a) of figure 4:

x ∼
2∑

k=1

γk N (µk(z),Σk(z)) , γ1 = γ2 =
1

2
, z ∼ U([−2.5, 2.5]),

µ1(z) =

 3 + 2z

2 + z

 , Σ1(z) =

 1
2e

z 0

0 0.5

 , µ2(z) =

 z
2 − z2

−3

 , Σ2(z) =

 0.25− 0.1z 0

0 0.25 + 0.1z

 .

The results of the procedure are displayed in panel (b) of figure 4 .

(a) A two-dimensional Gaussian mixture. The left panel
displays the data points, while the right panel shows the
equivalent plots for the barycenter.

(b) Two-dimensional Gaussian mixture. The top and bot-
tom rows show the simulated samples, the estimated con-
ditional density, and the true density for z∗ = 0.5 and
z∗ = −1, respectively.

Figure 4: Two-dimensional Gaussian mixture.

9.3 An example of Bayesian inference

This section illustrates model-free Bayesian inference using the OTBP (A different use of push-forward maps

for Bayesian inference [38] pushes forward the prior to the posterior measure.) To demonstrate our approach,
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we draw samples from the distribution ρ(x|z) = N(z2 − 2, σ2), σ = 0.5, z ∼ U([−2, 2]). The left panel of figure

5 displays the data {xi} and the discovered {yi} as functions of the corresponding {zi}. From these, we can

directly infer the distribution of z given an observation x:

γ(z|x) = ρ(x|z)
ρ(x)

γpr(z) ∝ ρ(x|z) · γpr(z),

where ρ(x|z) is the distribution inferred from the data through the OTBP. We have adopted as prior γpr the

distribution underlying the observed {zi}. The results for two values of x are displayed on the middle and right

panels of Figure 5, overlapped with the exact answer. They succeed in capturing the transition from unimodal

to bimodal distributions corresponding to the parabolic dependence of the conditional mean of x on z.

Figure 5: Original data, barycenter and simulated versus true posterior density γ(z|x∗) evaluated at x∗ = −2
and x∗ = 0.

9.4 Online model estimation in Ornstein–Uhlenbeck processes and Lotka-Volterra pray-

predator models with observational noise

We consider next the online estimation of parameters, a key component of data assimilation. Given successive

samples from a time series Xn drawn from some transitional distribution ρ(Xn+1|Xn, Zn, α) depending on

known and unknown parameters Zn and α respectively, and assuming a prior distribution γ0(α) for the latter,

we seek to successively improve on these priors as new observations arrive, using Bayes rule:

γn+1(α) ∝ ρ(Xn+1|Xn, Zn, α) · γn(α),

with the proportionality constant determined by the normalizing condition that
∫
dγ(α) = 1. In the conventional

setting, the conditional distribution ρ is known except for the parameters α. We can extend this framework to

situations where ρ(Xn+1|Xn, Zn, α) itself is only known from partial observations of time series under different

values of α and Z. In a medical setting for instance, X may represent glucose concentration in the bloodstream,

Zn the caloric intake at time tn, and α a patient’s parameter that may only be determined after treatment.

Having observed in the past a number of patients under different diets and having determined their corresponding
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parameters α, we can use this for the online estimation of α for a patient currently under treatment.

For a first simple example, consider the time-discretized 1D Ornstein–Uhlenbeck process

Xn+1 = (1− α)Xn + β + σWn, Wn ∼ N(0, 1),

where α ∈ (0, 1) is an unknown model parameter and β = σ = 0.5 are fixed drift and noise levels. Our goal is

to learn the model from a set of training data pairs (Xn+1
train; X

n
train, α

n
train) and use the model learned to estimate

α online from a testing series, while making increasingly more accurate forecasts. For the training data, we

draw αn
train from a beta distribution B(2, 2) over (0, 1), which we also adopt as prior γ0(α), and Xn

train from

the uniform distribution U([a, b]). We carry out experiments with two different parameter values, α = 0.2, 0.8,

with the corresponding test data displayed in the leftmost column in Figure 6. The following results in Figure

6 demonstrate that the posterior densities converge to delta functions centered around the corresponding true

parameters.

