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A novel methodology is developed for the solution of the data-driven Monge optimal transport barycenter
problem, where the pushforward condition is formulated in terms of the statistical independence between
two sets of random variables: the factors z and a transformed outcome y. Relaxing independence to
the uncorrelation between all functions of z and y within suitable finite-dimensional spaces leads to
an adversarial formulation, for which the adversarial strategy can be found in closed form through
the first principal components of a small-dimensional matrix. The resulting pure minimization problem
can be solved very efficiently through gradient descent driven flows in phase space. The methodology
extends beyond scenarios where only discrete factors affect the outcome, to multivariate sets of both
discrete and continuous factors, for which the corresponding barycenter problems have infinitely many
marginals. Corollaries include a new framework for the solution of the Monge optimal transport problem,
a procedure for the data-based simulation and estimation of conditional probability densities, and a
nonparametric methodology for Bayesian inference.
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1. Introduction

A central problem in the analysis of data is to estimate how a set of variables x ∈X , the outcome,
depends on a set of covariates z ∈ Z , the factors, a dependence that can be fully characterized by
the conditional distribution ρ(x|z). One seeks to extract from n observed data pairs {xi,zi}, either an
evaluation procedure for ρ itself or a procedure to draw samples {x∗j} from ρ(x|z∗) for any target value
z∗. This is particularly challenging when z includes continuous components, since any particular value
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z∗ has small probability of having appeared among the {zi}, even less of having shown up in enough
observational pairs to warrant a statistical analysis based on those pairs alone.

A data-driven methodology for the simulation of conditional distributions based on the [Monge]
optimal transport barycenter problem (OTBP) seeks a map

y = T (x,z) ∈X

that removes from x the variability that z can explain, i.e. such that the random variables y and z
are independent. In order not to remove any additional variability from x, we select the map T that
minimizes the expected value of a total “transportation” cost

C = Eπ [c(x,T (x,z))],

where π is the joint distribution of x and z. The pairwise cost function c(x,y) quantifies the deformation
of the data incurred by moving x to y. This results in an OTBP of the form

min
y=T (x,z)

Eπ [c(x,y)] s.t. y⊥⊥ z,

where the symbol ⊥⊥ stands for independence. We can use the solution to this problem to simulate the
conditional distribution ρ(x|z) for a target value z = z∗, extracting n samples {x∗i } ∼ ρ(x|z∗) through

x∗i = T−1 (yi,z∗) , yi = T (xi,zi) .

In words, we remove from xi the variability attributable to z having adopted the value zi, and then restore
that variability but with z = z∗. The variable y represents the variability in x that z does not explain.

Other uses of the OTBP include he following:

1. In order to eliminate the effect of confounding variables z from the data x, we simply move the
{xi} to their counterpart in the barycenter, {yi = T (xi,zi)}. Examples include the removal of batch
effects, the consolidation of different data bases, where z represents the data source and, more
generally, the removal of the confounding effects of any set of variables z that are not considered in
the study under way. The removal of the effects of known factors z helps identifying further sources
of variability by investigating y, a version of x cleaned of the effects of z.

2. The explanatory power of the covariates z can be quantified by the total cost C. This ranges from
the extreme scenario where z has no explanatory value, so x is already independent of z, y = x and
C = 0, to the opposite extreme where all variability in x can be explained by z, so the barycenter
reduces to a single point ȳ, which maximizes C. Quantifying through C the explanatory power of z
gives rise to a rich methodology for factor selection and discovery [1, 2].

3. The barycenter problem permits not only simulating but also estimating conditional densities, and
therefore yields a mode-free, non-parametric data-based procedure for Bayesian inference: given
a prior distribution γpr(z), a set of sample pairs {xi,zi} drawn from an unknown joint distribution
π(x,z) and the observed current value of x, estimate the posterior distribution γpos(z|x).

4. The optimal transport problem, a particular case of the OTBP with only two marginals, yields
a natural horizontal distance among distributions. It also serves as a powerful tool for density
estimation and sampling.

This article develops a novel, efficient methodology to solve the optimal transport barycenter
problem, providing the capability to both simulate and estimate ρ(x|z). Along the way, it clarifies the
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relation between the Monge optimal transport barycenter problem as posed above and the Wasserstein
barycenter problem [3]. It also provides as corollaries new methodologies for the solution of Monge’s
regular optimal transport problem and for model-free Bayesian inference.

The methodology’s central component is an adversarial formulation of the pushforward condition,
where the independence between the random variables z and y is posed in terms of test functions. When
these test functions are restricted to finite-dimensional inner-product spaces, the optimal adversarial
strategy can be expressed in terms of the first principal components of a matrix, reducing the problem
to a pure minimization, which can be solved very efficiently through a flow-based gradient-descent
procedure. The corresponding optimal map y = T (x,z) can be inverted in closed-form, which facilitates
conditional density estimation and simulation. The closed form inversion formula itself has intrinsic
value, as it extracts from the data natural factors { f k(z)} that encode the dependence of x on z.

1.1. Relation to prior work

The Kantorovich –or Wasserstein– optimal transport barycenter problem was introduced in [4], defining
the barycenter µ∗ of a set of distributions {µi} as the minimizer of a weighted sum of the squared
Wasserstein distances between the {µi} and µ∗. At first sight, this problem appears to differ substantially
from the Monge OTBP that we address in this article, which given a joint distribution π(x,z) between
the outcome x and factors z that are not necessarily discrete, seeks a cost-minimizing map y = T (x,z)
such that the resulting random variable y is independent of z, a problem introduced in [1, 5]. Yet, as
discussed in section 2, the Monge OTBP is equivalent to the Wasserstein barycenter problem extended
to general factors z, when the solution of the latter is supported on z-dependent maps. The extension
of the OTBP to a continuous covariate z was studied in [6] in the context of its connection to the
multimarginal optimal transport in the limit of infinitely many marginals.

There is a rich literature regarding the numerical solution of the OTBP, typically in their Kantorovich
formulation. Within the data-driven problem alone, there is more than one way to classify the most
popular approaches. We can first distinguish between discrete methods, which assume that the marginals
at hand consist of convex linear combinations of Dirac delta functions, and continuous methods,
which work instead under the hypothesis that smooth probability density functions underly the data
at hand. The first category includes methods that leverage the Sinkhorn algorithm [7, 8, 9] and linear
programming-based methods [10, 11]. Among the first algorithms to treat the problem in a continuous
setting are [12, 13], both based on the dual of Kantorovich formulation.

Those algorithms solving the continuous problem can be further divided into families. One criterion,
functional to this work, regards the nature of the parametrization of the maps pushing forward each
ρ(x|z) to the barycenter. Most algorithms parametrize this map via a deep neural network with problem-
dependent architecture. An example of this approach in [14, 15] uses Convex Neural Networks to
parametrize a potential related to the optimal map. A different approach is the flow-based methodology
adopted in [5] and inspired by [16, 17, 18]. Flow-based numerical solvers do not require neural networks
or an a priori parametrization of the map, as they rely on the composition of infinitesimal elementary
maps. They lead naturally to the adoption of gradient descent methods, more straightforward than saddle
point optimizers, whose convergence is harder to characterize [19, 20].

While the time complexity of the cited solvers varies, a state-of-the-art solver does not really
exist. Depending on the problem at hand, one approach should be favored over another. For instance,
when dealing with images defined in high-dimensional spaces, a Sinkhorn-based approach with fast
convergence may be more suitable than other approaches if one is not interested in resolving sharp
details that are smoothed out by the entropic regularizer [21]. The complexity of the methodology that
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we proposed, which scales linearly with the number of sample points, is to our knowledge better than
in all previous approaches.

Another connected work concerns not the OTBP but the related vector quantile regression [22]. This
also transforms a random variable through a factor dependent map to another that is independent of the
factor. Unlike the barycenter, however, the target distribution –the quantile– is fixed by the user, and
the transformation proposed is linear and computed through linear programming. We believe that the
connection between the two problems, the OTBP and quantile regression, is worth exploring, as it could
provide new interpretations for both, as well as new applications, particularly in economics.

Our approach focuses on the statistical analysis of data with factors z that typically include
continuous components, therefore requiring the solution of OTBP problems with infinitely many
marginals. To the best of our knowledge, the work presented here and in [2, 5, 23] are the only
ones dealing numerically with this aspect of the problem. Another major point distinguishing the work
presented here from the existing literature is the interpretation of the pushforward condition that drives
the samples underlying the marginals towards the barycenter. As in [5], we characterize the pushforward
condition in terms of the statistical independence between two random variables: the cofactors z and
y = T (x,z). This statistical characterization of the barycenter is critical for a number of applications,
such as removal of variability and factor discovery [1, 2], and treatment effect estimation [24, 25] (See
[26] for a similar characterization of independence through reproducing kernel Hilbert spaces.) Directly
related to the statistical interpretation of the push-forward condition is the ability to solve numerically
the barycenter problem for continuous factors and under costs different from the canonical Euclidean
distance. While there is some literature dealing with more general costs (see for instance [27, 28]), to the
best of our knowledge, the only alternative work on the solution of this problem in the continuous setting
–i.e. with infinitely many marginals– is our own previous work in [2, 5, 23]. The formulations in those
articles differ substantially from the current one: the first solved a minimax problem for a potential
ψ(y,z), extending the attributable component methodology of [29] beyond nonlinear regression, the
second developed BaryNet, a network-based algorithm, and the third formulated the push-forward
condition in terms of a test function of the form F(y,z) = ρ(y|z), whose estimation through kernels
has a computational cost that grows quadratically with the number of samples. By contrast, the current
proposal, which is based on flows in phase space and formulates the pushforward condition in terms
of the first principal components of a matrix, has a complexity that scales linearly with the number of
observations. An additional property of the new methodology is that it automatically identifies nonlinear
features { f l(z)} that encode the dependence of x on z, effectively performing factor extraction.

1.2. Plan of the article

This article is structured as follows. Section 2 discusses the formulation of the Monge OTBP, relates
it to an extension of the Wasserstein barycenter problem, and justifies its use to identify hidden
sources of variability. Section 3 introduces an adversarial formulation of independence, relaxed to finite
dimensional functional spaces provided with a suitable inner product. This gives rise to a rather compact
formulation of the problem in terms of the singular values of a matrix, discussed in Section 4, and
an efficient procedure for its minimization through gradient descent. Section 5 derives a closed-form
expression for the inverse x = X(y,z) of the map y = T (x,z), mediated by extracted factors. Section
6 discusses various implementation aspects: the choice of functional spaces, the determination of the
penalization parameter and of the learning rate, the termination criteria and the virtues of solving various
barycenter problems in a row, each contributing to further explain the variability of the outcome x.
It also discusses the algorithm’s complexity. Section 7 solves the regular optimal transport problem
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(in its Monge formulation) through a suitable reduction of the more general OTBP. This is used in
Section 8 to perform regular and conditional density estimation. Section 9 illustrates the methodology
through numerical examples. We first use synthetic data sets to demonstrate various aspects of the
OTBP, such as the simulation and estimation of conditional densities, model-free Bayesian inference
and the uncovering of hidden explanatory factors. Then we apply the procedure to real data sets related
to weather and climate. Finally, Section 10 summarizes the procedure and suggests avenues for further
improvement.

