Problem: Estimating an imperfect model with sparse
data from a system with complex and non-stationary
dynamics.

Importance: This is a common problem in fields like
medicine and physiological modeling, where
measurements are sparse, and the system dynamics
are non-stationary due to factors such as system
complexity, illness, and medical interventions.
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e Sparse data and imperfect models prevent accurate model estimation.

e A multiobjective optimization methodology is developed to tackle these
challenges.

e The multiobjective loss function simultaneously minimizes pointwise
and distributional error metrics.

e The multiobjective loss function allows estimated parameters to vary
along the estimation interval.

e This approach produced accurate model estimation and calibration.
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Abstract

This article develops a novel multiobjective data assimilation methodology,
addressing challenges that are common in real-world settings, such as se-
vere sparsity of observations, lack of reliable models, and non-stationarity
of the system dynamics. These challenges often cause issues and can con-
found model parameter estimation and initialization that can lead to esti-
mated models with unrealistic qualitative dynamics and induce qualitative
and quantitative parameter estimation errors. The proposed multiobjective
function is constructed as a sum of components, each serving a different
purpose: enforcing point-wise and distribution-wise agreement between data
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and model output, enforcing agreement of variables and parameters with a
model provided, and penalizing unrealistic rapid parameter changes, unless
they are due to external drivers or interventions. This methodology was
motivated by, developed and evaluated in the context of estimating blood
glucose levels in different medical settings. Both simulated and real data
are used to evaluate the methodology from different perspectives, such as its
ability to estimate unmeasured variables, its ability to reproduce the correct
qualitative blood glucose dynamics, how it manages non-stationarity, and
how it performs when given a range of dense and severely sparse data. The
results show that a multicomponent cost function can balance the minimiza-
tion of point-wise errors with global properties, robustly preserving correct
qualitative dynamics and managing data sparsity.

Keywords: dynamical system, data sparsity, non-stationarity, data
assimilation, optimization, glucose-insulin system modeling

1. Introduction

Physiological systems, an archetypical example of complex biological sys-
tems, can be difficult to estimate because they tend to display at least some
of the following characteristics:

1. Lack of reliable models. Many such systems are only partially un-
derstood, and certainly rarely understood to the point where a well-
defined model provides an accurate surrogate for the underlying pro-
cesses. Even in situations where those processes can be captured by
models to some degree —think general circulation models for weather
forecasting— typically a large number of model parameters remain un-
determined.

2. Latent and emerging bulk variables. The phase-space of complex
systems is high dimensional, while only a handful of variables are ob-
served systematically. The value of the remaining, latent variables can
only be inferred indirectly from the observations, if at all. Since the full
set of latent variables is often too large and hard to pinpoint, it is useful
to consider instead emerging bulk variables, a small set of parameters
representing a larger set of unmeasured variables and processes that
affect the dynamics in a coherent way.

3. Sparse observations. Usually complex systems may be observed not
only partially, but also at a sparse set of times, leaving the observations



insufficient to even marginally resolve some of its dynamically signifi-
cant time-scales. The timing of these observations may be structured
(for instance by a medical protocol), event-driven or purely random.

4. Prior knowledge. Even though a detailed model of the underlying
processes may be unavailable, one often has some prior information
on the system’s dynamics, such as the expected presence of oscillations
and their typical frequency and amplitude, or the difference in behavior
between driven and unforced scenarios.

5. Non-stationarity. The system’s underlying dynamics may evolve over
time, due either to external drivers or to un-modeled components of
the system. Non-stationarity may manifest itself through a slow time
modulation of the model’s parameters.

Estimating from data models such as ordinary, partial, and stochastic
differential equations of complex biological systems is performed through
data assimilation (DA) [48, 47]. The above characteristics tend to lead to
non-convex optimization problems that are not guaranteed to have a single
optimal solution. Moreover, in the case of nonlinear optimization, we cannot
know if we have found said solution, unless the model’s parameters and
state space we search over have properties such as an absence of bifurcation
points [46]. Additionally, in many situations, particularly when data are
sparse, different objective functions, e.g., least squares versus distributional
minimization, can also lead to different objective functions which often do not
have the same optimal solutions. Together these sources of non-uniqueness
of the meaning of optimal must be reconciled with the purpose of the model
estimation, which can vary from the validation of a scientific hypothesis to
supporting decision making.

To address DA to estimate complex biological models in the context
where we may have limited knowledge, sparse data and diverse estimation
needs, we propose to use multiobjective optimization [42], scalarized through
a weighted sum of different objective functions to balance goals, such as
minimizing distributional versus point-wise estimation errors and penalizing
fast variability of the model’s parameters. Even though multiobjective op-
timization has a longer history in decision theory [43, 44, 45| than in DA,
it be directly applied to DA’s optimization framework and its multiple goals
[47, 48|.

There are broadly two ways of managing multiobjective optimization:
scalarization and creation of a utility function that include all the objectives



and are heuristic and task-specific. These two approaches can sometimes
be unified, as recently shown in the case of R2 utility functions [42]. Here
we will propose a new set of objectives and a scalarized objective function
that is a weighted sum of likelihood functions. We show and demonstrate
qualitatively that the multiobjective optimization function we construct helps
address many of the roadblocks to estimating complex biological systems
mentioned above.

1.1. Motivating example from physiological modeling within medicine

To explicitly demonstrate the abstract problems raised above, and to
motivate the need for multiobjective optimization in the biological context,
we start by showing one example: a particularly vexing but also commonly
observed problem computing parameter initializations for DA using sparse
data [4, 2, 5, 8] with the goal of estimating and forecasting endocrine function
related to blood glucose regulation. While this example is drawn from a
particular case from our recent work [4] in the ICU, we have observed similar
issues in many contexts, including in critical care in the intensive care unit
(ICU) [31, 4, 38, 30, 36|, type-2 diabetes |2, 3, 21] and outpatient or in the
wild settings [24, 37, 41].

The origin of these problems can be traced to sources that include model
rigidity, data sparsity, non-stationarity and the presence of errors in the
recorded measurement times. These problems appear in the context of min-
imizing a single loss objective though various algorithmic structures (e.g.,
Kalman, active set, interior point, Nelder-Mead, etc.), which under sparse
data can completely mis-specify the system’s true dynamics (replacing for
instance an unresolved oscillatory signal by its mean value.) While we have
faced these problems in DA initialization in biomedicine, their sources gener-
alize to a broader range of other fields such as atmospheric physics [40, 25].
Thus this paper addresses general, highly related problems encountered when
estimating an imperfect model with data from a system that generates com-
plex, non-stationary dynamics and is severely under-measured [4, 8|.

To demonstrate how standard methods can fail in realistic settings, con-
sider an application to estimating the states and parameters of a glucose-
insulin model given sparse data taken during a stay at an intensive care unit
(ICU) [4]. Data includes continuously measured tube-administered nutrition,
point-wise blood glucose measurements collected according to clinical proto-
cols [16, 26|, usually about once an hour, administered insulin and its type,
but never plasma or interstitial insulin measurements. In the ICU, where
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nutrition administration is roughly constant because of its administration
via a tube feed, blood glucose and insulin oscillate out of phase on the or-
der of tens of minutes [35]. The model we estimate is the Ultradian model
[35, 19, 2, 4, 38| that includes blood glucose, blood insulin, remote (intersti-
tial) insulin, and a three state delay approximated with the linear-chain-trick
[34]. For purposes of demonstration we estimate the model with a version of
an ensemble Kalman filter (EnKF), initializing the parameters at the nominal
parameters for the model [35, 2| as in the prior work from which this motiva-
tion was drawn [4, 38]. Because blood and remote insulin are never measured,
the model is not identifiable, but can still be estimated with some accuracy
under many circumstances |2, 4, 38, 3]. We focus on this example for four
reasons. First, this situation poses a real world problem [29, 9, 13, 4, 38] and
is highly representative of many biomedical and health care settings where
the system is non-stationary with complex dynamics and data are sparely
measured. Second, within this real world context, the forecasting and esti-
mation needs are diverse and dependent on the decision-needs, raising the
potential need for multiobjective optimization. For example, there are sit-
uations where: (a) only parameter estimates are important but next-step
glucose prediction is not, (b) next-step glucose prediction is important but
accurate parameter estimates are not, (¢) only accurate point-wise glucose
forecasting is important, and (d) accurate parameter estimates and distri-
butional glucose forecasting are important but accurate point-wise glucose
forecasting is not. This final case is likely to be the most common situation
in applied settings. Third, we have a qualitative understanding of the under-
lying dynamics of the data-generating system, including both glucose-insulin
system and the measurement processes and protocols [14, 15|, and fourth,
the measurements of this system are sparse in time compared to the com-
plexity of the underlying dynamics, with measurement times that may not
be entirely random.
Operationally, we make the following assumptions:

a. we know the generating dynamics correspond to a driven and damped
system that elicits a nondescript noisy (potentially chaotic or otherwise
random) oscillatory orbit;

b. measurements are taken infrequently enough that the spectral compo-
sition of the orbit is difficult or impossible to resolve from the data
alone;

c. reporting of the measurement times has nontrivial errors.
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Figure 1: Estimating and forecasting glucose trajectories for two patients in the ICU. The
plot on the left shows accurate estimation and forecasting almost immediately (< 1 day,
< 6 data points ) while the plot on the right shows poor estimation and prediction until
about day 5 (~ 125 data points). Sources leading to model estimation accuracy include a
complex interplay between data sparsity leading to model identifiability problems (Figs.
2-3) and model initialization.