Figure 6: Time-discretized Ornstein–Uhlenbeck process. Testing time series for α = 0.2, 0.8. Estimated poste-
rior densities as the number of time steps grows for α = 0.2 in the top row and α = 0.8 in the bottom row.

In order to apply the procedure to a more complex scenario, we consider next the Lotka-Volterra predator-

prey model

dx1
dt

= αx1 − βx1x2,

dx2
dt

= −γx2 + δx1x2,

with data observed at irregular discrete times with non-uniform time intervals ∆tn ∼ U[0.5, 1.5] and corrupted

by noise. The time ∆tn here plays the role of the known covariate Zn, so the Barycenter problem needs to

resolve the data dependence on this additional factor. The data are generated through the explicit trapezoidal

numerical scheme but with a much smaller ∆̃t, to accurately solve the system of ODEs. Gaussian noise with

amplitude ϵ is added after simulating the time series to represent noisy observations.
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We adopt as test data a simulation with parameters α = 0.3, β = 0.9, γ = 0.5, δ = 0.4 and ϵ = 0.1, yielding

the periodic results displayed in the leftmost panel of Figure 7. For a first experiment, we take α as the only

unknown parameter. Again, random training data pairs (Xn+1
train; X

n
train, α

n
train,∆t

n) are generated, drawingXn
train

from a uniform distribution, αn
train from the beta distribution B(2, 2), and deriving the corresponding Xn+1

train

from the model with additive noise of level ϵ. As before, we learn the conditional density ρ(Xn+1|Xn, α,∆tn)

by solving the barycenter problem for the training data. Then we apply Bayes rule online to the testing data,

updating at each step

ρn+1(α) ∝ ρ(Xn+1|Xn, α,∆tn) · ρn(α).

The results are shown in the top row of Figure 7. We consider next a situation where two parameters, α and γ,

are unknown, so the training data consists of quintuples (Xn+1
train; X

n
train, α

n
train, γ

n
train,∆t

n), and the joint posterior

density should be estimated through ρn+1(α, γ) ∝ ρ(Xn+1|Xn, α, γ,∆tn) · ρn(α, γ), with joint Gaussian prior

ρ0(α, γ) = N


0.5

0.5

 ,

0.2 0

0 0.2


. The results are displayed in the bottom row of Figure 7. We see how in

both cases the estimation converges to a delta function centered at the right underlying value of the parameters.

Figure 7: Lotka-Volterra model: Testing time series for α = 0.3, β = 0.9, γ = 0.5, δ = 0.4. Estimated posterior
densities as the number of time steps grows for the single unknown α = 0.3 in the top row, and for two unknowns
α = 0.3, γ = 0.5 in the bottom row.

9.5 Uncovering a hidden signal

The solution to the barycenter problem helps uncover a hidden signal w that, together with the known factors

z, fully explain the outcome variable x. In order to demonstrate this through examples, rather than simulating

a distribution ρ(x|z), we propose a function

x = ϕ(z, w), z ∼ γ(z), w ∼ ν(w)

where w, playing the role of noise in the distribution, is a hidden cause of variability in x.
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Recall from Lemma 2 that the solution y = T (x, z) of the barycenter problem is a proxy for the variable w,

with ϕ(z, w) → X(y, z). Moreover, y is related to any “true” hidden variable w through a possibly z-dependent

function

y = Yz(w),

which is invertible if w is identifiable, i.e. if a single value of x cannot originate from a single z and two different

values of w.

Figure 8 presents three synthetic examples in order to illustrate the different kind of dependence between y

and w typically observed in applications. The panels of each row correspond to the different synthetic examples

described below. The left column display the {xi} and corresponding {yi} in terms of the {zi}, the middle column

displays y(z) again, colored according to the corresponding value of w, and the right column displays y(w),

colored according to z. In the first row, z ∼ U[0.25, 1], w ∼ U[−1, 1] and x = ϕ(z, w) = zw3 (we exclude values

of z near 0 because ∀w ϕ(0, w) = 0, i.e. ρ(x|0) does not vanish on small sets.) In this example Yz(w) = Y (w)

does not depend on z and Y (w) is invertible. In the second row x = zw2 under the same distributions for z

and w. We still have that Yz(w) does not depend on z but now Y (w) is not globally invertible, a reflection of

the fact that the sign of w is not identifiable, since ∀z and ∀w we have that ϕ(z,−w) = ϕ(z, w). In the third

row, w ∼ U[0, 1], z ∼ U[(−1,−0.25) ∪ (0.25, 1)] and x = zw, for which Yz(w) depends on the sign of z.