2. A Monge formulation of the optimal transport barycenter problem

Given a joint distribution
π(x,z) = ρ(x|z) γ(z)

between two sets of variables: the outcome x ∈X and the covariates z ∈Z , we seek a map

y = T (x,z) ∈X

that removes from x the variability that z can explain, i.e. such that the random variables y and z
are independent. We require that the space X have the structure of a smooth manifold, while the
space Z can include both continuous and discrete components. We will further assume that ρ(x|z) is
absolutely continuous uniformly over z, vanishing on small subsets of X . In order to remove from x
only the variability that z can account for, we select the map T that minimizes the expected value of the
total transportation cost C = Eπ [c(x,y)], where c(x,y), an externally provided pairwise cost function,
measures the deformation of the data incurred by moving x to y. The canonical choice for c is the
squared distance

c(x,y) =
1
2
‖y− x‖2. (2.1)

More general costs C, not necessarily based on pairwise cost functions, give rise to the Distributional
Barycenter Problem [5]. Even though the methodology developed in this article applies to the more
general problem almost without changes, we restrict attention for concreteness to the pairwise canonical
cost in (2.1).

The resulting problem reads

min
y=T (x,z)

Eπ [c(x,y)] s.t. y⊥⊥ z, (2.2)

where the symbol ⊥⊥ denotes independence, a problem introduced in [5]. At first sight, (2.2) looks
quite different from the Wasserstein barycenter problem, introduced in [4], which reads

µ∗ = arg inf
µ

p

∑
i=1

λiW2
2 (µi,µ) , W2

2(ρ,µ) = inf
ξ (x,y)∈Π(ρ,µ)

Eξ

[
‖y− x‖2] , (2.3)

where Π(ρ,µ) is the set of joint distributions having ρ and µ as marginals. The differences between
(2.3) and (2.2) stem from their conceptual origin: while (2.3) extends the geometrical notion of
barycenter to sets of distributions equipped with the Wasserstein distance, (2.2) uses a map T to
remove from x any variability that z can explain. It appears almost coincidental that there should be
any connection between the two!
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Yet the two problems relate as follows. The i ∈ [1, . . . , p] in (2.3) correspond to the z ∈Z in (2.2),
their weights {λi} to the distribution γ(z), and the {µi} to the ρ(x|z). Thus the barycenter problem in
(2.3) is restricted to discrete covariates z, which play the role of indexes for the distributions {µi}. By
contrast, the z in (2.2) is a random variable of general type linked to x through their joint distribution π .
The well posedness of the barycenter problem with infinitely many marginals has been studied in [6] in
connection to the multi-marginal optimal transport problem.

Extending Kantorovich’s relaxation of the optimal transport problem [3], (2.3) considers general
couplings ξ between the µi and µ , while (2.2) extends Monge’s original formulation of optimal
transport [30] to the barycenter problem, restricting attention to maps T that push forward the ρ(x|z) to
µ . These maps are central to the applications that motivate (2.2), as they are used both for conditional
density simulation and estimation. Importantly, they turn y = T (x,z) into a random variable that derives
from x and z, which leads to another critical distinction: while the argument of the minimization in (2.3)
is the barycenter µ∗ of the µi, the formulation in (2.2) does not involve the barycenter at all! The fact that
y in this formulation is a random variable gives meaning to the alternative requirement of independence
between y and z.

That the two problems are much closer than they appear at first sight follows from the fact that
classical work [31] has shown that, for smooth distributions and under quite general assumptions, the
solution to Kantorovich’s formulation of the optimal transport problem also solves Monge’s, a results
that has been extended to the OTBP in [4, 6]. We put together the connection between the two problems
in the framework of this article through the three theorems that follow. First, a partial equivalence
between the two formulations is given by the following theorem:

Theorem 1 Given a joint distribution π(x,z), x ∈X , z ∈Z , define the marginal γ(z) = π(X ,z) and
the conditional distribution ρ(x|z) = π(x,z)

γ(z) , and consider the following two problems:

1. Extended Wasserstein barycenter:

µ
∗,ξ ∗z = argmin

µ,ξz
CK = Eγ

[
Eξz [c(x,y)]

]
, ξz ∈Π(ρ(x|z),µ(y))

(We call this problem “extended” because the covariates z are not necessarily discrete),
2. Monge barycenter:

T ∗ = argmin
T

CM = Eπ [c(x,y)], y = T (x,z), y⊥⊥ z.

If the minimizing couplings ξ ∗z for the first problem are supported on maps Qz,

ξ
∗
z (x,y) = π(x,Z ) δ (y−Qz(x)) ,

then
T ∗(x,z) = Qz(x), and consequently CM =CK and ∀z µ

∗ = T ∗(:,z)#ρ(: |z).

Proof Since ξ ∗z solves problem 1, Qz#ρ(: |z) = µ∗, so the joint distribution Θ(y,z) satisfies

Θ(y,z) = µ
∗(y)γ(z),

which implies that y ⊥⊥ z. If there existed another T 6= Qz pushing forward all ρ(x|z) to a single
distribution µ(y) at a cost CM < CK , then ξz(x,y) = π(x,Z ) δ (y−T (x,z)) would solve problem 1
with a smaller cost than the optimal ξ ∗z , a contradiction.
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�

If ρ(x|z) vanishes on small sets uniformly over z, the optimal ξ ∗z are indeed supported on maps,
which also proves the existence of solutions to the Monge OTBP:

Theorem 2 If the joint distribution π(x,z) is absolutely continuous in x uniformly over z, then the
barycenter µ(y) of the corresponding ρ(x|z) under the canonical cost in (2.1)) is also absolutely
continuous and the optimal couplings ξ ∗z are supported on maps.

This theorem extends to general covariates Theorem 5.1 in [4], where it is proved for discrete
z’s. A similar result for continuous z was proved in [6], see Corollary 3.3.3 and Theorem 4.2.5. An
alternative proof, not included here for conciseness, builds on the fact that any small set A ∈X on
which a distribution µ does not vanish can be mollified so that the optimal transport between any
smooth distribution ρ and the mollified µ has a smaller total transportation cost (The bandwidth of the
mollification relates to the degree of smoothness of ρ , hence the requirement of uniformity of the latter
over z.)

We might conclude from theorems 1 and 2 that the Monge and [extended] Wasserstein barycenter
problems are equivalent when applied to smooth distributions: after all, their unique solutions map to
each other. Yet this equivalence applies to the problems’ solutions, not to their formulations. All the
applications described in this article, as well as the very methodology proposed for solving the problem
numerically, are strongly based on the map y = T (x,z) and its inverse X(y,z), both parameterized by z
and defining one of the random variables (x,y) in terms of the other.

One such application of the Monge OTBP is to uncover hidden sources of variability by removing
the effects of known factors. The relation between a random variable x ∈X and known covariates
z∈Z can be specified alternatively through the conditional distribution ρ(x|z) and through a functional
relation

x = φ(w,z), w ∈W , w∼ ν(: |z),

where the random variable w represents all additional causes of variability in x, which we either do not
currently consider, cannot measure or are simply not aware of. The function φ and the distribution ν

underlying w determine ρ(x|z) uniquely, but more than one pair (ν ,φ) can give rise to the same ρ . One
special such pair is provided by the solution to the OTBP:

Theorem 3 Given any joint distribution π(x,z) that vanishes on small sets in X uniformly over z, the
random variable x can be written as

x = X(y,z),

where y = T (x,z)∼ µ is the solution to the barycenter problem for ρ(x|z), so X(:,z) = T−1(:,z).

Proof Neither ρ(x|z) (for any z) nor µ(y) assign finite measure to small sets. Then the fact that T (:,z),
the least costly map that pushes forward ρ(: |z) to µ , is invertible is a central result in optimal transport
theory [3].

�

This theorem provides the ground for various applications.
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1. In order to generate samples {x∗i } from ρ(x|z∗) for any target value z∗, it is enough to generate
samples {yi} from the barycenter µ(y) and write x∗i = X(yi,z∗). A number n of such samples is
already available through the barycentric map acting on the available data pairs, yi = T (xi,zi). More
can be obtained if needed, performing optimal transport between µ and a given distribution ν and
pushing forward samples of the latter to µ through the inverse of the corresponding transportation
map.

2. Since our algorithm provides both X(y,z) and its y-derivatives (see section 5), one can estimate
ρ(x|z∗) by the change-of-variable formula applied to an estimate for µ(y) (which can itself be
obtained by optimal transporting µ to a known ν and applying again the change-of-variable
formula.)

A third application addresses the following question: assuming that there exists a “true” additional
source w of variability in x, such that that x = φ(w,z), how much does our y = T (x,z) teach us about the
true w? Here the notion of a true source is field dependent. For our purposes, we just assume that such
true w exists.

An identifiability issue arises. In the absence of additional information, the conditional distribution
ρ(x|z) does not suffice to determine w. For instance, if for some value of z, φ (w1,z) = φ (w2,z), then
there is no way that using x and z alone we could distinguish between w1 and w2. More generally, any
two z-dependent random variables W z

1 and W z
2 such that the distributions of both φ1(z,W z

1 ) and φ2(z,W z
2 )

agree with ρ(x|z) explain the data equally well. In particular, y provides one such explanatory variable,
with the additional property that it is necessarily a function of w and z:

y = T (x,z) = T (φ(w,z),z) = Y (w,z).

Moreover, Y (:,z) is invertible for all values of z for which w is identifiable, i.e. such that φ (w1,z) =
φ (w2,z)⇒ w1 = w2, since

Y (w1,z) = Y (w2,z) ⇒ T (φ(w1,z),z) = T (φ(w2,z),z) ⇒ φ(w1,z) = φ(w2,z) ⇒ w1 = w2.

Then, in order to uncover the “true” hidden explanatory w, one can use the fact that its identifiable
component must have a –possibly z-dependent– one-to-one relation to y, together with any other
information available on w, such as other variables that it may depend upon or correlate with. In the
absence of any such additional information, y is the most natural explanatory variable among all w,
since by construction it is independent of the known factors z, it is the closest to x itself, and it is the
most “economical”, since it is identifiable for all z. We illustrate these concepts through examples in
Section 9.

3. Adversarial characterization of independence

Posing the Monge optimal transport barycenter problem (2.2) in data-driven scenarios, where the
joint distribution π(x,z) is only known through n sample pairs {xi,zi}, requires a sample-friendly
formulation of the independence condition between the random variables y and z. We will use a weak
characterization based on test functions [5, 32]: two variables y ∈ Y and z ∈Z with joint distribution
π(y,z) are independent if and only if any two bounded measurable functions g(y) and f (z) satisfy

Eπ [g(y) f (z)] = Eρ [g(y)] Eγ [ f (z)], ρ(y) def
= π(y,Z ), γ(z) def

= π(Y ,z).

We can restrict the functions f and g to smaller spaces F and G , provided that they contain suitable
approximations to the delta function consistent with the smoothness of π(y,z). To prove this, notice that
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if π (y,z)> ρ (y)γ (z) in a neighborhood U∗ of the pair (y∗,z∗), then g(y) = δy∗ (y), f (z) = δz∗ (z) satisfy

Eπ [g(y) f (z)]> Eρ [g(y)] Eγ [ f (z)],

where δy∗ and δz∗ are non-negative functions whose product is positive at (y∗,z∗) and vanishes outside
of U∗.