In such a setting it may be difficult or impossible to find a set of initial con-
ditions and parameters that minimize point-wise errors between the model
and data and correspond to a solution that is not a fixed point. The reason
why a fixed point solution is a plausible and often computed error minimiz-
ing parameter set is because a fixed point whose value is the mean of the
data set is a solution with relatively low and bounded point-wise error. How-
ever, when we know that the generating system has oscillatory dynamics,
such fixed point solutions to the inverse problem (the estimated model pa-
rameters, states and initial conditions) must be wrong: even though the
estimated parameters minimize the least squared error, they produce quali-
tatively wrong dynamics. The root of this problem lies in how we quantify
what it means for a model estimate to be wrong, which is directly embedded
within the objective function we optimize. When the generating dynamics
are complex and sparsely measured, we have frequently encountered the situ-
ation where least squared error minimizing parameters produce qualitatively
wrong generating dynamics.

To demonstrate the problem, begin with the case where patient 426’s data
are estimated with the ensemble Kalman filter (EnKF), shown in Fig. la,
where the model is initialized with nominal parameters of a healthy adult
(This is not the smoothing case addressed in this paper, we will come to
those results in a moment.) Here we can see that the model estimation
converges within about 1—1.5 days, the ensemble mean oscillates as we might
expect, the uncertainty in the estimate is reasonable, and these data are



Plasma Insulin Measurement vs Forecasts ~ stitial Insulin vs Forecasts

000"

800 -
600 ‘S

) g
400 *

Plasma insulin (pmol/L)
Interstitial insulin (pmol/L)

&
®
o
¢ @
200 1 ) % Sarbesn o
o [t 3
T ating 0T ot g e 100¢ T st g, ogpaase
0 . . . . . . .
2 4 6 8 10 12 14 16 18 [ 2 4 6 8 10 12 14 16 18
Time (days) Time (days)

(a) (b)

Figure 2: In the ICU, insulin, one of the states that defines the glucose-insulin system and
should be in the range of 25-400 picomoles per liter (pmol/1), is never measured. This can
lead to model estimation and initialization problems, as seen in Fig. 1. Here we see the
estimated interstitial and plasma insulin levels that are driving the forecasting errors seen
in Fig. 1b. Note that after about 5 days the model does eventually entrain to the patient
and the insulin estimates take physiologically plausible values.

reasonably well predicted by the model-based forecast [4]. This is an example
of what successful estimation and forecasting looks given such data. A less
successful estimation attempt is shown in Fig. 1b where we estimate patient
593’s data. In this case it takes ~ 4.5 days for the model to entrain to the
patient. Initially the EnKF estimates produce blood glucose values far below
what would represent a living human, and the glycemic dynamics are not
oscillatory. Figure 2 reveals two problems. First, a severe source of estimation
error is due to model identifiability, the unmeasured insulin states (blood and
remote insulin) take values far above what is possible until about day 4.5,
the point where the model has converged such that the ensemble mean is
tracking the glycemic dynamics. Second but seemingly less problematic, the
model was not initialized with accurate parameters as can be seen by the 4.5
days worth of data it takes the EnKF to tune parameters to entrain to the
patient. These two problems have two naively obvious solutions.

One approach toward solving the first problem, identifiability failure due
to unmeasured model states, is to constrain the unmeasured states to oc-
cupy plausible ranges. In prior work we developed a constrained version
of the EnKF [5]. This constrained (CEnKF) algorithm uses the standard
EnKF framework, checks after the update step if any of ensemble particles
lie outside the predefined constraint region, and if any particles lie outside
the constraint region, the algorithm invokes a quadratic program to solve
for parameter values that bring the particles inside the constrained region.
The results of applying this method can be seen in Fig 3a. With applied



constraints the model converges within about 1.5 days compared to the 4.5
days in the unconstrained case, a substantial two-thirds decrease in time to
convergence. Details of these results can be found in refs. [4, 5]. Comparing
Figs. 2 and Fig. 3b we can see the constraints’ impact on the unmeasured
insulin, forcing the insulin to take more reasonable values. Additionally in
Fig. 3c we can observe the parameter trajectory that shows a relatively
steep parameter changes within the first 1.5 days, and in Fig. 3d we can see
the proportion of particles that violate the constraints for each data point
or iteration of the CEnKF. Within about 20 data points, the constraints
are usually satisfied, and it was only the insulin values that were violating
the constraints. However, imposing the constraints brings unintended con-
sequences that are at the core for the motivation in this paper. Figure 3e
shows the particle trajectories within the EnKF ensemble, and the varia-
tion of the mean. It appears that the constraints have changed the model
dynamics from oscillatory to fixed points. Meaning, the EnKF variance is
mostly constructed from variations in the fixed point location according to
the variation within the ensemble in parameter space. The end result of this
demonstrates that constraining the model states (a) does help solve the iden-
tifiability problem, (b) is not enough to fully solve the initialization problem
and (c¢) may have unintended consequences related to the model dynamics
that may require a more complex objective function to manage. Specifically,
the optimal solution tends toward a fixed point of the dynamical system, a
solution we know to be wrong, implying that the constrained model dynamics
may not be representative of the underlying system we know to exist.

A naive idea we thought might work to solve the parameter initialization
problem was to run deterministic optimization, bootstrapping over a few
thousand random initial conditions using the first 24 hours of data. Then,
the outcome from this calculation would be used to initialize parameters and
states for the EnKF. Notably, this application represents the DA smoothing
case that we address in this paper. The results of this effort for both pa-
tients 426 and 593 are shown in Fig. 4. This initialization indeed reduces
the MSE between the EnKF ensemble mean and these data. However, for
patient 593, shown in Fig. 4a, the oscillatory glycemic dynamics are com-
pletely gone and have been replaced with strongly attracting fixed points
whose variation is due to the parameter ensemble of the EnKF. If we apply
the same parameter initialization procedure to patient 426’s data, we find
something even more interesting. The dynamics of the particles inside the
ensemble for the model initialized with these optimized parameters, shown
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Figure 3: Patient 593’s glucose trajectory (a) and insulin states (b) estimated with the
constrained EnKF, the constrained parameter estimate trajectory (c), the percentage of
particles violating the constraints per data point for estimated model states and parameters
(d), and the individual ensemble particle trajectories for 593’s estimated glucose trajectory
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in Fig. 4b, have several simultaneously present, topologically different orbits
ranging from fixed points with different attraction rates to periodic orbits.
The naive constrained DA did substantially reduce MSE, and in doing so, led
to error minimizing parameters at a bifurcation point. This observation is
problematic given recent guarantees on unique solutions for such optimiza-
tion problems require searching over parameters sets that omit bifurcation
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Figure 4: Constrained EnKF forecasts using parameter initializations computed by opti-
mizing over the patient’s first 24 hours of data. Plot (a) shows patient 593’s individual
ensemble particle trajectories of the estimated glucose trajectory, (b) shows patient 426’s
individual ensemble particle trajectories of the estimated glucose trajectory. Note the
particle ensembles are taken over estimated states and parameters. For patient 593 the
glycemic dynamics are wrong, they should be oscillatory instead of a strongly attracting
fixed point. For patient 426, the glycemic dynamics are representative of a bifurcation
point demonstrating several topologically distinct orbits within the same CEnKF ensem-
ble.

points [46]. But more to the point, the algorithms are doing exactly what we
would expect given these sparse data. A bifurcation point is a particularly
useful location in parameter space from the functional approximation theory
perspective because a bifurcation point provides a diverse set of functions to
use to estimate the mean and variance of data. Meaning, for standard least
squares minimization for problems with sparse data, it makes sense that the
optimization algorithm will seek out bifurcation points to estimate data.