Figure 8: Three examples with different relations Yz(w) between w and y: one-to-one on the first row, two-to-
one on the second and z-dependent on the third.

The analysis of the barycenter underlying the points {yi} may at first seem similar to residual analysis,

whereby the difference between actual and predicted values is further analyzed to assess model adequacy and

improve its predictive power [39, 40]. Both procedures aim to remove variability in the data x attributed to the
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cofactors z, yet while residual analysis only removes x̄(z), the conditional expected value of x, the barycenter

does this at the level of the full probability distributions ρ(x|z) underlying the data. Consider the example in

the first row of Figure 8, where the data are generated according to x = zw3 with z and w drawn uniformly. The

distribution of the residuals (obtained by subtracting the regression of x vs z from the actual value of x) would,

in this case, be identical to the original distribution underlying the x, providing no new useful information. By

contrast, the points yi in the barycenter represent the full variability of x not explainable by z. If the y’s can

be related to known factors w, this can be used to improve the model for x, for instance by regressing y against

these factors and then using both z and the reconstructed y to predict x. Better still, instead of regression, the

barycenter problem can be used once again to simulate ρ(y|w).

When the hidden signal w is lower dimensional than x, it follows that y must lie in a lower dimensional

manifold of X. Consider an example where z ∈ R2 with z ∼ N(0, I), w ∈ R with w ∼ N(0, 1) and x =

[8z1z2 + 2w, 2z1 + 8z2 + 3w]. As shown in Figure 9, after solving the barycenter problem, the resulting y lies

on a 1-D manifold that is parametrized (and therefore completely explained) by w, which is not generally the

case for residual analysis.

Figure 9: Two-dimensional y dependence on a one-dimensional w (denoted with a colorbar)

9.6 Hidden patterns in ground-level atmospheric temperature

We consider next the hourly ground-level temperature in Ithaca, NY from 2007 to 2023. The data, available

from National Oceanic and Atmospheric Administration, is displayed in the top panel of Figure 12. We will

use the OTBP to investigate the dependence of this temperature on the diurnal and seasonal cycles, and to

uncover hidden signals at the synoptic weather and multi-year scales.

We first solve the OTBP for ρ(x|z1), where x is the hourly temperature in Ithaca and z1 ∈ [0, 365.25] is the

day of the year, a continuous, periodic factor. Panel (a) of Figure 10 displays the corresponding day-dependent

median value of the simulated temperature X(:, z1) and the corresponding conditional 90% confidence interval,

capturing seasonal effects, superimposed for reference on the true observed temperatures for the year 2007. We

use the conditional median and confidence intervals rather than the conditional mean and standard deviation of
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x because they are more robust statistics and they are also much cheaper to compute: while computing the mean

involves averaging X(y, z) over all {yi} for each value of z, and similarly for the variance, the monotonicity of

X implies that the conditional median of x is just X(ȳ, z), where ȳ is the median of the {yi}), and similarly for

confidence intervals, since conditional percentiles of ρ(x|z) translate directly from the corresponding percentiles

in y. Next we consider instead ρ(x|z2), where z2 ∈ [0, 24] is the time of the day, another continuous and periodic

factor, displaying in panel (b) the simulated median diurnal cycle and corresponding confidence interval together

with the true x for 2007. Then we combine the two factors and consider ρ(x|z1, z2), with results displayed on

panel (c) for the the full year 2007. One may notice in all panels how the 90% confidence interval depends on

z, often adopting asymmetric shapes around the median and displaying interesting contrasts between day and

night. This is one manifestation of the power of capturing the full conditional distribution ρ(x|z), as opposed

to just a few statistics, such as the conditional mean value computed in regression.

We can see how the diurnal cycle changes over the year not only in mean but also in amplitude and shape.