We can further subtract from f (z) its mean, yielding the following equivalence statement: two
variables y and z are independent if and only if, for all functions g(y)∈ G and f (z)∈F with Eγ [ f (z)] =
0,

Eπ [g(y) f (z)] = 0.

This equivalence gives rise to the following adversarial formulation of the barycenter problem (2.2):

min
y=T (x,z)

max
g, f ,λ

L = Eπ

[
c(x,y)+λ Eπ [g(y) f (z)

]
, Eγ [ f ] = 0, ‖ f‖= ‖g‖= 1, (3.1)

where we have decoupled the amplitude of f and g from their shape, absorbing their amplitude in the
factor λ . Moreover, we can replace the maximization over λ by the external provision of a a penalization
parameter λ � 1 for non-compliance of the independence condition, a relaxation that converges to (3.1)
as λ → ∞.

If we defined the norms of f and g in (3.1) through the canonical inner products

( f1, f2) =
∫

f1(z) f2(z) dγ(z), (g1,g2) =
∫

g1(y) g2(y) dρ(y), (3.2)

these norms would represent the standard deviation of f and g, since not only Eγ [ f ] = 0 by construction,
but also Eρ [g] = 0 holds at the optimal solution: a constant added to g does not affect the value of L, and
the norm of g−a is smallest when a = ḡ. It follows that we could read the problem as the minimization
of the transportation cost subject to the condition that the correlation between any two functions f (z)
and g(y) vanishes [32]. Yet adopting this choice for a norm is neither required nor convenient for g(y),
since it depends on the unknown ρ(y), which evolves through the optimization procedure. We will
propose an alternative norm below.

A data-driven formulation of (3.1) replaces expected values by empirical means,

min
yi=T (xi,zi)

max
g, f

L =
1
n

n

∑
i=1

[
c(xi,yi)+λ g(yi) f (zi)

]
,

n

∑
i=1

f (zi) = 0, ‖ f‖= ‖g‖= 1. (3.3)

Since we cannot enforce infinitely many constraints on the finite set {yi} without trivializing the
solution, we supplement (3.3) with the specification of two finite dimensional inner-product spaces
of functions F and G over which to perform the maximization, writing

f (z) = F(z)a, g(y) = G(y)b, a ∈ Rmz , b ∈ Rmy ,

where the mz columns of F and the my columns of G are functions respectively of z and y (both have
n rows when evaluated at the sample points) and the functions acting as columns of F have zero mean.
Choices for the functions defining F and G will be discussed in Section 6.5. Independently of their
choice, some further processing is required, which we describe here in terms of G , since the same
process applies to F .



10 LIPNICK ET AL.

A first requirement is to eliminate redundancy: since the columns of the matrix G typically consist
of smooth functions that we only evaluate at a finite set of points, the dimension of the effective range
of G can be much smaller than my, particularly when the latter is chosen large so as to accommodate for
a rich set of candidate test functions. Eliminating such redundancy makes the maximization problem
over b smaller and better posed. The second requirement also relates to the ease of optimization over
b: enforcing the requirement that ‖g(y)‖ = 1 would be much easier if G –an operator from Rmy to G –
were orthogonal, as it would directly translate into the condition that ‖b‖= 1.

Enforcing the orthogonality of G requires that we fix an inner product in G . The canonical one

〈φ ,ψ〉= ∑
i

φ (yi)ψ (yi) , (3.4)

the empirical version of (3.2), has the problem that its very definition depends on the unknown {yi}. We
can stick to the canonical inner product in z-space, since the {zi} are fixed, but we should use a different
one for functions of y. We need a functional norm such that a function g(y) of norm 1 cannot be very
large on the data. As a counterexample, consider an inner product of the form

(φ ,ψ) =
∫

φ(y)ψ(y) w(y)dy,

where the weighting function w(y), though everywhere positive, is very small in at least one area where
the true distribution ρ(y) is not. Since the requirement that ‖g‖= 1 will effectively only constrain g(y)
in areas where w(y) is comparatively large, the algorithm’s variables b can make L large by choosing test
functions g(y) not so much based on their correlation with f (z) but just on their effective amplitude in
areas where ρ is large but the norm of g does not truly act as a constraint. It follows that we must choose
a weight w(y) so that the Radon–Nikodym derivative dρ

dw is bounded. We adopt an inner product that is
fixed through stages of the procedure, updating it only occasionally to reflect the evolving distribution
of the {yi}, replacing (3.4) by

〈φ ,ψ〉= ∑
i

φ
(
y0

i
)

ψ
(
y0

i
)
, (3.5)

where y0
i is initially set to xi and then updated every so often, to reflect more accurately the different

stages of the {yi} ∼ ρ(y).
In order to replace G(y) by a smaller dimensional, orthogonal operator Qy(y) that spans the same

effective range, we perform the reduced singular-value decomposition

G j
i

def
= G j (y0

i
)
≈

ny

∑
k=1

σk uk
i vk

j,

where ny ≤ my is determined from the criterion that the sum ∑
ny
k=1 (σk)

2 be larger that a fraction of the

squared norm of ‖G‖2 = ∑i, j

(
G j

i

)2
= ∑

my
k=1 (σk)

2, and we adopt

Qy(y) = G(y)By, By
jk =

1
σk

vk
j

(Notice that, in particular, Qk
y
(
y0

i
)
= uk

i .) With a fixed inner product, the matrix By needs to be computed
only once per stage, when the y0 are updated. The sense in which this Qy is orthogonal is not the
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conventional one: its columns represent the evaluation at arbitrary positions {yi} of a set of functions
that are orthonormal under a chosen, fixed inner product based on the {y0

i }.
The same procedure applied to F produces an orthogonal matrix Qz of rank nz and corresponding

matrix Bz. For z, the distinction between matrices and operators is immaterial, since F(z) and Qz(z) are
only applied at the fixed set of points {zi}.

4. A flow-based methodology

Replacing in (3.3) f (zi) by Qz(zi)a and g(yi) by Qy(yi)b yields

min
{yi}

{
max

a,b

n

∑
i=1

c(xi,yi)+λ

nz

∑
h=1

ny

∑
l=1

(
n

∑
i=1

Qh
z (zi)Ql

y(yi)

)
ahbl , ‖a‖= ‖b‖= 1

}
.

The maximization over a and b can be carried out explicitly: they must align with the left and right first
principal components of the nz×ny matrix

Ahl (y) def
= ∑

i
Qh

z (zi)Ql
y (yi)

(A depends only on the {yi}, since the {zi} are fixed), and the penalty term is given by the first singular
value σ1(y) of A. It follows that we can write the problem as a minimization over y alone:

min
{yi}

L =
n

∑
i=1

c(xi,yi)+λ ‖A(y)‖ , ‖A‖ def
= σ1 = max

‖a‖=‖b‖=1
a′Ab. (4.1)

We can interpret the corresponding functions f (z) = Qz(z)a, g(y) = Qy(y)b as the features whose
correlation most strongly displays the current dependence between z and y.

This suggests a flow-based procedure, whereby y, initially set equal to x, follows gradient descent
of (4.1),

yn+1
i = yn

i −η
n
[

1
n

∇y c(xi,y)|yn
i
+λ a′ ∇yA|yn

i
b
]

(4.2)

(for which all {yi} decouple), where

∇yAhl
∣∣∣
yn

i

= Qh
z (zi)∑

j
∇G j(y)

∣∣
yi

By
jl

and a and b are updated in an alternate step.
It might appear that we are taking an uncontrolled approximation to the y-gradient of L in (4.1) by

differentiating only A in (4.2) at fixed a and b. The principal components of A do of course depend on
A, so they too change when A varies. Yet this way of computing derivatives is exact:

Theorem 4 The derivative of the k-th principal value σk of a matrix A with respect to any parameter
s on which A may depend, is given by

∂

∂ s
σk = a′

(
∂

∂ s
A
)

b,

where a and b are the left and right kth principal components of A.
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Proof By definition, σk = a′Ab, so

∂

∂ s
σk = a′

(
∂

∂ s
A
)

b+
(

∂

∂ s
a
)′

Ab+a′A
(

∂

∂ s
b
)
.

But the principal components satisfy Ab = σka, A′a = σkb and ‖a‖= ‖b‖= 1, so(
∂

∂ s
a
)′

Ab = σk

(
∂

∂ s
a
)′

a = σk
∂

∂ s
‖a‖2

2
= 0 and a′A

(
∂

∂ s
b
)
= σkb′

(
∂

∂ s
b
)
= σk

∂

∂ s
‖b‖2

2
= 0.

�

The penalty term σ1(y) is not smooth at its arg-min y = y∗: for y and z to be independent, the first
singular value of A must vanish, so A(y∗) itself must equal zero, and the first singular value σ1(y) of a
matrix that depends smoothly on y typically has corners where A(y) vanishes (The simplest example is
the 1× 1 matrix A = y ∈ R, whose only singular value σ = |y| has a corner at y = 0.) To address this,
we square the penalty term:

min
{yi}

L =
n

∑
i=1

c(xi,yi)+λ σ
2
1 (y), σ1(y)

def
= max
‖a‖=‖b‖=1

a′A(y)b.

There still remains one issue to address to make the methodology fully functional. Because every step
of the algorithm brings down the largest singular value of A(y), the first few of those singular values will
tend to coalesce at convergence at a common value σ∗ � 1. Then the derivatives of the penalty term
with respect to the {yi} are not well defined, as they depend on the arbitrary choice of one pair among
the various singular components (a,b) associated to the singular value σ∗. In terms of test functions,
more that one pair of functions ( f ,g) have reached the threshold correlation σ∗.

To address this, we modify the algorithm so that it tracks the first K pairs (ak,bk) of principal
component of A, where K = min(rank(A),Kmax), with Kmax fixed by the user. Then we descend over y

min
{yi}

L =
n

∑
i=1

c(xi,yi)+λ

K

∑
k=1

σk
2 (y) , σk (y)

def
= ak

′A(y)bk. (4.3)

Notice that this extension carries little computational cost, since the A(y) to differentiate is common to
all the {σk}. If performed using reproducing Kernel Hilbert spaces, this extension could be thought as
interpolating between COCO [26] and HSIC [33].

5. Map inversion

The procedure described so far finds n samples yi = T (xi,zi) of the barycenter µ(y). In order to simulate
ρ(x|z∗) for a target z∗, we need to invert T to obtain n samples {x∗i } from ρ(: |z∗) through

x∗i = X (yi,z∗)
def
= T−1 (yi,z∗) .

Since we do not know T (x,z) in closed form, it could appear that we can only invert it by learning
X(y,z) from its n available samples {xi,yi,zi}, for instance through kernel regression, nearest neighbor
or neural networks. Yet we can do much better than that and obtain a closed form for T−1, exploiting
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the fact that the penalization parameter λ is large but finite. Since at convergence the gradient ∇yL is
zero, or at least sufficiently small to satisfy a termination criterion, we have

∇yic(xi,yi)+2λ

K

∑
k=1

σk∇yσk

∣∣∣
yi,zi

= 0,

which for the canonical quadratic cost in (2.1) yields xi = yi +2λ ∑
K
k=1 σk∇yσk

∣∣∣
yi,zi

. In order to invert

the map for arbitrary values of y and z, we extend the validity of this expression and write

X(y,z) = y+2λ

K

∑
k=1

σk∇yσk

∣∣∣
y,z
, where ∇yσk

∣∣∣
y,z

= fk(z)∇gk(y), (5.1)

an expression that is smooth in (y,z) and yields X(yi,zi) = xi on all the available samples.
Finding x∗i = X(yi,z∗) requires the values of fk(z∗) and ∇gk

∣∣
yi

. Out of these, all the

∇gk|yi
= ∇yG(y)|yi

Bybk

are already known, since they have been used at the last descent step. Hence we only need the K
numbers { fk(z∗)}, which we calculate by introducing a new row F(z∗) of F and setting

fk(z∗) = F(z∗)Bzak.