To address these problems we need to include more structure in the
loss function beyond minimizing the MSE between an ensemble average and
data subject to constraints—we need a multiobjective function to optimize.
We want to (a) minimize the MSE between an ensemble average and data
while(b) ensuring that other global features such as measure-theoretic and
topological properties are also accurately characterized and (c¢) forcing the
estimation process to respect the model. This requires a more diverse loss
function structure, and establishing how to formulate and estimate such a
loss function is the point of this work.

1.2. Outline of our multi-objective function approach

The approach that we propose diverges from the motivational example
in a few ways. First, we focus on the DA smoothing case rather than the
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filtering case. Second, because we construct a multiobjective function, we do
not use Kalman inversion or filtering methods that minimize the conditional
mean of these data. Third, in order to account for model and measurement
uncertainty, we estimate these data with a stochastic differential equation
rather than an ordinary differential equation. The stochastic model of the
evolution of the system’s state needs not be necessarily accurate or fully based
on field-specific knowledge, but rather flexible and tailored to the qualitative
nature of the expected dynamics, noisy oscillations in our study case. The
model we use for our examples also allows us to write the corresponding like-
lihood functions analytically (see the appendix.) The model has observable
variables {27} directly relatable to the observations {y’} at times {t/} of the
system’s state Y%, which represents the system as a whole in an abstract
manner, latent or emerging bulk variables {27} that are not observed, and
parameters «. Examples for x and z are the blood stream’s glucose, and the
insulin content and associated biophysical processes respectively. We pro-
pose to estimate the model’s parameters and the system’s current state, and
forecast its evolution under candidate interventions, through a methodology
that includes the following ingredients:

1. A quantification of the agreement between the {z7} and {4’} that is not
only point but also distribution-wise. This addresses in particular the
pitfall described above of wrongly approximating an oscillatory signal
by its mean: a constant value may be a model’s local minimizer of
the point-wise squared distance to an oscillatory signal, but not in a
distributional sense.

2. A slow modulation over time of said distribution and of the model’s
parameters «, to capture non-stationarity. In other words, we allow
both the distribution and the parameter values to vary over time (or
flex) within the estimation window to some degree.

3. A three staged methodology that first initializes the model’s parame-
ters a and the observable variables {27}, then maximizes an objective
function only over the latent variables {27}, and only then performs
a full-fledged maximization of the objective function over all variables
and parameters. The reasons for such a staged approach are that, with-
out sensible model parameter values, it is hopeless to try to estimate
the latent variables z and, without sensible values for z, any use of
the model to estimate x and « is equally doomed. Thus the first es-
timate for the x is based only on their closeness to the observations y
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(point and distribution-wise), the first estimate for the model param-
eters a depends only on the observable variables x, not the latent z,
and the first estimation for z is based on the dynamical model using
those temporarily estimated values for x and a.

4. A way to handle interventions not included in the model and potentially
not fully measured. No bio-physical model can capture all possible in-
terventions, which in our motivating example may range from regular
interventions, such as food intake and administered insulin, to more
individual ones, such as drug administration or unexpected external
developments. For those interventions not explicitly accounted for in
the model, we allow the model’s state and parameters to behave dis-
continuously at the intervention times, where the jumps’ permissible
amplitude depends only on an estimate of the intervention’s intensity.
This approach permits handling not only external interventions but
also more general regime changes.

In order to account for this multiplicity of requirements, we propose an
objective function that is additive over various components, described in
section 2.

2. A new multiobjective approach to DA smoothing and initializa-
tion

We propose an objective function L built as a weighted sum of compo-
nents Ly, each serving a different purpose. Recall that {z7}} represent the
observable variables, {z7}} represent the unobserved, latent variables, and
{y}} represent the observations. Then,

L, quantifies the point-wise agreement between the {2’} and the {y’}.

Ly quantifies distribution-wise agreement between the {27} and the {y’},
in terms of a slowly modulated invariant measure. L; and Lo are the
only components of L involving the {y’}.

L3 and L, quantify the agreement of variables and parameters with the
model provided, with two conditional distributions, one forecasting
{27} and the other the {27} (In our model, z and z are conditionally
independent given the prior state and the value of the parameters.)

Ly ,withk=4+1and [ =1,...n,, penalizes variations of the parameter
oy over time, where n,, is the number of parameters estimated over their
respective estimation ranges.
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Notably, while L; and L, are reasonably standard, L; for k& > 2 represent
novel deviations from standard methods.

2.1. Defining data with measurement functions

Data are accumulated by measuring the underlying system at times {#’}
where j indexes the ordering of these data. Measurements {3’} are taken
according to the measurement function h operating on the unknowable state
of the system at time ¢/, denoted by Y*, according to:

Y=y () =h (V) +n", (1)

where n represents noise. More generally, a measurement y is drawn from a
probability distribution

v o ().

These measurement functions, h or p, can have dynamics of their own
and be represented by dynamical systems or stochastic processes. In biomedicine
broadly and biomedical informatics specifically, the measurement process are
part of the health care process [14]. Human health can be non-stationary on
multiple time scales, and patients are often only measured for a reason, but
sometimes are measured according to clinical protocols [39, 16]. Such pro-
cesses can have very complex missingness properties |28, 27]. Additionally,
measurement processes can impact effective time parameterizations [18], and
lead to signals being present due to inadvertently combining differently mea-
sured, statistically different processes that originate from the same source [6].
The net sum is that it can be important to conceptualize measurement pro-
cesses as dynamical systems or stochastic processes with potentially complex
properties and interdependencies.

2.2. Point-wise agreement: L,

We would like our 27 to be close to the y7. Typically, one would translate
this into the minimization of a loss function, such as

1 , i\ 2
it J_ i
oD =)
J
More generally, we can have a probability
p°(ylz)
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of observing y under current state x. Conceptually, this is the result of
composing two probability distributions, one for the actual state ) given x,
and the other for the observation y given }:

P (ylz) = / YY) V) 4.

Then we maximize the log-likelihood of these data:
1 S
L =— 1 °(y]2?) | .
max Ly n; og [p” (y']+”)]

Minimizing the sum of squared differences corresponds to a Gaussian as-
sumption on p°. Given measurement processes, this assumption may or may
not be valid, but we will not directly address potential related issues here.
Even so, this objective function is likely to be too restrictive given the re-
alities of data, as it requires each 27 to be close to the observed 37: some
1’ may be outliers that we do not necessarily want our 27 to adjust to and,
more generally, the model may have a hard time adjusting so as to pass near
all observations. To account for this, we mollify p°, writing

1 . .
Li==) log[(1—e)p°(y]a? 0 (y?
max Ly n; og [(1 = €)p” (¥/|27) + o (v)] .
where € ~ O(2) and
1
Py =—D K (uy)
l
is a kernel-based estimation of the probability of y lacking any accompanying

x. For our experiments, we have adopted for K¥ a Gaussian kernel with
bandwidth determined by the rule of thumb:

-(®).
3n

where n is the number of observations and o their empirical standard devi-
ation.
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2.3. Invariant measure agreement: Lo

A more global constraint on the {z7} is that their invariant measure p*
be close to the p? underlying the {y}.