This is seen more clearly in the left panel of Figure 11, displaying the median diurnal cycle for four specific days

of the year, corresponding to the solstices and equinoxes. We can see in detail, for instance, how the Winter

Solstice day is colder, shorter and has smaller day/night contrast than its summer counterpart, and how the

day at the Spring Equinox, despite having exactly the same duration as the one at the Fall Equinox, is much

colder, has smaller amplitude and a slightly different shape. The right panel of Figure 11 similarly shows how

the median seasonal cycle depends on the time of the day at which it is considered.

(a) Using only day of year as a factor (b) Using only hour of day as a factor

(c) Using the two periodic time factors together

Figure 10: Median temperature and 90% confidence interval as a function of day of year, time of day and both,
displayed over the true temperature for 2007.

Figure 11: Median diurnal cycle and seasonal cycle of the temperature in Ithaca, NY, displayed for four days
of the year (one per season) and four hours of the day respectively.

We switch next to consider the variability of x not explained by (z1, z2), as captured in y. In order to
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analyze both synoptic weather and short-term multi-year variability, we introduce two new time factors, z3

and z4, built by rescaling time using different scales. In other words, both z3 and z4 consist just of the time t

(measured in hours), but the bandwidths used for the corresponding kernels are of the order of 30 and 3 days,

respectively (we set these scales through the parameter γz defined in the appendix.) As we did for z1,2, we

remove the variability in y attributable to z3 and z4 separately, then together. Figures 12 and 13 show the

results of introducing these new factors. Panels (a) and (b) of figure 12 display the original time series x(t), the

signal y1(t) resulting from removing z1,2 from x and the signal y2(t) resulting from removing z3 and z4 from y1.

The removal of variability is reflected in the signals’ decreasing variance, from 113.71 for x, through 24.71 for

y1, to 17.10 for y2. Beyond the decreasing variance, one can observe the further explanation of variability in the

fact that y2 is much more homogeneous in time than y1, which has a clear inhomogeneity associated with the

synoptic weather signal (The fact that similarly y1 does not display the time dependence on the seasonal cycle

present on x is far more obvious to the eye.) Panel (a) of figure 13 displays the median temperature dependence

on z3, a multi-year signal, and panel (b) the dependence on z4, corresponding to synoptic weather, over the

year 2007. The median temperature and 90% confidence interval determined by z3 and z4 together is displayed

in panel (c) and zoomed-in over 2007 in panel (d). A climate scientist looking at these reconstructions may not

only confirm that the method has captured the right scales (a roughly 2-4 year scale for the multiyear signal and

around 15 days for the synoptic weather) but also detect individual signals, such as in panel (a) a signal resulting

from the El Niño years 2007, 2010 and 2016, and in panel (b) a signal from the North American heat wave

of 2007, which may have contributed to the elevated temperature of Ithaca during the late summer and early

autumn. Finally, panel (e) displays the full z1,2,3,4-dependent conditional median x̄(z(t)) and 90% confidence

interval over 2007. We can see in this plot not only how well the reconstruction has captured the dependence

of temperature on time, season and the synoptic and multi-year time scales, but also how it has not captured

(by construction) weather signals shorter than a week long. Notice that these shorter scales are nonetheless

represented as noise in the 90 percentile, a general property of the OTBP methodology: as new factors zl are

introduced, these explain away part of the variability previously present in the conditional distribution ρ(x|z).

Figure 12: The original time series x(t), the y1(t) resulting from removing the effects of periodic time factors
(time of day and day of year), and the y2(t) resulting from further removing from y1 the synoptic weather and
multi-year signals. On the right panels, a zoom-in version restricted to 2007.
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(a) Median multi-year trend (b) Median synoptic weather trend (2007)

(c) Median temperature and 90% confidence interval predicted
by z3 and z4 together

(d) Zoom for 2007 superposed on y1(t)

(e) Median temperature and 90% confidence interval as a func-
tions of day of year, time of day, multi-year trend and the
synoptic weather trend, displayed over the true temperature
for 2007

Figure 13: Reconstruction of the conditional median temperature x̄(z) and 90% confidence interval as functions
of different combinations of the factors z1,2,3,4.