The inversion formula in (5.1) provides us with a valuable bonus: it shows that the dependence
of x on z that our algorithm has uncovered is mediated by the K functions { fk(z)}, so we have
inadvertently performed factor extraction. The extracted factors bring in insights about the mechanisms
of the dependence of x on z, while the gradient of these functions inform us of the sensitivity of x with
respect to changes in z.

When we consider density estimation in Section 8, it will be useful to notice that we have access
not only to X(y,z) but also to its derivatives,

∂X p(y,z)
∂yq = δ

q
p +2λ

K

∑
k=1

σk
∂ 2

∂yp∂yq σk

∣∣∣
y,z
,

∂ 2

∂yp∂yq σk

∣∣∣
y,z

= fk(z)
(

∂ 2G(y)
∂yp∂yq

)
Bybk. (5.2)

6. Implementation

6.1. Choices for the functional spaces F and G

The methodology is not fully specified until we select the functional spaces F and G to use. This
section describes some practical choices and their consequences, including the choices that we have
made for the simulations in Section 9. A more complete exploration of data-adapted functional spaces
is beyond the scope of this article, it will be pursued elsewhere.

Even though the notion of independence is symmetric in y and z, the consequences of restricting the
two functional spaces G and F enforcing independence through (3.1) are conceptually quite different.
While the richness of F relates to the level of resolution of the dependence of x on z, the richness of G
specifies the level of detail with which the distributions ρ(x|z) are captured for each value of z. Imagine
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temporarily that F is rich enough to capture all functions f (z) that may be required, and concentrate
on the effect of making different choices for G . Since for any g ∈ G , the condition∫

g(y) f (z) dρ(y|z) dγ(z) = 0

must hold for any f ∈F with zero mean –and F is by hypothesis rich enough– it follows that∫
g(y) dρ(y|z)⊥⊥ z,

i.e. the conditional expectation ḡ(z) is in fact a constant ḡ independent of z.
When X = Rd , the simplest choice for G is the space of linear functions, spanning the columns of

a matrix G with the d independent functions yl , l ∈ [1, . . . ,d]. It follows from the argument above that
the conditional mean of y is independent of z. On the other hand, from (5.1), X(y,z) = y+h(z), where

h(z) = 2λ ∑
K
k=1 σk fk(z) vk and vk

def
= ∇ygk(y) is a constant, since gk(y) is linear. It follows from taking

the conditional expectation of both sides that

h(z) = x̄(z)− ȳ,

so the procedure captures –and removes from x– the conditional mean x̄(z), i.e. it performs [nonlinear]
regression, as in the “poorest man solution” of [1]. When the columns of G span a general quadratic
function of y, not only the conditional mean but also the conditional covariance matrix of y is
independent of z, and (5.1) implies that the relation between x and y= T (x,z) is linear (with z-dependent
coefficients), as in the “poor man solution” of [1]. We typically start our experiments with a first run
where the columns of G span all quadratic functions of y, to capture the conditional mean and covariance
matrix of x, leaving a more detailed characterization of ρ(x|z) to subsequent runs.

One can of course extend the choices above and fill all columns of G with externally provided
functions, such as Hermite polynomials of a given degree. Similarly, we can use as columns of F
polynomials when z ∈ Rd , trigonometric functions when z is a periodic variable, such as the time of the
day, and indicator functions when z can only adopt a finite set of categorical values. Yet it is generally
preferable to use a less parametric approach and let the data dictate the form of the functions to use. For
our experiments, we have used a simple class of data-adapted spaces described in the appendix, where
the columns of F and G are given by asymmetric kernel-like functions with column dependent center
and bandwidths, a flexible and economic variation of reproducing kernel Hilbert spaces:

F j(z) = Kz (z,zc
j
)
, G j(z) = Ky (y,yc

j
)
.

Even though the {yi} evolve, the centers {yc
j} are fixed throughout stages of the procedure, so as to

have a fixed functional space G . Their cardinality does not need to match that of the {yi}, in practice it
is typically much smaller.

6.2. Choice of the penalization parameter

The penalization parameter λ establishes a balance at the final y = y∗ between the gradients of the
transportation cost function and the penalization term. It follows from (4.3) that if one would like the
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σk (y∗) to have values smaller than σ∗� 1, one must adopt a parameter λ satisfying√∥∥∥∇yc(x,y)
∣∣
y∗

∥∥∥2
= 2λ

√√√√∥∥∥∥∥∑k
σ̃k∇yσk(y)

∣∣
y∗

∥∥∥∥∥
2

,

where σ̃k
def
= min(σk,σ∗) and ‖s‖2 def

= 1
n ∑

n
i=1 ‖si‖2 for any s = {si}i=1,...,n, si ∈ Rd . Based on this

characterization of λ at convergence, we adopt a state-dependent penalization parameter that evolves
over algorithmic time:

λ =
1
2

√
‖∇yc(x,y)‖2 +0.1var(x)√∥∥∑k,l σ̃k∇yσ l

k(y)
∥∥2

.

The addition of a small fraction of the variance to the numerator addresses the fact that ∇yc = 0 at the

onset of the algorithm, when x = y (The variance is a natural reference value, since ‖∇yc(x,y)‖2 =
1
n ∑i ‖xi− yi‖2 ≤ 1

n ∑i ‖xi− x̄‖2 = var(x).)

6.3. Learning rate

We minimize the objective function L in (4.3) through gradient descent, with steps of the form

yn+1
i = yn

i −η
n

∇yiL|yn ,

determining the learning rates ηn through back-tracking limited to a small interval:

1. At time tn, pick an initial candidate η through η = θ ηn−1, where θ is only slightly larger than one,
so as to explore an interval for ηn that is only marginally larger than the accepted learning rate from
the previous step.

2. Back-track from this η through the Armijo-Goldstein algorithm: defining G = ∇yL|yn , set ηn = η

if L(yn−ηG)≤ L(yn)−κη‖G‖2, with 0 < κ < 1. Otherwise, set η → τη , 0 < τ < 1 and repeat
this step.

We have adopted for our numerical examples θ = 1.1 and κ = τ = 1
2 .

6.4. Termination criterion

At convergence, y = y∗ must satisfy two natural criteria for termination:

1. Any remaining dependence of y on z must be within an acceptable range:

∀k σk (y∗)< σ∗� 1. (6.1)

In order to assign a value to σ∗, notice that σk represents the empirical correlation between fk(z)
and gk(y), which should be uncorrelated. It follows that a reference value for σ∗ is the standard
deviation of the empirical correlation between two independent variables, which equals 1√

n . We
have adopted in our experiments

σ∗ =
ν√
n
, ν = 0.2. (6.2)

Once the criterion in (6.1) is satisfied, we freeze λ at its current value until criterion 2 (below) is
satisfied.
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2. The gradient ∇yL of the objective function must be sufficiently small for the inversion formula (5.1)
to be valid. Since the error in the determination of xi from this formula is given by

‖xi−X(yi,zi)‖=
∥∥∥∇yiL

∣∣
y∗

∥∥∥
and a natural reference scale for the square of this error is the variance of x, we use as termination
criterion

1
n ∑

i

∥∥∥∇yiL
∣∣
y∗

∥∥∥2
< α var(x), (6.3)

with α � 1. We end the run when both (6.1) and (6.3) are satisfied.

Another, internal termination criterion starts a new stage once the current y differ significantly from
their values y0 at the outset of the current stage, i.e. when

n

∑
i=1

∥∥yi− y0
i
∥∥2

> δ

n

∑
i=1

∥∥∥y0
i − ȳ0

∥∥∥2
, 0 < δ < 1.

In our experiments, we have adopted α = 0.0025 and δ = 0.1,

6.5. Successive barycenter problems

The barycenter problem removes from x any z-dependence detectable through the functional spaces
F and G , so the resulting y = T (x,z) can still depend on z in ways that F and G do not capture.
For instance, if G consists only of quadratic function of y, just the conditional mean and covariance
of x are removed, leaving in y any other z-dependent property of ρ(x|z), such as higher moments or
the distribution’s modality. Similarly, if F includes only functions of a subset of the {zl}, y may still
depend on the remaining ones, if F includes only functions of the individual {zl}, any non-additive
dependence of x on the {zl} will remain in y, and if the bandwidths of the functions in F are large, only
long-scale trends are removed, leaving small-scale signals behind.

This suggests proceeding in Ns stages: calling y0 = x, we compute in stage l the barycenter of the
yl−1 over z, as captured through the functional spaces F l and G l . The final yNs are not samples of the
barycenter of the original x, since the composition of optimal maps is not necessarily optimal. However,
since we know how to invert each of the maps, we can still simulate and estimate by composition
ρ(x|z∗) for any target z∗. This procedure resembles boosting [34], in which multiple models are trained
sequentially so that each new problem removes further variability from the barycenter of the prior one.

6.6. Complexity

One major advantage of the new methodology is its efficiency, which makes it applicable to large data
sets. This efficiently derives from formulating the independence conditions between y and z in terms
of the uncorrelation between test functions and subsequently relaxing it to the vanishing of the first
singular value of a matrix A(y) whose rank does not depend on the sample size. Previous methods used
kernel density estimation to formulate independence [5], requiring kernels where every data point acted
as a center, yielding at least O(n2) time complexity. By contrast, the new algorithm’s time complexity
scales bilinearly with the number of samples (n) and the dimension of the data (dx). Because of this,
most of the numerical examples in Section 9 had running times on a laptop raging between a fraction
of a second and a few seconds.
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The algorithm’s operations can be broken into three different categories: those which are performed
only once per run, those performed once per stage, and those performed at each descent step. Even
though it is only the third category that determines the time complexity of the algorithm in practice, we
analyze all three parts for completeness.

1. Operations performed only once. Since the factors z do not evolve through a run, the
orthogonal matrix Qz is computed only once, making the algorithm’s complexity insensitive to the
dimensionality of z. When using kernels, calculating Qz requires k-means clustering to determine
the centers for z, which with a fixed maximum number of iterations requires O(n ∗ dz ∗ mz)
operations. Evaluating the kernel function also requires O(n ∗ dz ∗mz) operations. A standard
singular value decomposition of the matrix F ∈ Rn×nz requires O(n∗n2

z ) steps where nz is a user’s
provided input. Therefore, the number of operations performed only once scales as O(n ∗ dz ∗mz).
For very large data-sets with high-dimensional factors z, this number can be further reduced by
adopting state-of-the-art methodologies for finding the first few principal components of large
matrices [35, 36], but we found no need for this in our experiments so far. Even for time-like
factors z, which as discussed in the appendix require a number of centers that grows linearly with
the extent of the time series analyzed, the corresponding matrix F(z) is sparse, which keeps the
complexity of its principal component analysis at O(n), since the complexity scales not with the
number of columns of F (i.e. the number of centers) but with the number of non-zero elements in
each row, which can be kept fixed using kernel functions with compact support.