There is more than one sample-friendly way to enforce the equality of
p"(2) and p¥(z). A weak formulation for their equality is that

[P i = [P a
must hold for all measurable test functions F', with sample-based represen-
tation . .
D F@) =) F(y).
J J

Yet we do not really need to try all possible test functions: the choice
F(z) = p"(2) — p(z) yields

[P - o) d: = [ (7 - )" d,

a non-negative quantity that vanishes if and only if p* and pY agree. We
implement this through a simple kernel density estimation:

PR = K ), =S ().

with bandwidths given by the rule of thumb as above. In order to allow the
measures to evolve slowly over time, we use conditional distributions instead,

P (z|t) = mszf (2,2") K* (t,1')
’ !

o (z|t) = m ;Ky (z,yl) Kt (t, tz) ’

where the kernel K' has a bandwidth 7; to be determined below, which
quantifies the regime modulation’s timescale. Then we propose

o= _% ST 0) — F (4 0), F(0) = 510 — oGl
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2.4. Agreement with the model and parameters’ modulation: Ls, Ly, Ly

The maximizations above were carried out over the {27} alone, with no
reference made so far to the model’s parameters and its latent variables
{z7}. In order to account for these, we add the likelihood of the transition
probabilities

Ls = %Zlog [px (a:j|xj_1,zj_1, Atj,aj)} ,
J

_ Z (0| pdi—1 Li—1 J aJ
L4_n gj log[p (z |2/ 2 ,At,a)].

Here
A" = " — tnfl

and we assume that the model’s transitional probabilities p* and p?, depend-
ing on parameters «, are given in a closed form. For the examples below, we
have adopted a general model for oscillatory behavior, described in the next
subsection.

In order to allow the model’s parameters o; to evolve slowly over time,
we introduce a transitional probability for them too:

1 o .
L4+l = ﬁ Zlog [pl ((Xﬂag_l; Atj)] 3
J

for which we propose
af P~ N [da] + (1—d) au, (1—d) o]

Here &; is a prior value of a; we would like the model to relax to when
measurements take long to arrive —this parameter can be either externally
provided, estimated or made part of the optimization—, o; is the uncertainty
in the parameter, and d' is a decaying weight starting at 1 and ending up at
0: _
. Atd

dl =e T,
with the same long time-scale T; adopted for the modulation of the invariant
measure. While we choose a generic decay, the decay could be adapted
according to a particular application, or devised based on external knowledge.
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2.5. Canonical oscillatory model

In section 1.1 we posed a motivating problem of estimating a system that
oscillates but that is measured sparsely in time, leading to plausible model
solutions that have qualitatively wrong dynamics. This motivational exam-
ple included two notable assumptions. First, we assumed data were sampled
sparsely enough that dynamical properties such as the oscillatory frequencies
would be difficult to exactly estimate. Second, we assumed a highly specific
parameterized family of models, an ODE model of glucose-insulin mechanics
[35], to estimate these oscillatory data. The parameterized nature of mecha-
nistic ordinary, partial, or stochastic differential equation-based models have
an underlying rigidity that yields benefits such as interpretability and esti-
mation with relatively little data. Such models also have drawbacks such as
solutions that minimize least squared errors that lie at bifurcation points or
produce qualitatively wrong dynamics.

To address these problems, we proposed a new method for estimating pa-
rameterized models. This new procedure assumes the availability of a param-
eterized stochastic model of the dynamics underlying x and z. Additionally,
the model must be a parameterized family whose transitional probabilities
are given in closed form for which we can readily compute derivatives. For the
experiments of this article, rather than adopting a highly-specific, complex,
and biophysically motivated model as was used in the opening example, we
developed a generic model for oscillatory behavior, in the spirit of the simple
stochastic system of equations

dr = (wz—vyx) dt+odW
dz = —w x dt,

where w models the frequency of the oscillations and o their variability, which
together with the damping parameter v determines their mean amplitude.
This model can have both oscillatory and fixed point mean dynamics de-
pending on model parameters, and importantly, oscillatory frequencies that
are relatively rigid, limited, and parameter-dependent, mimicking the rigid-
ity of parameterized families of, e.g., mechanistic ODE models. This model
also comes with the additional benefit of allowing us to test how much of the
dynamics present in the data we can capture with a generic, simple, but still
interpretable model. Our methodology requires explicit expressions for the
distributions of 271, 27! in terms of their values at the previous observation
time #/, which could be obtained by solving the system above. Instead, we
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propose an alternative system, which is given directly by a discrete transition
probability model. Since oscillatory behavior is most naturally described in
polar coordinates, we introduce the notation

Z’I’L
= \/<xn _ b”)2 + (z")2, " = arg tan (a}" — b") ,

where b represents the local mean around which x oscillates. Then we propose
the following transition probabilities:

xn+1 ~ N [bn+1 T 7,1+1 cos (9n+1) ’0_2] ’

Zn+1 ~ N |:T1+1 sin (9n+1) ’0_2] 7

where A
1 1 -4
=0 —=d)a"t +dl ", dl=e T

models relaxation of r toward the local oscillation amplitude a, with a time-
scale Ty typically shorter than the modulation scale 7T}, and

O = " 4 WAL

models a linear evolution of the phase 8 at the local frequency w.

Thus we pose two time-scales: T, and T;, for “short” and “long.” The
first is a component of the model, quantifying how fast the current state is
forgotten. The second is the time-scale over which the model itself changes,
through the slow modulation of its parameters.

2.6. Extension to account for regime shifts and abrupt interventions

Next we extend the methodology to systems with drivers, such as nutri-
tion consumption driving the evolution of blood glucose, that are not explic-
itly incorporated into the dynamical model. We model these drivers as acting
instantaneously, through impulsive forcings at known times k; with specified
intensities I;. Rather than modeling the effect of the forcing on the system
directly, we will think of it as a break that partially decouples the system’s
state and its ruling parameters before and after the intervention, with the
strength of the decoupling proportional to the intervention’s intensity. This
applies more generally to sudden regime shifts, not necessarily driven by an
external driver.
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Since most of the coupling between successive times in our model depends
exponentially of the interval At;, we can weaken this coupling by increasing
the effective interval to

Ati — Atl + al j

whenever the time k; falls within the interval At; (We need to take care
to keep the original At; when they multiply the frequency w, as this corre-
sponds to the phase of the oscillation evolving over time.) Our choice for the

parameter « is
T
o= —=,
1
where I is a typical intensity, and 7} is the time scale over which the dynames
decouples naturally.

This decoupling also affects the kernel K, where the argument t; — ¢;
must be replaced by
|ti —tj| —|—OéZIl,
l

where the sum is over all interventions with k; falling between ¢; and ¢;.

A posteriori, we can use the resulting jumps in the various variables at
the intervention times, to tune a model that predicts the distribution of these
jumps as a function of the driver’s parameters. More generally, this suggests
an additional potential use of our model: to translate the raw data into
a coherent evolution of a set of meaningful parameters —typically slow and
punctuated by jumps— that can facilitate further parameterizations of the
process under study in terms of more detailed external factors not used by
the current model. For example, this machinery could be used to estimate
the jump distributions for a jump-diffusion model.

2.7. Computational implementation procedure

Putting together all the ingredients above, we propose the following pro-
cedure. We are given a set of observations

and a model for the transitional probability between states

p* (72?2 AP oIt 7 (R 2 AP oY) (Ozﬂa{*l, At).
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Here the {77} are the model’s surrogate for the observations {y’}, the {27}
a set of unobserved, latent variables, and {alj } the model parameters, | =
1,...,n,.

We introduce two kernel functions: KY(-,-), with bandwidth tuned to the
observed y’s, and K'(-,-), with bandwidth 7} associated to a slow modula-
tion of the model’s parameters and of the invariant measure. We adopt the
simplest default option: Gaussian kernels, with bandwidth 7; for K*, and
determined for K by the rule of thumb applied to the {y’}:

1 _(wa—w1)? o
K (x17$2) \/%h 22 ) h‘:_%? g = \/ Z yj_y
1 (i2*t21)2
K (tl, t2> 2

Vi 27rTl

We propose a multiobjective function L =) A, L,, with components

L)) = 23 log[1- 0 (7o) +e ()], 7 ) = K (00).

l

L) = —L YR 8) = F(0), Fet) = el - o'l
: z/y _ 1 Y Ly, 1 t l
with p*/ (z|t)—W;K (z,2'/y") K* (¢,t"),
Ls ({xj,zj,ozj}) = —Zlog x7|x] R AN oﬂ)},
Ly ({xj,zj,o/}) = —Zlog zj\xj 71 A aj)]

L ({of}) = —zlog oiled ™, A¥)].