9.7 Forecasting of global ocean states

We further illustrate the methodology, using it to forecast six months ahead the global sea surface temperature

(SST). The data (available at Met Office Hadley Centre observations) consists of monthly values of the SST

from 1870 to 2024, over a global 1 × 1 latitude-longitude grid. The resulting dataset T l
i,j has a dimension of

180 × 360 × 1860, corresponding to latitude (indexed by i), longitude (j) and time (l in months). The goal is

to use historical observations to predict the global SST 6 months into the future. In order to extract a lower

dimensional time signal from the data, we apply a standard pre-processing to the whole dataset:

• Filter out spatial grid points that either lie over land (where SST is undefined) or contain missing data,

resulting in 31,094 valid spatial grid points; all subsequent analysis, including EOF computation, is

restricted to this filtered spatial domain;

• De-trend by fitting a linear function of the temporal variable;

• Explain away the seasonal cycle by removing the mean value at each day of the year from each point on

the spatial grid, reducing T l
i,j to the anomaly signal Al

i,j = A(xi,j , tl);

• Obtain through principal component analysis the first K empirical orthogonal functions of the data [41],

Al
i,j ≈

K∑
k=1

σkC
k
l EOFk

i,j ,

where EOFk
i,j = EOFk(xij) are static, geographically dependent components of the SST profiles, and the
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Ck
l = Ck(tl) capture their magnitude at time tl. The components are sorted according to σk, proportional

to the fraction of the variance of A that they explain.

(We could replace the standard pre-processing by a far more informative one based on the OTBP methodology

itself.) It is known [42] that the first EOF component correlates strongly with ENSO events. Figure 14 depicts

the first 3 EOFk(x) as well as their temporal coefficients C1,2,3(t). The prediction task then reduces to forecasting

the coefficients Ck from their lagged observations Cl(t−∆t), with ∆t = 6 months.

EOF mode 1
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Figure 14: Upper panels: EOF 1,2,3. The red box in EOF 1 (left most panel) indicates the region of El Niño
events. Lower panel: C1,2,3

l as a function of time tl.

After approximating the original time series by its first K = 50 EOFs, we split the data into in-sample (145

years, 1870-2014) and out-of-sample (10 years, 2015-2024) sets. We apply the procedure to each component Ck

independently, so x is a one dimensional outcome. The covariate space z is multidimensional, consisting of two

types of factors: (1) the Cl(t−∆t) with lagged correlation with Ck of absolute value greater than 0.1, and (2)

time-lagged observations of the same component Ck, with lags of 6, 12, 24, and 36 months.

We restrict the family of functions G and F in Section 6 to include linear and quadratic terms in y and

kernels in z space respectively. We cross-validate over the optimal z-space kernel bandwidth parameter γz,

defined in the appendix. For each value of γz among 40 points uniformly distributed in [0.2, 20], we find the

barycenter and compute the ℓ2 norm of the difference between true and predicted mean, evaluated over the

out-of-sample data. The results shown in Figure 15 correspond to the optimal bandwidth that minimizes the

norm of difference.

Figure 15 depicts the prediction of A(x, t), focusing on SST anomalies for December of 2023, 2019, and

2017, corresponding to El Niño, neutral, and La Niña events. The predictions performance can be visually

inspected in two different spaces: through the prediction of each EOF component Ck (panel (a)) and of A(x, t)

for specific times t (panel (b)). For the second option, we truncated the prediction to the first 50 components,

which explain above 83% of the variability of the original SST anomaly. In both spaces, our method always

recovers consistent anomalies both globally and locally within the El Niño region.
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(a) The first 3 coefficients
Ck(t) (black) and our predic-
tion (red for prediction mean,
and pink for one standard de-
viation away from prediction
mean).
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(b) Anomaly at 3 dates (from left to right: strong El Niño, neutral, strong La Niña),
color limit: ±1.5◦C. The top row displays the ground truth, while the bottom row
contains our prediction, truncated to the top 50 components.

Figure 15: Forecast 6 months ahead of the global Sea Surface Temperature: (a) visualization of the signal’s
first 3 time components, (b) global anomaly.

10 Summary and discussion

This article develops an efficient methodology for solving the sample-based Monge optimal transport barycenter

problem, which takes as input n observed sample pairs {xi, zi} drawn from an unknown joint distribution π(x, z),

and produces as output n associated samples {yi} from the barycenter µ of the conditional distributions ρ(x|z)

under γ(z) = π(X, z). In addition, it produces n samples {x∗i } drawn from the estimated ρ(: |z∗) for any

proposed target value z∗ of the covariates z and it estimates ρ(x|z), instrumental for model-free Bayesian

inference. A corollary extends the procedure to solve the regular [Monge] optimal transport problem.