2. Operations performed once per stage. To recall, a new stage is started when the average squared
distance between the current values of the {yi} and their values {y0

i } at the start of the current stage
is larger than a prescribed fraction of the variance of the latter. At the beginning of each stage,
the orthogonal matrix Qy needs to be computed. The same scaling arguments apply here as for the
calculations of Qz, yielding a total of O(n∗dy ∗my) operations per stage.

3. Operations performed at each descent step. The main loop iteration requires calculating derivatives
of the cost function and of the penalty function. The complexity of the former is O(n ∗ dy ∗my)).
The latter requires calculating the gradient of the matrix G(y) which, when using kernels, involves
calculating the kernel in y and its derivatives, with complexity O(n∗dy ∗my) if the number of kernel
centers is fixed. This is followed by a matrix multiplication which is O(n). So overall each iteration
performs O(n∗dy ∗my) operations. Moreover, these operations decouple among the sample points,
making them trivially parallelizable.

One thing not captured by the complexity analysis above is the number of iterations required for
convergence. Additionally, in practice one may adopt larger values of ny and nz for problems with
more complex dependence between x and z. Yet, for a fixed problem, the number of iterations should
not depend on the number of data points n, an observation confirmed in our numerical experiments.
We verify the algorithm’s complexity by plotting the time of the pre-calculations, stage calculations,
average descent iteration and total time as n, dx and dz vary. In each case, each factor zl is a normal
random variable with mean 0 and variance 0.25 and x is drawn from the z-dependent isotropic gaussian

x∼N

(
cos
(

2π

dz

∑
l=1

zl
)
~1dx ,0.05

[[
sin
(

0.1∗
( dz

∑
l=1

zl +0.2
)2
)
+0.25

]−1
]
Idx

)
.

Figure 1 displays the data and barycenter for dx = dz = 1 and figure 2 shows the running times for
various values of n, dx, and dz. Each data point displayed is the median across 10 trials of the mean time
spent in each portion of the algorithm. When the dependence on n is being considered, dx and dz are
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both kept at 1. When either dx or dz are being varied, the other is kept at 1 and n is kept at 2000. The first
two rows use kernel based functions for both F and G while the third row uses only linear and quadratic
functions of y for G, which has the same complexity but with lower constants and thus is orders of
magnitude faster. These experiments confirm that the complexity of all stages grow linearly with the
number of samples and that the descent steps contribute most heavily to the total run time. Similarly
we see that, as predicted, the dimension of x increases linearly the time complexity of the main descent
steps and the calculations per stage, and the dimension of z increases linearly the complexity of the
pre-calculations.

FIG. 1. Data points {xi} and corresponding barycenter samples {yi} with dx = dz = 1.

7. The optimal transport problem

The methodology developed for the optimal transport barycenter problem can be easily adapted to
solve regular [Monge] optimal transport problems. In addition to the importance of the optimal transport
problem per se, we will use it for conditional density estimation, as detailed in the next section. Optimal
transport problems are simpler than the OTBP, as they involve only two distributions, a source ρ0 and a
target ρ1:

min
w=Q(x)

Eρ0 [c(x,w)] , Q#ρ0 = ρ1. (7.1)

For the purpose of relating them to the barycenter problem, we introduce a binary covariate z ∈ {0,1},
and think of the source and target distributions as instances of the single conditional distribution ρ(x|z):

ρ0(x) = ρ(x|z = 0), ρ1(x) = ρ(x|z = 1).

Then the map y = T (x,z) that solves the barycenter problem for ρ(x|z), automatically provides the
solution to (7.1) through

Q(x) = T−1 (T (x,0),1) ,

a standard result in interpolation displacement [3].
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FIG. 2. Median time dependency on number and dimension of data. The top and bottom rows display the run-time dependence
of the pre-calculations, calculations per stage, calculations per time-step and total run-time, on the number of samples n, with
dx = dz = 1, the top one using kernels in y, the bottom only linear and quadratic functions. The middle row displays the relevant
dependences on dx and dz, with the other fixed at 1 and n at 2000.

In the data-driven case, we have n0 samples {x0
i } from ρ0 and n1 samples {x1

j} from ρ1, for a total
of n = n0 + n1 pairs {xi,zi} from π(x,z). Since our methodology provides all the values yi = T (x0

i ,0)
and an explicit formula for T−1 (yi,1), we have direct access to all Q(x0

i ) and, mutatis mutandis, we
have also access to its inverse, Q−1(x1

j). Under the canonical cost, the corresponding formula simplifies
to

Q(x0
i ) = T

(
x0

i ,0
)
− n0

n1

(
x0

i −T
(
x0

i ,0
))

,

as follows from the fact that every point in the barycenter is the weighted geometrical c-barycenter of its
pre-images [12]. Then, with only two distributions, a point at the barycenter and one of its pre-images
suffice to find the other.

The fact that there is only one, binary covariate z simplifies our methodology considerably, since
except for an arbitrary sign, there is only one function f (z) with zero mean and norm one:

f (z) ∝

{
1
n0

for z = 0
− 1

n1
for z = 1

.

Then the barycenter problem reduces to

min
yi

L =
n

∑
i=1

c(xi,yi)+λ
∥∥ f ′Qy(y)

∥∥2
, fi = f (zi), (7.2)
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where we have used the fact that, since f is fixed, the maximizing vector b replacing the right principal
component of A is proportional to Qy

′ f :

arg max
‖b‖=1

f ′Qyb =
Q′y f
‖Q′y f‖

⇒ σ
def
= max
‖b‖=1

f ′Qyb = ‖ f ′Qy‖.

Other than the simplifying facts that we do not need to update a and b and that the matrix Qz consists
of a single column, the procedure to solve (7.2) follows the same steps as the one for the full barycenter
problem (4.3).

In order to bypass the barycenter µ in the procedure above, finding a map Q(x) = T (x,0) that pushes
forward ρ0 to ρ1 directly, use the same objective function L in (7.2), but minimize it only over the yi
with corresponding zi = 0, i.e. over T (x,0), leaving the remaining yi fixed at x, i.e. setting T (x,1) = x.
This enforces the condition that T (x,0)#ρ0 = ρ1, since the final

y∗i =

{
T (xi,0) for zi = 0
xi for zi = 1

must be independent of z. This procedure, while lacking the symmetry of the prior one with respect to
ρ0 and ρ1, is far more straightforward. In particular, it is very well-suited for density estimation.

8. Conditional density estimation

Our methodology simulates ρ(x|z), by producing n samples {x∗i } from ρ(x|z∗) for any target z∗.
Simulation is at the core of many applications, but others, such as Bayesian inference, require the
evaluation of ρ(x|z) for arbitrary values of x and z. The fact that typically there is none or at most
one observation available for any target value z makes estimating ρ(x|z) directly from the data {xi,zi}
challenging. A slight extension of our procedure produces such conditional density estimation.

Regular –as opposed to conditional– density estimation can be obtained through optimal transport
as follows. Given n samples {xi} drawn from the unknown distribution ρ(x) that we seek to estimate,
select a target distribution µ(y) that one can easily both evaluate and sample, such as a Gaussian, and
find the optimal map Q(x) pushing forward ρ to µ . Then

ρ(x) = |det(∇xQ)| µ(Q(x)), ρ(X(y)) =
1

|det(∇yX)|
µ(y), X = Q−1,

so for any x,

ρ(x) =
1∣∣∣det

(
∇yX(y)

∣∣
y=Q(x)

)∣∣∣ µ(Q(x)).

In our procedure, Q(x) = T (x,0), and ∇yX(y) is known from (5.2).
If the density ρ(x) is sought for values of x different from the {xi}, one can carry these values

through the procedure to their final y=Q(x) as passive tracers that do not affect L in (7.2). Alternatively,
one can solve the reciprocal optimal transport problem from µ to ρ , and then write

ρ(x) = |det(∇xY (x))| µ(Y (x))

for any value of x sought.
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This density estimation procedure requires selecting a target measure µ = ρ1. We can either adopt
a fixed target, such as a standard Gaussian, or to adapt it to the data, using for instance a Gaussian
with the same mean and covariance matrix as the data or a Gaussian mixture fitted to the data through
Expectation Maximization. The advantage of such more tailored approaches is that the corresponding
optimal transport problem becomes easier, since even the trivial map Q(x) = x provides a regular
parametric density estimation.

We can apply this procedure to conditional density estimation, i.e. estimate ρ(x|z) from n samples
{xi,zi} in at least two distinct ways:

1. Obtain n samples {x∗i } from ρ(x|z∗) and apply density estimation to these directly.
2. Estimate the density µ(y) of the barycenter, and then compute

ρ (X(y,z)|z) = 1
|∇yX(y,z)|

µ(y),

with X(y,z) given by (5.1) and ∇yX(y,z) by (5.2).

One would choose the first approach when seeking ρ(x|z) for many values of x and only a handful of
values of z, and the second approach when exploring the dependence of the conditional density on z, as
beholds for instance Bayesian inference.

9. Numerical examples

We illustrate the methodology through numerical examples, using synthetic data first and then two
real data applications: uncovering hidden patterns in the atmospheric temperature at ground level and
forecasting ocean states.

9.1. A Gaussian distribution with z-dependent mean and variance

As a first example, we draw 1500 independent samples from the distribution

x∼ N
(
µ(z),σ2(z)

)
, µ(z) = cos(2πz1)+ sin(πz2) , σ(z) = 0.2

√
(1−2z1)(1−2z2),

with z = (z1,z2) uniformly distributed in the square − 1
2 ≤ z1,2 ≤ 1

2 . The data is displayed on the top left
panel of figure 3. Since for each value of z the distribution for x is Gaussian, it can be fully captured
using the two-dimensional test function space G (y) spanned by the functions y and y2, while keeping
for F (z) a general adaptive space based on kernels. We display the results of the run in figure 3 through
the corresponding {yi}, whose z-independent distribution is a Gaussian, as beholds the barycenter of a
set of Gaussians, and the simulation and estimation of ρ(x|z∗) for two selected values of z∗, with the
true underlying distribution also drawn for comparison.

9.2. Two z-dependent Gaussian mixtures

In order to consider non-Gaussian examples –more precisely, examples where the dependence of x
on z cannot be reduced to a z-dependent translation and scaling– we perform first a one-dimensional
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FIG. 3. First Example. The leftmost column displays the samples {xi} in the top row and the corresponding {yi} in the barycenter
in the bottom row. The middle and rightmost columns show the simulated samples {x∗i } and the estimated versus the true density
ρ(x|z∗) for z∗ = (0.2,0.3) and z∗ = (−0.2,−0.3).

experiment, drawing 1500 samples from the z-dependent Gaussian mixture

x∼
2

∑
k=1

γk N
(
µk(z),σ2

k (z)
)
, γ1 = γ2 =

1
2
,

µ1(z) = 3+2z, σ
2
1 (z) =

1
2

ez, µ2(z) =
z
2
− z2, σ

2
2 (z) = 0.25−0.1z, z∼ U([−2.5,2.5]).