We initialize the states and parameters as follows:
1. Set 2’ =y’ and z = 0.
2. Set b= %ZZ y*, and initialize b’ through kernel regression:
Zj YK (1)
S K1)

settting o, to the standard deviation of the {y'}.

b=
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3. Correspondingly, set

3 Zj det (tl,t]) 7 7 b]
D S IR I —lt}gé.llﬁﬁy N

Y

and o, = 0,. Set either @ = 0, so that oscillations die out in the absence

of observations, or to the mean of the a’.
4. Regarding w!, we first compute @/ = +7, Where P is the time interval
between two sign changes of 3° — b’ that includes ¢/, and then propose

LXK ()
AT
Set @ to the average of the w', and o, = @.

5. The natural unit for the time-scales Ty and 7T; is the average period
P = %’r of the oscillations. We will adopt

2 2
TS:—W, Tl:4—7T.
w

w

6. The parameter ¢ < 1 to account for outliers is somewhat arbitrary. We
will pick
e=0.1.

7. For the standard deviations ¢ and o(, we adopt
oc=a, o09=0.10.
We can pre-compute the pairwise kernels
o . o
szj = Ky (yl7yj) ) Kz] - K (tz)t]) ’
the reference densities
b= KL W =YK
Po—n _ B M_n _ g
J J
and the factors for exponential decay,

_ AT n _ AT
=e T, dl=e Ts.

n
l
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After the initialization above, most of the model parameters should be
roughly in the neighborhood of their optimal values, since the {z;} should
be close to the observations {y;}, and the other parameters were roughly
tuned to the data. The exception however are the {z;}, set initially to non-
informative values. Starting the full descent process at once from this ini-
tialization has a number of problems:

1. The model’s parameters will rapidly deviate from their initial values,
since the current {z;} are not consistent with them. So will the {x;},
unless the L; and Ly hold enough strength to keep them in place.

2. The variance ¢ of the models need to be set quite high, for otherwise
the current {z;} and {z;} will tend to fall far in their tails, unbalancing
the descent process.

To address these issues, we divide the algorithm into three phases, where
the choice of weights {\,,} depends on the algorithm’s phase:
Phase 1: Ascent over x alone, with only A2 # 0, with user-provided val-

ues depending on the weight assigned to point-wise versus distribution-wise
agreement with the data.
Phase 2: Ascent over z alone, setting first A3, then only As4 # 0, so that
after this phase, all of {27, 27, a{ } have values roughly consistent with both
the data and the model.
Phase 3: Ascent over all of {27, 27, a{ }, with Vm A, # 0, with values assigned
by the user according to a utility-based criterion.

The gradient ascent of L adopts the form

; ; oL
k
| oL
k
Zi—‘—l = Zi +77 82j7
k
oy =04, + 0 ol
l

with learning rates {n*} determined by line search at each step k.

3. Numerical results

3.1. Synthetic data with known underlying ground truth
Before considering applications to glycemic dynamics, we demonstrate
the methodology on a synthetic example where the ground truth is known.
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We extract noisy measurements from an oscillatory signal generated through
the following model:

x(t) =b(t) +r(t) cos (w(t) t), te][0,80],

where

t t
=1 2 2T — =1 2 2T —
b(t) + 0.2 cos ( 7200) . w(t) + 0.2 cos ( 7r100> )

t
dr = (a(t)—r(t)) dt+0.01 dW, r(0) =a(0), a(t)=1+0.2sin (27rm) .
We obtain one realization of (¢) simulating this model through Euler-Maruyama
with At = 0.1. In order to extract noisy observations {y;}, we select 29 ran-
dom times {¢;} in [0, 80], and write

yi=x(t;) +e, €~U[-04,04].

The simulated signal z(¢) and the extracted noisy observations are displayed
on the upper-left panel of figure 5. Notice that:

1. The model used for creating these data, a simple made-up model for
modulated oscillations without latent variables z, does not agree with
the dynamical model used by our algorithm, so it serves as a check
that we do not need to know the true underlying dynamics in order to
process a signal correctly. Nonetheless, the model’s parameters w(t),
a(t) and b(t) are meaningful for any oscillatory signal and can be im-
mediately related to the corresponding time-dependent parameters ex-
tracted by the algorithm.

2. The 29 sample times for roughy 13 oscillation periods constitute a
very sparse signal, near the Nyquist limit of two observations per pe-
riod. Such sparse, noisy and irregularly sampled observations of a
rapidly modulated oscillation over a short time-window are far below
the threshold for resolving the signal though conventional means.

The remaining panels in figure 5 display the results of our procedure with
input consisting exclusively of the 29 points {y;}. On the upper-right panel,
the reconstructed z(t) and z(¢). Notice that the reconstructed x(t) is quali-
tatively correct, that it agrees almost exactly with the true underlying signal
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in areas where the Nyquist limit is surpassed, and that it yields a signal con-
sistent with the observations and with slightly smaller frequency than the
ground truth in areas with less than two observations per period. We can
see in more detail in the lower-left panel how the extracted {z;} do not agree
exactly with the noisy {y;}; in fact, in this example they always lie between
the {y;} and the true underlying signal. Finally, the lower-right panel con-
trasts the true values of the three underlying, time-dependent parameters
with their estimation by the algorithm. We can see that the local mean b(t)
agrees quite precisely with the ground truth, that the amplitude a(t) exceeds
the true one by about 15%, which is consistent with the observational noise
added to the signal, and that the frequency w(t) under-estimates the true
underlying one by about 25%, a lower frequency resulting from the sparsity
of the observations, as seen in the panel above.

3.2. Measurement functions for data and reanalysis data from the glucose-
msulin system

The existence of data or measurements are defined with measurement
processes or functions. In some cases, such as experimental settings, mea-
surement functions may be simple but in other cases such as where data are
collected operationally for an application, the measurement functions may
be complex. One natural conceptualization of a measurement function is as
a stochastic process that controls when and how measurements are taken.
Here the measurement process is one aspect of the health care process|14].
The times at which data are collected can be pre-established, random or
correlated to the data or some other process [18, 27, 28|. Because we are
concerned with the impacts of sparsity and measurement noise, we will de-
fine three distinct measurement functions in the context of the glucose-insulin
system that specify the measurement times for use in our experiments as:

1. h; where measurements are taken as directed by a human according to
need or a protocol |16, 30, 31, 39|, corresponding to the subject’s real,
finger-stick or IV measurement times;

2. hs where measurements are taken at random times where the difference
between two consecutive measurements is uniformly distributed over
(60, 90] minutes;

3. hs where measurements are taken every five minutes, simulating con-
tinuous glucose monitor (CGM) measurements.
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Figure 5: Results using sparse noisy observations of a known ground truth (an oscillatory
signal.) Upper left panel: true signal (continuous green line) and noisy observations y
(black stars, the only input provided to the algorithm); upper right: true signal (continuous
green line), noisy observations y (black stars) and reconstructed signal (z in purple, z in
yellow); lower left: noisy measurements y (black stars) and estimated x (purple) over the
true signal (green); lower right: true underlying parameters b, a and w (dotted red line)
and their estimation (in solid blue).
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In case where CGM data are available, hz will be the measurement times de-
fined by the CGM and hy will be a subsampling of these measurement times.
In the case where we do not have CGM data, hy and hz will be extracted from

reanalysis data or continuously simulated data from the previously estimated
ultradian ODE model.

3.8. Real and simulated data

To evaluate our method’s performance with different generating dynamics
and sampling patterns, we will use two different sources of real and simulated
glucose-insulin data. While we chose blood glucose dynamics because esti-
mating them was the initial motivation for this work, we also think that
glycemic dynamics are varied and represent many other situations. To add
to the generalizability of the context, we will focus on two cases of glycemic
dynamics, (i) tube-fed patients in the ICU and (7i) normal patients in the
“wild”. The blood glucose levels of intensive care unit (ICU) patients are
often oscillatory (chaotic or stochastic with some strong periodic frequencies
present) when the patient is given constant nutrition [35] and are highly non-
stationary because of the effects of critical illness and related interventions.
The blood glucose levels of patients in the wild are more akin to damped-
driven oscillations with noise because, e.g., nutrition consumption causes a
rapid increase in blood glucose followed by an oscillatory and noisy return to
glycemic homeostasis.

3.3.1. Real world data

The first data set includes ICU data extracted from the Columbia Univer-
sity Medical Center Clinical Data Warehouse for a previous study |31, 4, 38,
5, 30]. All the patients in this dataset were fed through an enteral tube and
were delivered intravenous (IV) insulin for glycemic management. We se-
lected one patient, patient 593, as a representative for highly non-stationary
glycemic behavior and challenging model estimation. We used this patient’s
data in Section 1.1 as one of our motivating examples. These data consist
of the point-of-care blood glucose measurements, carbohydrate records deliv-
ered through the enteral tube, and exogenous IV insulin records. Additional
details about the data are presented in Table 1.