Central to the methodology and its applications is a formulation of the OTBP not in terms of the barycenter

µ itself but of the underlying random variable y = T (x, z), which must be statistically independent of the factors

z. A test-based formulation of independence through the uncorrelation between all functions {f(z), g(y)} within

suitable functional spaces {F,G} provides an adversarial formulation of the OTBP. Since the best adversarial

functions f and g can be found exactly in terms of the first principal components of a matrix A(y), the problem

reduces to a single minimization over the map T . Solving this problem through gradient descent over y yields

a flow that transports each yi from xi to T (xi, zi). The resulting map T can be inverted in closed form, which

facilitates both the simulation and the estimation of ρ(x|z). A byproduct of this closed-form inversion is the

extraction of factors {fk}(z) that encode the dependence of x on z.

Numerical examples illustrate the applicability of the Monge OTBP and the effectiveness of the methodology

proposed. These examples range from synthetic demonstrations of density estimation and simulation, model-

free Bayesian inference and hidden signal discovery, to real data applications to weather and climate. Within

this article, the latter two are intended only as illustrations of the algorithm at work. A more in-depth study,
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which requires further extensions of the methodology, should be pursued in field-specific contexts.

This article lays the methodology’s general framework. Much more can be done regarding the adaptive

choice of the functional spaces F and G, for which we have proposed here just a handful of simple choices. Since

the range of options to explore on adaptive functional spaces is too broad for a single article, exploring them

further here would take us too far afield. We also choose not to dwell in this article on other extensions, such as

going beyond gradient descent, as required for factor discovery, or building functional spaces G better-suited for

high-dimensional outcome spaces X. We believe that the proposed methodology can be extended in a number

of meaningful directions, making it an effective, robust, versatile and conceptually sound approach to a broad

set of tasks in data analysis.

A Appendix: a data-adapted functional space

This appendix describes the choice of functional spaces F and G used in our numerical examples. Since the

two constructions are entirely similar, we describe only the space F. Exploring other, potentially much richer

choices of adaptive functional spaces goes beyond this article’s scope.

Since the components of z can be of arbitrary type, including real, periodic, categorical and more (not so

those of y, which are typically real), we first embed z in an Euclidean space Rk as follows. For each component

zl ̸∈ R of z: 1) when zl is periodic with period T , we embed it in R2, mapping zl to w on the unit circle,

w
(
zl
)
=
[
cos
(
2π
T z

l
)
, sin

(
2π
T z

l
)]
; 2) when zl is categorical with h discrete values vk, we embed it in Rh−1,

mapping the {vk} to h equidistant points, the vertices of a regular simplex; 3) for variables z of a more complex

type, such as images, distributions or graphs, we introduce an application-specific distance among them and

embed them into some Rh accordingly. Having done this, we can restrict attention to Z = Rdz .

For any function f(z) and any probability density γ(z), we have

γ(z) =

∫
γ
(
z′
)
δ
(
z − z′

)
dz′, f(z) =

∫
f
(
z′
)
δ
(
z − z′

)
dz′ =

∫
f
(
z′
) δ (z − z′)∫

γ (z′′) δ (z′ − z′′) dz′′
γ
(
z′
)
dz′

(Notice that the last expression is only valid for values of z within the support of the distribution γ.) Mollifying

δ(x − y) to a non-negative function K(x, y) that concentrates near x = y and integrates to 1 over x yields

f(z) ≈
∫
f (z′) K(z,z′)∫

γ(z′′)K(z′,z′′)dz′′
γ (z′) dz′, which in terms of samples zcj ∼ γ(z) yields the empirical version

f(z) ≈
∑
j

f
(
zcj
) K

(
z, zcj

)
∑

hK
(
zcj , z

c
h

) . (18)

Notice that nothing in our argument requires K(x, y) to be a symmetric function, so it is not a “kernel” in the
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conventional sense. This allows us to use center-dependent bandwidths, coarser where the data is sparser.