The datapoints are displayed on the top left panel of figure 4.
This example requires a test function space G (y) that goes beyond linear and quadratic functions.

We performed four successive barycenter problems, the first with just linear and quadratic G (y), the rest
with adaptive kernels, with the bandwidths of the kernels for both G (y) and F (z) adopted smaller for
each successive run. The results, displayed in figure 4, show how the simulated samples and conditional
density estimation recover the original z-dependent Gaussian mixture.

We extend this example to the two-dimensional Gaussian mixture

x∼
2

∑
k=1

γk N (µk(z),Σk(z)) , γ1 = γ2 =
1
2
, z∼ U([−2.5,2.5]),

µ1(z)=
(

3+2z
2+ z

)
, Σ1(z)=

( 1
2 ez 0
0 0.5

)
, µ2(z)=

( z
2 − z2

−3

)
, Σ2(z)=

(
0.25−0.1z 0

0 0.25+0.1z

)
.

The data points and the barycenter are visualized in figure 5 and the results of the procedure are
displayed in figure 6.

9.3. An example of Bayesian inference

This section illustrates model-free Bayesian inference using the OTBP. A different use of push-forward
maps for Bayesian inference [37] pushes forward the prior to the posterior measure. To demonstrate our
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FIG. 4. One-dimensional Gaussian mixture. The leftmost column displays the data samples in the top row and the barycenter
in the bottom row. The middle and rightmost columns show the simulated samples and the estimated versus the true density for
z∗ = 0.5 and z∗ =−0.5.

FIG. 5. A Two-dimensional Gaussian mixture. The left panel displays the data points, while the right panel shows the equivalent
plots for the barycenter.

approach, we draw samples from the distribution

ρ(x|z) = N(z2−2,σ2), σ = 0.5, z∼ U([−2,2]).

The left panel of figure 7 displays the data {xi} and the discovered {yi} as functions of the corresponding
{zi}. From these, we can directly infer the distribution of z given an observation x:

γ(z|x) = ρ(x|z)
ρ(x)

γpr(z) ∝ ρ(x|z) · γpr(z),
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FIG. 6. Two-dimensional Gaussian mixture. The top and bottom rows show the simulated samples, the estimated conditional
density, and the true density for z∗ = 0.5 and z∗ =−1 respectively.

where ρ(x|z) is the not the distribution we know in closed form but the one inferred from the data
through the OTBP. We have adopted as a natural default prior γpr the distribution underlying the
observed {zi}. The results for two values of x are displayed on the middle and right panels of Figure 7,
overlapped with the exact answer. They succeed in capturing the transition from unimodal to bimodal
distributions corresponding to the parabolic dependence of the conditional mean of x on z.

FIG. 7. Original data, barycenter and simulated versus true posterior density γ(z|x∗) evaluated at x∗ =−2 and x∗ = 0.

9.4. Online model estimation in Ornstein–Uhlenbeck processes and Lotka-Volterra pray-predator
models with observational noise

We consider next the online estimation of parameters, a key component of data assimilation. Given
successive samples from a time series Xn drawn from some transitional distribution ρ(Xn+1|Xn,Zn,α)
depending on known and unknown parameters Zn and α respectively, and assuming a prior distribution
γ0(α) for the latter, we seek to successively improve on these priors as new observations arrive, using
Bayes rule:

γ
n+1(α) ∝ ρ(Xn+1|Xn,Zn,α) · γn(α),
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with the proportionality constant determined by the normalizing condition that
∫

dγ(α) = 1. In the
conventional setting, the conditional distribution ρ is known except for the parameters α . We can extend
this framework to situations where ρ(Xn+1|Xn,Zn,α) itself is only known from partial observations of
time series under different values of α and Z. In a medical setting for instance, X may represent glucose
concentration in the bloodstream, Zn the caloric intake at time tn, and α a patient’s parameter that may
only be determined after treatment. Having observed in the past a number of patients under different
diets and having determined their corresponding parameters α , we can use this for the online estimation
of α for a patient currently under treatment.

For a first simple example, consider the time-discretized 1D Ornstein–Uhlenbeck process

Xn+1 = (1−α)Xn +β +σW n, W n ∼ N(0,1),

where α ∈ (0,1) is an unknown model parameter and β = σ = 0.5 are fixed drift and noise levels. Our
goal is to learn the model from a set of training data pairs (Xn+1

train ; Xn
train,α

n
train) and use the model learned

to estimate α online from a testing series, while making increasingly more accurate forecasts. For the
training data, we draw αn

train from a beta distribution B(2,2) over (0,1), which we also adopt as prior
γ0(α), and Xn

train from the uniform distribution U([a,b]).
We carry out experiments with two different parameter values, α = 0.2,0.8, with the corresponding

test data displayed in Figure 8. The results in Figure 9 demonstrate that the posterior densities converge
to delta functions centered around the corresponding true parameters.

FIG. 8. Time-discretized Ornstein–Uhlenbeck process. Testing time series for α = 0.2,0.8.

FIG. 9. Estimated posterior densities as the number of time steps grows for α = 0.2 in the top row and α = 0.8 in the bottom
row.
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In order to apply the procedure to a more complex scenario, we consider next the Lotka-Volterra
predator-prey model

dx1

dt
= αx1−βx1x2,

dx2

dt
=−γx2 +δx1x2,

with data observed at irregular discrete times with non-uniform time intervals ∆tn ∼ U[0.5,1.5] and
corrupted by noise. The time ∆tn here plays the role of the known covariate Zn, so the Barycenter
problem needs to resolve the data dependence on this additional factor. The data are generated through
the explicit trapezoidal numerical scheme but with a much smaller ∆̃t, to accurately solve the system
of ODEs. Gaussian noise with amplitude ε is added after simulating the time series to represent noisy
observations.

We adopt as test data a simulation with parameters α = 0.3,β = 0.9,γ = 0.5,δ = 0.4 and ε =
0.1, yielding the periodic results displayed in Figure 10. For a first experiment, we take α as the
only unknown parameter. Again, random training data pairs (Xn+1

train ; Xn
train,α

n
train,∆tn) are generated,

drawing Xn
train from a uniform distribution, αn

train from the beta distribution B(2,2), and deriving the
corresponding Xn+1

train from the model with additive noise of level ε .
As before, we learn the conditional density ρ(Xn+1|Xn,α,∆tn) by solving the barycenter problem

for the training data. Then we apply Bayes rule online to the testing data, updating at each step

ρ
n+1(α) ∝ ρ(Xn+1|Xn,α,∆tn) ·ρn(α).

The results are shown in the top panel of Figure 11.
We consider next a situation where two parameters, α and γ , are unknown, so the training data

consists of quintuples (Xn+1
train ; Xn

train,α
n
train,γ

n
train,∆tn), and the joint posterior density should be estimated

through
ρ

n+1(α,γ) ∝ ρ(Xn+1|Xn,α,γ,∆tn) ·ρn(α,γ),

with joint Gaussian prior ρ0(α,γ) = N
((

0.5
0.5

)
,

(
0.2 0
0 0.2

))
. The results are displayed in the bottom

panel of Figure 11. We see how in both cases the estimation converges to a delta function centered at
the right underlying value of the parameters.

9.5. Uncovering a hidden signal

The solution to the barycenter problem helps uncover a hidden signal w that, together with the known
factors z, fully explain the outcome variable x. In order to demonstrate this through examples, rather
than simulating a distribution ρ(x|z), we propose a function

x = φ(z,w), z∼ γ(z), w∼ ν(w)

where w, playing the role of noise in the distribution, is a hidden cause of variability in x.
Recall from Theorem 3 that the solution y = T (x,z) of the barycenter problem is a proxy for the

variable w, with φ(z,w)→ X(y,z). Moreover, y is related to any “true” hidden variable w through a
possibly z-dependent function

y = Yz(w),

which is invertible if w is identifiable, i.e. if a single value of x cannot originate from a single z and two
different values of w.
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FIG. 10. Lotka-Volterra model: Testing time series for α = 0.3,β = 0.9,γ = 0.5,δ = 0.4.

FIG. 11. Estimated posterior densities as the number of time steps grows for the single unknown α = 0.3 in the top row, and for
two unknowns α = 0.3,γ = 0.5 in the bottom row.

Figure 12 presents three synthetic examples in order to illustrate the different kind of dependence
between y and w typically observed in applications. The panels of each row are relative to the different
synthetic examples described below. The panels on the left column display the {xi} and corresponding
{yi} in terms of the {zi}, the middle column displays y(z) again, colored according to the corresponding
value of w, and the right column displays y(w), colored according to z. In the first row, z ∼ U[0.25,1],
w∼U[−1,1] and x = φ(z,w) = zw3 (we exclude values of z near 0 because ∀w φ(0,w) = 0, i.e. ρ(x|0)
does not vanish on small sets.) In this example Yz(w)=Y (w) does not depend on z and Y (w) is invertible.
In the second row x = zw2 under the same distributions for z and w. We still have that Yz(w) does
not depend on z but now Y (w) is not globally invertible, a reflection of the fact that the sign of w
is not identifiable, since ∀z and ∀w we have that φ(z,−w) = φ(z,w). In the third row, w ∼ U[0,1],
z ∼ U[(−1,−0.25)∪ (0.25,1)] and x = zw, for which Yz(w) depends on the sign of z (we leave it as a
challenge to the interested reader to uncover why this is so.)

The analysis of the barycenter underlying the points {yi} may at first seem similar to residual
analysis, whereby the difference between actual and predicted values is further analyzed to assess
model adequacy and improve its predictive power [38, 39]. Both procedures aim to remove variability
in the data x attributed to the cofactors z, yet while residual analysis only removes x̄(z), the conditional
expected value of x, the barycenter does this at the level of the full probability distributions ρ(x|z)
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FIG. 12. Three examples with different relations Yz(w) between w and y: one-to-one on the first row, two-to-one on the second
and z-dependent on the third.

underlying the data. Consider the example in the first row of Figure 12, where the data are generated
according to x = zw3 with z and w drawn uniformly. The distribution of the residuals (obtained by
subtracting the regression of x vs z from the actual value of x) would, in this case, be identical to the
original distribution underlaying the x, providing no new useful information. By contrast, the points
yi in the barycenter represent the full variability of x not explainable by z. If the y’s can be related to
known factors w, this can be used to improve the model for x, for instance by regressing y against these
factors and then using both z and the reconstructed y to predict x. Better still, instead of regression, the
barycenter problem can be used once again to simulate ρ(y|w).

When the hidden signal w is lower dimensional than x, it follows that y must lie in a lower
dimensional manifold of X . Consider an example where z ∈ R2 with z ∼ N (0, I), w ∈ R with
w∼N (0,1) and x = [8z1z2 +2w,2z1 +8z2 +3w]. As shown in Figure 13, after solving the barycenter
problem, the resulting y lies on a 1-D manifold that is parametrized (and therefore completely explained)
by w, which is not generally the case for residual analysis.

9.6. Hidden patterns in ground-level atmospheric temperature

Switching to applications to real data, we consider next the hourly ground-level temperature in Ithaca,
NY from 2007 to 2023. The data, available from National Oceanic and Atmospheric Administration,
is displayed in the top panel of Figure 16. We will use the OTBP to investigate the dependence of this
temperature on the diurnal and seasonal cycles, and to uncover hidden signals at the synoptic weather
and multi-year scales.