The second data set was collected from a healthy subject representing

“normal” glycemic dynamics observed in the “wild”, used in several previous
studies [2, 3, 21, 22, 23, 10]. The words “in the wild” refer to the fact that this
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individual measured their nutrition and glycemic dynamics while living oth-
erwise normally. We selected this subject’s data as a representative of data
collected in usual living conditions and because the dynamics are distinctly
different. In particular, glycemic dynamics of individuals not being contin-
uously fed resemble a noisy damped, driven oscillator with a noisy glycemic
equilibrium. These data consist of sparse finger stick BG measurements, con-
tinuous glucose monitor (CGM) data, and carbohydrate intake of meals and
snacks reviewed and verified by nutritionists. We provide additional details
in Table 1. The data sets vary according to different measurement functions.
For measurement function h; we restrict the model-estimated data to the
finger-stick measurements taken by the patient while data corresponding to
hy are randomly down-sampled from the CGM data, and data corresponding
to hs are the raw CGM data.

3.3.2. Simulated and reanalysis data

In addition to the real data, we used simulated reanalysis data to evaluate
this methodology’s performance for the ICU patient because this patient did
not have CGM data and we evaluate the estimation algorithm assuming
different data sampling patterns via the different measurement functions.
Note that reanalysis data are simulated data drawn from a model that was
estimated with ICU data, in this case, the ultradian model estimated with
constrained interior point methods. Because of the problems outlined in the
motivation section, we selected an optimized parameter set to simulate that
produced oscillatory solutions. Meaning, the model parameter set used to
generate the simulated data was not optimal, but rather hand chosen for
purposes of validating our methodology, noting that our methodology was
not applied to estimating the ultradian model in any way. A primary benefit
of this approach, aside from being required because of the lack of CGM
data in the ICU case, is that simulated data allow us to have a completely
knowable ground truth for at least one of our evaluative cases, even if the
model’s representation of these data is not ideal.

High level computational workflow for generating simulated data. We esti-
mate glucose by fitting plasma glucose and three parameters (t,, Ry, a1)
of the Ultradian model [35] while setting the remaining parameters at their
default values. We selected these parameters because they control the large
subsystems of the model. Specifically ¢, controls insulin clearance, Rz, con-
trols insulin resistance, and a; controls insulin secretion. A detailed descrip-
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tion of this model is in the Appendix. For the relatively stationary data from
the patient in the wild we used standard Metropolis Markov Chain Monte
Carlo (MCMC) with three chains and 10,000 iterations for each chain. Not
every chain converges, so we only use the empirical density functions of the
converged chains to sample parameters to create the simulated data. We
consider chains converged using the Geweke statistic [12, 11| and minimizing
mean squared error, following the methodology presented in [38]. For the
severely nonstationary ICU patient, we used an ensemble Kalman filtering
(EnKF) with an ensemble size of 100 similar to what was used in [4]. We used
the EnKF because the parameter values move too much over the week-long
time window we used to estimate the model. In both cases we then apply the
measurement functions hq, hy, and h3 to generate the data sets we estimate
with our new method.

ICU data generation. We used one week of data collected from ICU patient
593 from our opening example. These data are documented in Table 1. The
average parameter values estimated over this period were ¢, = 5.5, a; = 7.5,
and R, = 225. We then simulated blood glucose data every minute with
these parameters and subsampled the data according to hy, hy and hs.

In-the-wild patient data generation. We did not use simulated data for the
“in the wild” patient because we have CGM data to compare against the
model estimates for different measurement functions.

3.4. Design of numerical experiments for the methodological evaluation

The DA methods we propose here focus on situations where the param-
eters that minimize a single error function such as least squared may not be
the model parameters we would most like to use. Additionally, because the
multiobjective loss function minimizes a weighted sum of errors, the opti-
mal parameters our method selects may not minimize any of the individual
loss functions. Therefore, standard methods for evaluation such as compar-
ison of mean squared errors will not suffice. Instead, we will evaluate the
method’s usefulness qualitatively. Specifically, we will consider whether our
multiobjective minimization is able to achieve the goals and criteria listed
below.

Our method is motivated by two goals in the context of sparse data: (a)
model estimation that balances point-wise accuracy with the preservation of
global properties such as agreement of invariant measures, and (b) model es-
timation flexibility to manage measurement time errors, non-stationarity and
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. ICU patients
Healthy subject patient 426 | patient 593
total data total data
recording interval 31.6 recording interval 14.0 21.2
(days) (days)
total # of BG fingerstick:120 total # of BG 177 949
measurements CGM:7722 measurements
measured BG fingerstick:103+18 | measured BG
values (mg/dL) CGM:95+14 values (mg/dL) 14118 15032
total # of meal/ 73 total amount of
snack recordings recorded tube-fed 1938.9 2139.1
carbohydrates (g)
total amount of
delivered IV 0 1498.1
insulin (unit)

Table 1: Patient data descriptions for data used to test and validate our optimization
methodology. We show mean+stdev values when appropriate.

sparsity, by allowing the parameters to vary over a fixed temporal estimation
window. We claim that our method is able achieve the goals of preserv-
ing estimation of the invariant measure while also supporting very accurate
point-wise estimation and accounting for external noise, shocks, and errors
in measurement times by (i) giving up a little accuracy estimating the model
both point-wise and in-distribution and (7i) allowing parameters to flex over
the estimation interval near data points. To verify that our method is able
to achieve these goals we designed a series of computational experiments to
address the following questions:

Q1. Can the new method include knowledge of global properties
of the system to improve model estimation by allowing esti-
mation of global properties that:

a. we either know or can be derived from the entirety of given data?

b. are compatible with reasonable point-wise data estimates?

c. lead to more reasonable model estimates from a face-validity stand-
point?

Q2. Does accounting for measurement function dependence and

measurement timing errors—specifically measurement den-

sity and targeted vs random measurement times—impact:
a. the temporal parameter variability or flex over the estimation win-
dow;
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b. the estimation accuracy of the invariant measures;
c. the estimation accuracy of the trajectory.
Q3. Does allowing temporal variability of model parameter esti-
mation within an estimation time window:
a. allow the model estimation to accommodate nonstationarity within
the estimation window?
b. vary depending on the measurement function?
c. impact the estimation accuracy of the trajectory?

To address these questions we will estimate two types of dynamics, (i)
oscillatory dynamics that relax to a periodic orbit when driven and to a
fixed point when not driven, and (i) damped driven oscillatory dynamics
that relax to a fixed point. Data will be collected via the measurement
functions defined in section 3.2.

3.5. Incorporating global information (Q1) and impacts of different measure-
ment functions on model estimation (Q2)

The global information we incorporate into the model here includes the
invariant measure of the data and the qualitative orbit type (oscillatory ver-
sus fixed point, etc.). We will use the ICU data to show how the new method
is able to include global distributional information. We will use the wild case
to additionally show how the new method can also be seeded with external
knowledge of the underlying dynamics and how this impacts model estima-
tion with sparse data.