If K is a smooth function of z, so is the right-hand side of (18) for any choice of f
(
zcj

)
. We conclude that

f(z) =
∑

j aj
K(z,zcj)∑
h K(zcj ,zch)

parameterizes arbitrary smooth functions of z within the support of γ(z). Since the

denominator does not depend on z, we can absorb it into the definition of aj , which yields

f(z) = F (z)a, F j(z) = K
(
z, zcj

)
, (19)

where it is no longer required that the {F j(z)} integrate to one, since the corresponding normalizing constants

can also be absorbed into the {aj}. Then the space F of smooth functions f(z) agrees with the column space of

the operator F . To consider functions with zero mean, it is enough to subtract the mean of each column of F .

There is no need for the set of centers {zcj} for K and the set of points {zi} where f is to be evaluated to

agree; it is enough that the support of the distribution γ underlying the former contains the support of the

latter. Using a number m ≪ n of centers reduces the computational cost associated to evaluating the kernels.

Moreover, when applied to g(y), one needs to decouple the centers {ycj} from the samples {yi}, as only the

latter are arguments over which the objective function L is minimized. A simple procedure for selecting m≪ n

centers is through k-means applied to the {zi}, which has been the choice adopted for all examples in Section

9, where we have set m = min([
√
n],mmax), with mmax set by the user. We adopted for K(z, zc) a Gaussian

function with center-dependent inverse covariance matrix Sj = S(zcj): K
(
z, zcj

)
= e−

1
2(z−zcj)

′
Sj(z−zcj).

Tuning the {Sj} is critical for extracting as much dependence of x on z as possible, by capturing the right

functions f(z) and g(y). The appropriateness of a functional space for f(z) depends not just on the samples

{zi} but also on the {xi}. Yet we do not know the form of this dependence before hand, since determining it

is precisely our algorithm’s goal. Thus we make a choice based not on the relation between x and z but on

the data available for each. The most natural function f(z) to attempt to capture when looking only at the

{zi} is their underlying probability density γ(z). We apply the following adaptive procedure to determine the

corresponding {S0
j }.

Compute first a global empirical mollified covariance matrix Σ and its inverse Sg,

Σkl =
1

m

m∑
i=1

(
(zci )

k − z̄k
)(

(zci )
l − z̄l

)
+ ϵI, ϵ =

var(z)

m
, Sg = Σ−1.

Introducing an adjustable parameter α, define Kj
i = Kg

(
zci , z

c
j

)
= e−

1
2α2 (zci−zcj)

′
Sg(zci−zcj), estimate γiα (z

c
i )

through leave-one-out kernel density estimation, γiα (z
c
i ) ∝ 1

αd

∑
j ̸=iK

j
i , determine α through leave-one-out

maximal likelihood, α∗ = argmaxα L =
∑m

i=1 log
(
γiα (z

c
i )
)
, and define accordingly Sα∗ =

Sg

α2
∗
. A practical choice
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is to maximize L over a finite set of candidate α’s centered around the rule-of-thumb value αr.o.th. =
( 4
d+2)

1
d+4

m
1

d+4
.

Rescale the Sα∗ locally using the estimated γiα∗ , Sj =
(
γα∗

(
zcj

)) 2
d
Sα∗ , so that the the number of points

{zci } within the effective support of the corresponding function K(z, zcj) is roughly independent of j. Finally,

introducing a new global adjustable parameter β, write Kβ
j (z) = e

− 1
2β2

(z−zcj)
′
Sj(z−zcj), with β determined again

through leave-one-out maximal likelihood, and define S0
j =

Sj

β2
∗
:

β∗ = argmax
β

L =

m∑
i=1

log (γβ (z
c
i )) , γβ (z

c
i ) ∝

1

βd

∑
j ̸=i

Kj
i

γα∗

(
zcj

) , Kj
i = Kβ

j (zci ) ,

There are at least two reasons why we may want to add one or more free parameters to the determination

of the bandwidths. One is that the ideal Sj should depend not just on the {zi} but also on their relation to

the {xi}, and one straightforward way to address this dependence is through cross-validation over such free

parameters. The second reason is that often the bandwidths are determined not by the data alone but also

from the scales that one seeks to resolve, as in the multi time-scale analysis of ground temperature of Section

9.6. In view of this, we divide S0
j by an externally provided constant γz

2, which we either cross-validate over

or set based on the scales that we seek to resolve.
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