We first solve the OTBP for ρ(x|z1), where x is the hourly temperature in Ithaca and z1 ∈ [0,365.25]
is the day of the year, a continuous, periodic factor. Panel (a) of Figure 14 displays the corresponding

https://www1.ncdc.noaa.gov/pub/data/uscrn/products/hourly02/?C=D;O=D
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FIG. 13. Two-dimensional y dependence on a one-dimensional w (denoted with a colorbar)

day-dependent median value of the simulated temperature X(:,z1) and the corresponding conditional
90% confidence interval, capturing seasonal effects, superimposed for reference on the true observed
temperatures for the year 2007. We use the conditional median and confidence intervals rather than
the conditional mean and standard deviation of x because they are more robust statistics and they are
also much cheaper to compute: while computing the mean involves averaging X(y,z) over all {yi}
for each value of z, and similarly for the variance, the monotonicity of X implies that the conditional
median of x is just X(ȳ,z), where ȳ is the median of the {yi}), and similarly for confidence intervals,
since conditional percentiles of ρ(x|z) translate directly from the corresponding percentiles in y. Next
we consider instead ρ(x|z2), where z2 ∈ [0,24] is the time of the day, another continuous and periodic
factor, displaying in panel (b) the simulated median diurnal cycle and corresponding confidence interval
together with the true x for 2007. Then we combine the two factors and consider ρ(x|z1,z2), with results
displayed on panel (c) both for the the full year 2007 at once and for zoomed-in versions for each season.
One may notice in all panels how the 90% confidence interval depends on z, often adopting asymmetric
shapes around the median and displaying for instance interesting contrasts between day and night. This
is one manifestation of the power of having captured the full conditional distribution ρ(x|z), as opposed
to just a few statistics, such as the conditional mean value computed in regression.

We can see how the diurnal cycle changes over the year not only in mean but also in amplitude
and shape. This is seen more clearly in the left panel of Figure 15, displaying the median diurnal cycle
for four specific days of the year, corresponding to the solstices and equinoxes. We can see in detail,
for instance, how the Winter Solstice day is colder, shorter and has smaller day/night contrast than its
summer counterpart, and how the day at the Spring Equinox, despite having exactly the same duration
as the one at the Fall Equinox, is much colder, has smaller amplitude and a slightly different shape. The
right panel of Figure 15 similarly shows how the median seasonal cycle depends on the time of the day
at which it is considered.

We switch next to consider the variability of x not explained by (z1,z2), as captured in y. In order
to analyze both synoptic weather and short-term multi-year variability, we introduce two new time
factors, z3 and z4, built by rescaling time using different scales. In other words, both z3 and z4 consist
just of the time t (measured in hours), but the bandwidths used for the corresponding kernels are of
the order of 30 and 3 days, respectively (we set these scales through the parameter γz defined in the
appendix.) As we did for z1,2, we remove the variability in y attributable to z3 and z4 separately, then
together. Figures 16 and 17 show the results of introducing these new factors. Panels (a) and (b) of



30 LIPNICK ET AL.

(a) Using only day of year as a factor

(b) Using only hour of day as a factor

(c) Using the two periodic time factors together
FIG. 14. Median temperature and 90% confidence interval as a function of day of year, time of day and both, displayed over the
true temperature for 2007.

FIG. 15. Median diurnal cycle and seasonal cycle of the temperature in Ithaca, NY, displayed for four days of the year (one per
season) and four hours of the day respectively.

figure 16 display the original time series x(t), the signal y1(t) resulting from removing z1,2 from x and
the signal y2(t) resulting from removing z3 and z4 from y1. The removal of variability is reflected in
the signals’ decreasing variance, from 113.71 for x, through 24.71 for y1, to 17.10 for y2. Beyond the
decreasing variance, one can observe the further explanation of variability in the fact that y2 is much
more homogeneous in time than y1, which has a clear inhomogeneity associated with the synoptic
weather signal (The fact that similarly y1 does not display the time dependence on the seasonal cycle
present on x is far more obvious to the eye.) Panel (a) of figure 17 displays the median temperature
dependence on z3, a multi-year signal, and panel (b) the dependence on z4, corresponding to synoptic
weather, over the year 2007. The median temperature and 90% confidence interval determined by z3 and
z4 together is displayed in panel (c) and zoomed-in over 2007 in panel (d). A climate scientist looking
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at these reconstructions may not only confirm that the method has captured the right scales (a roughly
2-4 year scale for the multiyear signal and around 15 days for the synoptic weather) but also detect
individual signals, such as in panel (a) a signal resulting from the El Niño years 2007, 2010 and 2016,
and in panel (b) a signal from the North American heat wave of 2007, which may have contributed to the
elevated temperature of Ithaca during the late summer and early autumn. Finally, panel (e) displays the
full z1,2,3,4-dependent conditional median x̄(z(t)) and 90% confidence interval over 2007. We can see
in this plot not only how well the reconstruction has captured the dependence of temperature on time,
season and the synoptic and multi-year time scales, but also how it has not captured (by construction)
weather signals shorter than a week long. These could of course be captured by another factor z5 with
shorter bandwidths, but doing this would take us too far afield in the context of the current article. Notice
that these shorter scales are nonetheless represented as noise in the 90 percentile, a general property of
the OTBP methodology: as new factors zl are introduced, these explain away part of the variability
previously present in the conditional distribution ρ(x|z).

(a) The original time series x(t), the y1(t) resulting from removing the effects of periodic time factors
(time of day and day of year), and the y2(t) resulting from further removing from y1 the synoptic weather
and multi-year signals

(b) A zoom-in version of the previous figure, restricted to 2007
FIG. 16. Effect of removing from the temperature x, in succession, the effect of periodic time factors (time of day and day of
year) and of time itself at the synoptic and multiyear scales.

9.7. Forecasting of global ocean states

We further illustrate the methodology, using it to forecast six months ahead the global sea surface
temperature (SST). The data (available at Met Office Hadley Centre observations) consists of monthly
values of the SST from 1870 to 2024, over a global 1×1 latitude-longitude grid. The resulting dataset
T l

i, j has a dimension of 180× 360× 1860, corresponding to latitude (indexed by i), longitude ( j) and

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
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(a) Median multi-year trend

(b) Median synoptic weather trend (2007)

(c) Median temperature and 90% confidence interval predicted by z3 and z4 together

(d) Zoom of the above for 2007 superposed on y1(t)

(e) Median temperature and 90% confidence interval as a functions of day of year, time of day, multi-year
trend and the synoptic weather trend, displayed over the true temperature for 2007

FIG. 17. Reconstruction of the conditional median temperature x̄(z) and 90% confidence interval as functions of different
combinations of the factors z1,2,3,4.

time (l in months). The goal is to use historical observations to predict the global SST 6 months into the
future.

In order to extract a lower dimensional time signal from the data, we apply a standard pre-processing
to the whole dataset:

• Filter out spatial grid points that either lie over land (where SST is undefined) or contain
missing data, resulting in 31,094 valid spatial grid points; all subsequent analysis, including EOF
computation, is restricted to this filtered spatial domain;

• De-trend by fitting a linear function of the temporal variable;
• Explain away the seasonal cycle by removing the mean value at each day of the year from each point

on the spatial grid, reducing T l
i, j to the anomaly signal Al

i, j = A(xi, j, tl);
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• Obtain through principal component analysis the first K empirical orthogonal functions of the data
[40],

Al
i, j ≈

K

∑
k=1

σkCk
l EOFk

i, j,

where EOFk
i, j = EOFk(xi j) are static, geographically dependent components of the SST profiles,

and the Ck
l = Ck(tl) capture their magnitude at time tl . The components are sorted according to σk,

proportional to the fraction of the variance of A that they explain.

(We could replace the standard pre-processing by a far more informative one based on the OTBP
methodology, but this would take us too far afield in the current article, it is currently investigated as part
of a general methodology for the analysis of high-dimensional time series.) It is known [41] that the first
EOF component correlates strongly with ENSO events. Figure 18 depicts the first 3 EOFk(x) as well as
their temporal coefficients C1,2,3(t). The prediction task then reduces to forecasting the coefficients Ck

from their lagged observations Cl(t−∆t), with ∆t = 6 months.
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FIG. 18. Upper panels: EOF1,2,3. The red box in EOF1 (left most panel) indicates the region of El Niño events. Lower panel:
C1,2,3

l as a function of time tl .

After approximating the original time series by its first K = 50 EOFs, we split the data into in-
sample (145 years, 1870-2014) and out-of-sample (10 years, 2015-2024) sets. We apply the procedure
to each component Ck independently, so x is a one dimensional outcome. The covariate space z is
multidimensional, consisting of two types of factors: (1) the Cl(t−∆t) with lagged correlation with Ck

of absolute value greater than 0.1, and (2) time-lagged observations of the same component Ck, with
lags of 6, 12, 24, and 36 months.

We restrict the family of functions G and F in Section 6 to include linear and quadratic terms
in y and kernels in z space respectively. We cross-validate over the optimal z-space kernel bandwidth
parameter γz, defined in the appendix. For each value of γz among 40 points uniformly distributed in
[0.2,20], we find the barycenter and compute the `2 norm of the difference between true and predicted
mean, evaluated over the out-of-sample data. The results shown in Figure 19 correspond to the optimal
bandwidth that minimizes the norm of difference.

Figure 19 depicts the prediction of A(x, t), focusing on SST anomalies for December of 2023, 2019,
and 2017, corresponding to El Niño, neutral, and La Niña events. The predictions performance can be
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visually inspected in two different spaces: through the prediction of each EOF component Ck (panel
(a)) and of A(x, t) for specific times t (panel (b)). For the second option, we truncated the prediction to
the first 50 components, which explain above 83% of the variability of the original SST anomaly. In
both spaces, our method always recovers consistent anomalies both globally and locally within the El
Niño region.

(a) The first 3 coefficients Ck(t)
(black) and our prediction (red
for prediction mean, and pink
for one standard deviation away
from prediction mean).
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(b) Anomaly at 3 dates (from left to right: strong El Niño, neutral, strong La Niña), color
limit: ±1.5◦C. The top row displays the ground truth, while the bottom row contains our
prediction, truncated to the top 50 components.

FIG. 19. Forecast 6 months ahead of the global Sea Surface Temperature: (a) visualization of the signal’s first 3 time components,
(b) global anomaly.

10. Summary and discussion

We have developed in this article an efficient methodology for solving the sample-based Monge optimal
transport barycenter problem, which takes as input n observed sample pairs {xi,zi} drawn from an
unknown joint distribution π(x,z), and produces as output n associated samples {yi} from the barycenter
µ of the conditional distributions ρ(x|z) under γ(z) = π(X ,z). In addition, it produces n samples {x∗i }
drawn from the estimated ρ(: |z∗) for any proposed target value z∗ of the covariates z and it estimates
ρ(x|z), instrumental for model-free Bayesian inference. A corollary extends the procedure to solve the
regular [Monge] optimal transport problem.