Starting with the ICU case where the generating process produces oscilla-
tory dynamics except for a brief time when the oscillations disappear because
the nutrition is turned off, we estimated the model that assumed underlying
oscillatory dynamics by setting the relaxed state of the model to have a non-
zero amplitude. The estimated model dynamics, shown in Fig. 6, reproduced
the mean and amplitude of oscillations well while the frequency of oscilla-
tions was only correctly represented when the data were measured frequently
(h3). The brief time when the generating processes was not oscillating was
only represented with the correct dynamics when the data were measured
frequently (h3). Interestingly, the sparse clinician measurement function, hq,
reproduced the non-oscillatory dynamics substantially more accurately than
the random measurement function, ho, potentially implying information in
the clinician-driven measurement times [18, 1, 20, 17, 7| as has been previ-
ously hypothesized. It is possible that a specifically glucose-insulin model
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Figure 6: Given the oscillatory ICU glycemic dynamics and the model basic state assum-
ing oscillatory dynamics, we see the model estimating the simulated glucose measured
according to hy (left), ho (center) and hj (right). We can see that even for the sparse data
cases (h1, ha), the model produces oscillatory dynamics with reasonable mean and ampli-
tude while for the densely measured case (hs) the model tracked these data precisely. The
point-wise estimates remain accurate in all cases. The dotted lines signal reconstruction
for periods without data longer than a prescribed threshold.
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Figure 7: Given the oscillatory ICU glycemic dynamics and the model basic state assuming
oscillatory dynamics, we see the model estimating the simulated glucose measured accord-
ing to hy (left), ho (center) and hs (right). Note BG measured denotes data available to
the model when it is estimated and estimated BG denotes the model-estimated invariant
measure of the data. The densely measured case (hs) is likely the closest representative
of a gold standard baseline, again for data measured frequently in time. We can see that
even for the sparse data cases (hi, hg), the model produced an accurate representation
of the invariant measure that was not particularly dependent on the sparse measurement
function while for the densely measured case (h3) the model estimated all the details of
the invariant measure well.
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Figure 8: Given the damped, driven wild patient data, the model was estimated assuming
an underlying oscillatory solution (set according to section 2.7) for the three measurement
functions, sparse clinician measured (hj, top/bottom left), random (hg, top/bottom cen-
ter) and dense (hs, top/bottom right). We can see the point-wise estimates are good in
the lower plots, the model captures the large peaks and troughs but only captures the
correct frequency for densely measured data. When data are missing the model relaxes to
oscillatory dynamics. Note that the straight lines in green are not the truth but a linear
interpolation in the absence of data.

whose oscillations are directly controlled by nutrition would have faired dif-
ferently. See Figure 7 where the model-estimated glucose distribution is
compared with the data used to estimate the model. The invariant mea-
sures of these highly non-Gaussian data were reproduced well regardless of
the measurement function. Together, Figs. 6 and 7 demonstrate that both
point-wise and in-distribution estimation were quite accurate, producing af-
firmative answers to QIa, Q1b and Qlc.

Moving to the in-the-wild case where the generating dynamics are noisy,
damped, driven—by punctuated nutrition consumption—oscillations, we es-
timated the model assuming both non-oscillatory and oscillatory (resp. Figs.
9 and 8) dynamics, by controlling the model’s amplitude and relaxation pa-
rameter «. In the cases where measurement functions produced sparse data,
hy and hs, setting up the optimization to assume the underlying dynamics
were non-oscillatory lead to better estimation performance compared with
setting up the optimization to assumed oscillatory dynamics according to
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Figure 9: Given the damped, driven wild patient data, the model was estimated assum-
ing no oscillatory solution and relaxed to its non-oscillatory solution controlled by the «
parameter and by setting the baseline amplitude a to zero, for the three measurement
functions, sparse clinician measured (hy, top/bottom left), random (hg, to/bottom, cen-
ter) and dense (hg, top/bottom right). We can see the point-wise estimates are good in
the lower plots, the model captures the large peaks and troughs but only captures the
correct frequency for densely measured data. When data are missing the model relaxes
to non-oscillatory dynamics. Again note that the straight lines in green are not the truth
but a linear interpolation in the absence of data.
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both point-wise, Figs. 8-9, and distributional, Figs. 10-11 metrics. When
the data were measured densely with hs there was not an appreciable dif-
ference between the optimization including information regarding oscillatory
and non-oscillatory cases with respect to point-wise and distributional fits.
The dependence of the results on the measurement functions highlights the
important role measurement functions can play on model estimation. To-
gether these results imply that we can include external knowledge regarding
global properties and that their inclusion does improve estimation, support-
ing an affirmative answer to Qla, Q1b, and Q1c. Additionally, related to
Q2b and @2c, the measurement functions clearly impact model estimation
performance. Specifically, accuracy of estimation of the off-data trajectory
is highly dependent on the measurement function, but including informa-
tion about the correct underlying dynamics and global properties such as
the invariant measure of data does qualitatively improve estimation (Q2c¢).
Finally, regardless of measurement function, we are able to accurately es-
timate the invariant measure of the data (Q2b), yet setting the underlying
dynamics correctly does improve estimation of the invariant measure of these
data when these data are particularly sparsely measured.

3.6. Impact of temporal variation of parameters over the estimation window
to account for measurement time errors and nonstationarity (Q3) and
impacts of different measurement functions on model estimation (Q2)

We designed our new algorithm to allow parameters to vary within the
estimation window according to the L,,; loss function that models the tran-
sition probabilities of the [** parameter value between measurements with
a decay rate d' and uncertainty o;. Modeling and estimating the transi-
tion probabilities between measurements was designed to solve two problems,
both related to the goal of giving the model enough flexibility to estimate
point-wise and global qualitative dynamics with sparse data. First, data
measurement recording times have errors while mechanistic models such as
ODEs have relatively rigid orbits with rigid frequencies that can be tuned, to
some degree but not with unlimited flexibility, according to model parame-
ters. Granting parameters limited temporal variability within an estimation
window allows the models to have more flexible trajectories that can ac-
commodate measurement error times without resorting to zeroing out the
oscillations. Second, when data are sparse, to maximize the number of data
points included within an estimation window we are forced to estimate the
model over longer time periods, increasing the potential impact to nonsta-
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Figure 10: Given the damped, driven wild patient data, the model was estimated assuming
an oscillatory solution and relaxed to its oscillatory solution (set according to section 2.7)
for the three measurement functions, sparse clinician measured (hq, left), random (hq,
center) and dense (hs, right). Note BG measured denotes data available to the model when
it is estimated and estimated BG denotes the model-estimated invariant measure of the
data. The densely measured case (hg) is likely the closest representative of a gold standard
baseline, again for data measured frequently in time. We can see the model captures the
distributions well. While the clinician-driven measurement times, hi, may outperform
random measurement times, ho, neither are perfect as they are balanced against the point-
wise and model-coherence loss functions. Additionally, the case here where the solution
is assumed to be oscillatory did not perform as well as the case where the solution was
assumed to be non-oscillatory for the sparse measurement functions h; and he. When the
model is estimated with data from the dense measurement function, the invariant measure
of these data is estimated very accurately and was not appreciably different from the case
where the model assumed non-oscillatory baseline dynamics shown in Fig. 11.
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Figure 11: Given the damped, driven wild patient data, the model was estimated assuming
no oscillatory solution and relaxed to its non-oscillatory solution (baseline a = 0) for the
three measurement functions, sparse clinician measured (hq, left), random (hg, center)
and dense (hg, right). Note BG measured denotes data available to the model when it is
estimated and estimated BG denotes the model-estimated invariant measure of the data.
The densely measured case (hs) is likely the closest representative of a gold standard
baseline, again for data measured frequently in time. We can see the model captures
the distributions well. While the clinician-driven measurement times, ki, may outperform
random measurement times, ho, neither are perfect as they are balanced against the point-
wise and model-coherence loss functions. When the model is estimated with data from
the dense measurement function, the invariant measure of these data is estimated very
accurately.
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tionarity. Allowing the parameters to flex over the estimation window can
potentially lead to more productive parameter estimation in the presence of
this nonstationarity. Here we are considering specifically ()3, the impact of
nonstationarity and measurement functions on our flexible parameter esti-
mation methods. Additionally and again, the ICU patient has nonstationary
physiological mechanics and oscillatory dynamics except when tube-feeding
is interrupted while the in-the-wild patient is likely quite stationary with
dynamics that are roughly a noisy damped, driven oscillator.

ICU. All measurement functions were observed to impact parameter estima-
tion. The random hs and dense, hz measurement functions led to estimation
of amplitudes, a and b, similarly and both differ from the clinician-driven
measurement function, h;. All three measurement functions led to differ-
ences in estimation of frequency of oscillations, w, which is both interesting
because the sparse measurement functions differed and expected because only
the dense measurement function could truly resolve the frequency. Neverthe-
less, all measurement functions led to estimation of the amplitude parameters
in roughly the same range, which is particularly important for two reasons.
First, it was the amplitude estimation that was failing in our motivating ex-
ample, and here all the parameter estimates included oscillatory solutions.
Second, the most important feature of the blood glucose dynamics for clinical
decision-making is the glycemic range defined by the amplitude of oscillations
[16], and regarding this, all measurement functions lead to qualitatively sim-
ilar amplitudes. Finally, frequency estimates differ between all measurement
functions, as expected given that the sparse measurements contain very little
frequency information. Overall, the parameter flex did impact model estima-
tion, and the parameter flex was dependent on the measurement functions.