Central to the methodology and to most of its applications is a formulation of the OTBP not in terms
of the barycenter µ itself but of the underlying random variable y = T (x,z), which must be statistically
independent of the factors z. A test-based formulation of independence through the uncorrelation
between all functions { f (z),g(y)} within suitable functional spaces {F ,G } provides an adversarial
formulation of the OTBP. Since the best adversarial functions f and g can be found exactly in terms
of the first principal components of a matrix A(y), the problem reduces to a single minimization over
the map T . Solving this problem through gradient descent over y yields a flow in phase space that
transports each yi from xi to T (xi,zi). Fortiutously, the resulting map T can be inverted in closed form,
which facilitates much both the simulation and the estimation of ρ(x|z). A byproduct of this closed-form
inversion is the extraction of factors { f k}(z) that encode the dependence of x on z.

Numerical examples illustrate the applicability of the Monge OTBP and the effectiveness of the
methodology proposed. These examples range from synthetic demonstrations of density estimation
and simulation, model-free Bayesian inference and hidden signal discovery, to real data applications
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to weather and climate. Within this article, the latter two are intended only as illustrations of the
algorithm at work. A more in-depth study, which requires further extensions of the methodology, should
be pursued in field-specific contexts.

This article lays the methodology’s general framework. Much more can be done regarding the
adaptive choice of the functional spaces F and G , for which we have proposed here just a handful
of simple choices. Since the range of options to explore on adaptive functional spaces is too broad
for a single article, exploring them further here would take us too far afield. We also choose not to
dwell in this article on other extensions, such as going beyond gradient descent, as required for factor
discovery, or building functional spaces G better-suited for high-dimensional outcome spaces X . We
believe that the proposed methodology can be extended in a number of meaningful directions, making
it an effective, robust, versatile and conceptually sound approach to a broad set of tasks in data analysis.

A. Appendix: a data-adapted functional space

This appendix describes the choice of functional spaces F and G used in our numerical examples. Since
the two constructions are entirely similar, we describe only the space F . Exploring other, potentially
much richer choices of adaptive functional spaces goes beyond this article’s scope.

A.1. Embedding z in an Euclidean space

Since the components of z can be of arbitrary type, including real, periodic, categorical and more (no
so those of y, which are typically real), we first embed z in an Euclidean space Rk as follows. For each
component zl 6∈ R of z,

1. When zl is periodic with period T , we embed it in R2, mapping zl to w on the unit circle,

w
(

zl
)
=

[
cos
(

2π

T
zl
)
,sin

(
2π

T
zl
)]

.

2. When zl is categorical with h discrete values vk, we embed it in Rh−1, mapping the {vk} to h
equidistant points, the vertices of a regular simplex.

3. For variables z of a more complex type, such as images, distributions or graphs, we introduce an
application-specific distance among them and embed them into some Rh accordingly.

Having done this, we can restrict attention to Z = Rdz .

A.2. Approximation of functions through mollifiers of the delta function

For any function f (z) and any probability density γ(z), we have

γ(z) =
∫

γ
(
z′
)

δ
(
z− z′

)
dz′, f (z) =

∫
f
(
z′
)

δ
(
z− z′

)
dz′ =

∫
f
(
z′
) δ (z− z′)∫

γ (z′′)δ (z′− z′′)dz′′
γ
(
z′
)

dz′

(Notice that the last expression is only valid for values of z within the support of the distribution γ .)
Mollifying δ (x− y) into a smooth non-negative function K(x,y) that concentrates near x = y and

integrates to 1 over x, we have

f (z)≈
∫

f
(
z′
) K (z,z′)∫

γ (z′′)K (z′,z′′)dz′′
γ
(
z′
)

dz′,
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which in terms of samples zc
j ∼ γ(z) yields the empirical version

f (z)≈∑
j

f
(
zc

j
) K

(
z,zc

j

)
∑h K

(
zc

j,z
c
h

) . (A.1)

Notice that the normalization factor for the weights in this formula is different from the one in kernel
regression, which is z-dependent:

w j
KR =

K
(

z,zc
j

)
∑h K

(
z,zc

h

) .
Unlike kernel regression, our approximation is based on the distribution underlying the {zc

j}. Notice
also that nothing in our argument requires K(x,y) to be a symmetric function, so it is not a “kernel” in
the conventional sense. This allows us to use center-dependent bandwidths, coarser where the data is
sparser.

If K is a smooth function of z, so is the right-hand side of (A.1) for any choice of f
(

zc
j

)
. We

conclude that the expression

f (z) = ∑
j

a j

K
(

z,zc
j

)
∑h K

(
zc

j,z
c
h

)
parameterizes arbitrary smooth functions of z within the support of γ(z). Since the denominator does
not depend on z, we can absorb it into the definition of a j, which yields

f (z) = F(z)a, F j(z) = K
(
z,zc

j
)
, (A.2)

where it is no longer required that the {F j(z)} integrate to one, since the corresponding normalizing
constants can also be absorbed into the {a j}. Then the space F of smooth functions f (z) agrees with
the column space of the operator F . In order to consider functions with zero mean, it is enough to
subtract the mean of each column of F .

There is no need for the set of centers {zc
j} for K and the set of points {zi} where f is to be evaluated

to agree; it is enough that the support of the distribution γ underlying the former contains the support
of the latter. Thus, when z is restricted to the sample points {zi}, F(z) is a rectangular matrix. Using a
number m� n of centers reduces the computational cost associated to evaluating the kernels. Moreover,
when applied to g(y), one needs to decouple the centers {yc

j} from the samples {yi}, as only the latter
are arguments over which the objective function L is minimized.

The centers {zc
i } should be well-balanced and representative of the distribution underlying the {zi}.

A simple procedure for selecting m� n centers satisfying these conditions is through k-means applied
to the {zi}, which has been the choice adopted for all examples in Section 9, where we have set m =
min([

√
n],mmax), with mmax set by the user. Notice that, when we embed periodic or discrete zl in Rd ,

the corresponding l-component of the centers zc
j need not lie on the unit circle or on the vertices of a

simplex.
We adopted for K(z,zc) a Gaussian function with center-dependent inverse covariance matrix S j =

S(zc
j):

K
(
z,zc

j
)
= e−

1
2

(
z−zc

j

)′
S j

(
z−zc

j

)
.
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A.3. Data-adapted determination of bandwidths

Tuning the {S j} is critical for extracting as much dependence of x on z as possible, by capturing the
right functions f (z) and g(y). A simple example illustrates how the appropriateness of a functional
space for f (z) depends not just on the samples {zi} but also on the {xi}. Consider a situation where x
depends only on the first component z1 of a multidimensional z ∈ Rk, i.e. x ∼ ρ(: |z1). Capturing this
dependence requires a family of functions f (z) that depend only on z1. The ideal S j for this adopt the
form

S j ∝ e1e1
′, e1 = (1,0, . . . ,0)′,

since these yield functions K(z,zc) of z1 alone, disregarding all other components of both z and zc. One
would not have been able to make these selection from only looking at the {zi}.

Similarly, consider a situation where the distribution of x depends on z through some functions
fk(z), with the strength of this dependence quantified by numbers σk, 0 ≤ σk ≤ 1. An appropriate set
{S j} could adopt the form

S j ∝ ∑
k

σkvkvk
′, vk = ∇z fk(z)

∣∣
zc

j
,

so that K(z,zc) changes only in the span of the local {∇z fk}, weighted by their relevance. Thus, an
appropriate choice of the {S j} yields mollifiers K j(z,zc

j) of δ (z− zc
j) that single out the sub-manifold of

the tangent space to Z at zc
j on which y may depend.

Yet we do not know the form of this dependence before hand, since determining it is precisely our
algorithm’s goal. Thus we first make a choice based not on the relation between x and z but on the
data available for each. We can subsequently refine this choice by iteratively capturing the dependence
between z and x, though we do not pursue such refinement within this article, other than through some
straightforward cross-validation sketched below.

A.3.1. Initial determination of the {S0
j}

The most natural function f (z) to attempt to capture when looking only at the {zi} is their underlying
probability density γ(z). We apply the following adaptive procedure to determine the corresponding
{S0

j}.

1. Compute first a global empirical mollified covariance matrix Σ and its inverse Sg,

Σ
kl =

1
m

m

∑
i=1

(
(zc

i )
k− z̄k

)(
(zc

i )
l− z̄l

)
+ εI, ε =

var(z)
m

, Sg = Σ
−1.

2. Introducing an adjustable parameter α , define

K j
i = Kg

(
zc

i ,z
c
j
)
= e−

1
2α2

(
zc
i−zc

j

)′
Sg

(
zc
i−zc

j

)
,

estimate γ i
α (zc

i ) through leave-one-out kernel density estimation,

γ
i
α (zc

i ) ∝
1

αd ∑
j 6=i

K j
i ,

determine α through leave-one-out maximal likelihood,

α
∗ = argmax

α
L =

m

∑
i=1

log
(
γ

i
α (zc

i )
)
,
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and define accordingly Sα∗ =
Sg

α2∗
. A practical choice is to maximize L over a finite set of candidate

α’s centered around the rule-of-thumb value

αr.o.th. =

( 4
d+2

) 1
d+4

m
1

d+4
.

3. Next rescale the Sα∗ locally using the estimated γ i
α∗ ,

S j =
(
γα∗

(
zc

j
)) 2

d Sα∗ ,

so that the the number of points {zc
i } within the effective support of the corresponding function

K(z,zc
j) is roughly independent of j.

4. Finally, introducing a new global adjustable parameter β , write

Kβ

j (z) = e
− 1

2β2

(
z−zc

j

)′
S j

(
z−zc

j

)
,

with β determined again through leave-one-out maximal likelihood:

β∗ = argmax
β

L =
m

∑
i=1

log
(
γβ (z

c
i )
)
, γβ (z

c
i ) ∝

1
β d ∑

j 6=i

K j
i

γα∗

(
zc

j

) , K j
i = Kβ

j (z
c
i ) ,

and define

S0
j =

S j

β 2
∗
.

The procedure so far is automatic and based exclusively on the datapoints {zi}. Yet there are at
least two reasons why we may want to add one or more free parameters to the determination of the
bandwidths. One is that, as discussed above, the ideal S j should depend not just on the {zi} but also
on their relation to the {xi}. One straightforward way to address this dependence is through cross-
validation over such free parameters. The second reason is that often the bandwidths are determined
not by the data alone but also from the scales that one would like to resolve, as in the multi time-
scale analysis of ground temperature of Section 9.6. In view of this, we divide our S j by an externally
provided constant γz

2, which we either set based on the scales that we have chosen to resolve, as in
Section 9.6, or cross-validate over, as in the prediction of global sea surface temperature in Section 9.7.

A.4. The case of time-like variables z

The discussion above applies to bounded variables z, all smooth functions of which can be approximated
through kernels centered at a relatively small number of well-chosen points {zc

i }. Yet in time series-
analysis, some of the z’s can consist of time itself under different scalings (such as z3,4 in the ground-
temperature example of Section 9.6.) The number of centers required for such time-like variables grows
linearly with the time-extent of the data, which could be very large. From a practical perspective, the
problem of such secular growth is that the computation of the orthogonal matrix Qz from F requires
finding the dominant singular components of a potentially vary large matrix F , a computationally costly
task.
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Yet this problem comes with its own solution. Even though F is large, it is also very sparse,
since K(t1, t2) can be made to vanish for time pairs such that |t2− t1| is much larger than the kernel’s
bandwidth. The computational cost of finding the principal components of large but sparse matrices
grows only linearly with the number of a matrix rows.
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