In-the-wild. In the case where the optimization method was set to assume
underlying dynamics were oscillatory, Fig. 13, the sparse measurement func-
tions, hy and ho led to estimation that produced nearly identical parameter
trajectories, and both differed from the model estimated with densely mea-
sured data produced by the CGM, hz. Whether the optimization assumed
the underlying dynamics to be oscillatory, Fig. 13, or not, Fig. 14, did not
substantially impact either the estimation of the amplitude parameters, or
the differences between the sparse and dense measurement function depen-
dence on the amplitude parameter estimation. Not surprisingly, the primary
dependencies for parameter estimation for a given type of assumed dynamics,
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Figure 12: Given the oscillatory ICU glycemic dynamics and the model basic state assum-
ing oscillatory dynamics, we can see that all measurement functions, hy (top), ho (center)
and hg bottom, utilized the temporal flexibility in the parameters to decrease estimation
error, but in very different ways. Interestingly, the sparse random and dense measurement
functions (hga, h3) had nearly the same flex in amplitude estimation, a and b, sometimes in
direct opposition to flexible parameter trends of the clinician (human) measurement case
(h1). All three measurement functions differ in their estimation of frequency of oscilla-
tions, w. This result has particularly important potential implications for solving inverse
problems to estimate parameters because it implies that differently measured data, even
when the number of data points are similar, can have a substantial impact on the estima-
bility of model parameters.

oscillatory or not, appeared in the estimation of the frequency parameters.
The most important distinction between parameter estimate trajectories for
the in-the-wild case was due to which dynamics the optimization method was
set to assume as the underlying dynamics. The parameter variability over
the course of the estimate window was substantially higher when the base-
line model dynamics were oscillatory because the generating dynamics were
not particularly oscillatory, and leading the transition probabilities to vary
quite a lot to minimize the point-wise loss function. Overall, the temporal
variability of parameters did impact model estimation, and the temporal pa-
rameter variability appeared to be dependent on the measurement functions,
but these differences differed from the highly non-stationary ICU case.

4. Discussion

Overall summary We constructed a scalarized multiobjective function and
the associated optimization machinery to support model estimation balancing
the minimization of point-wise errors with global properties such as qualita-
tive dynamics and errors in measurement times. We demonstrated the ef-
fectiveness of this machinery on a variety of oscillatory simulated data, DA
output estimated from data or reanalysis, and real word data that are exter-
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Figure 13: Given the in-the-wild glycemic damped, driven oscillatory dynamics we can see
and the model basic state assuming oscillatory dynamics, we can see that all measurement
functions, hy (left), he (center) and hs (right), utilized the temporal flexibility in the
parameters to decrease estimation error, but in very different ways. Interestingly, the
sparse patient-defined and random measurement functions (hi, ho) had nearly the same
flex over the course of the time window, and both were quite different from the dense
measurement case (h3). This result has particularly important potential implications for
solving inverse problems to estimate parameters because differences between parameters
estimated with sparse versus dense data can have a substantial impact on the estimability
of model parameters. Understanding the degree of importance and uncertainty in the
inverse problems setting will be important.
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Figure 14: Given the in-the-wild glycemic damped, driven oscillatory dynamics we can see
and the model basic state assuming non-oscillatory dynamics, we can see that all mea-
surement functions, hy (left), ha (center) and hs (right), utilized the temporal flexibility
in the parameters to decrease estimation error, but in very different ways. Similarly to
the case where the dynamics are assumed oscillatory, the sparse patient-defined and ran-
dom measurement functions (hq, hg) had nearly the same flex over the course of the time
window, and both were quite different from the dense measurement case (hsz). This result
carries the same potential implications for solving inverse problems as shown in Fig. 13.
Interestingly, the parameter trajectories and exercised parameter flex over the estimate
window here is substantially lower than for the case where the underlying dynamics are
assumed to be oscillatory in Fig. 13, as expected given that the assumed dynamics in that
case were less representative of the generating dynamics.
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nally driven and are stochastic/chaotic. Estimation accuracy depended on
the measurement processes, but for all measurement functions qualitative dy-
namics were preserved while point-wise errors were small. Additionally, the
added intra-estimation window parameter allowed mechanistic models whose
parameters are rigid and otherwise fized in time to be robust to noise in mea-
surement times, model error, and non-stationarity by allowing the parameters
to vary in time. We feel that several of the objective functions were nowvel,
particularly those related to temporal variability of parameters. Additionally,
the multiobjective functions we created allowed for the inclusion of knowledge
that external to the model and data, and this inclusion of external knowledge,
e.g., regarding properties of the invariant measure, were shown to impact and
improve model estimation. .

Model estimation in the context of multiobjective optimization. Mul-
tiobjective optimization [42, 43, 44| allows for striking a balance between
multiple, competing goals mathematized as cost functions which can be par-
ticularly important when data have complex properties such as sparsity or
nonstationarity. However, the consequence of being able to balance multi-
ple goals is the lack of a clear notion of global optimal solution unless there
is a utility function structure such as R2 utility [42]. The lack of a global
optima is implicitly nearly always present in nonlinear optimization: the
least squares minimizing solution is often not the same as the solution that
minimizes distributional errors. In the case of multiobjective optimization
this dependence of optimal solutions on the cost functions is surfaced be-
cause optimal parameters are set according to a utility function that, in our
case, amounted to heuristically setting the weights that balance the different
log-likelihood functions. This surfacing of the balance of costs that define op-
timal solutions allows us to be concrete, explicit, and transparent about the
choices we make with regard to balancing goals and further quantitatively
defines what optimal means through the definition of the utility function.
In our motivational example, one issue that was raised was identifiability
failure. Identifiability failure can occur because of data sparsity or because
the model is structurally not identifiable even with unlimited data. It is the
case of identifiability failure due to data sparsity that motivated the work
here. In the current paper, the models we use are structurally identifiable,
but may not be identifiable if the data are too sparse. We constructed the
paper using a structurally identifiable model that was estimated with differ-
ent measurement functions that vary data sparsity to investigate how data
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sparsity and the ensuing identifiability problems were managed by the mul-
tiobjective optimization. While there are many situations where multiobjec-
tive optimization will not help or may make identifiability problems worse,
in our case, we used the multiobjective function to insert external knowledge
of the dynamics of the process to make up for missing data. Specifically, we
knew the dynamics were not fixed point, and multiobjective function helped
avoid those catastrophically incorrect solutions. Meaning, a multiobjective
optimization approach can be used to mitigate identifiability failures due to
data sparsity. We do not know whether multiobjective optimization would
be helpful in mitigating structural identifiability problems.

Proving convergence guarantees in the multiobjective context is usually
difficult and depends on the structure of the utility function. A recent pa-
per formulating multiobjective optimization in the context of R2 utility did
have some related convergence results, and detailed what was required of
a cost function to be a R2 utility function. In our case, the log-likelihood
functions do not conform to the R2 utility formulation. And in this case,
model convergence is defined by the raw error defined by the log-likelihood
functions.

Interpretative probability framework related to the use of mathe-
matical biology models. A defining characteristic of Frequentist statistics
is the assumption that an estimated quantity has a true value, such as the
speed of light in a vacuum, and a goal to use a model to compute and quan-
tify error of a model of that quantity. Similarly, a defining characteristic
of Bayesian statistics is that an estimated quantity does not have a true
value, but rather is a distribution with the goal of estimating a model to
estimate the quantity and our uncertainty of that distribution. These frame-
works are also associated with computational machinery such as maximum
likelihood (MLE) or maximum a posteriori (MAP) estimation for Frequen-
tist or Bayesian frames respectively. Our multiobjective function is built of
log-likelihood functions and therefore is computationally a Frequentist frame-
work. However, multiobjective optimization is applicable but independent of
either of these frames and importantly, multiobjective optimization surfaces
the dependence between optimal solutions to model estimation problems and
the structure of the cost function—specifically, that there may be more than
one optimal solution depending on the goal or cost function. In the case
of a physiological models, and certainly for systems physiological models,
states and parameters often represent bulk or statistical quantities rather
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than absolute quantities such as the speed of light in a vacuum. These bulk
quantities may interpretively lend themselves to a more Bayesian interpreta-
tion. However, from the Frequentist perspective, it is certainly possible that
one model can be structurally more correct than another model of a given
system, where the model is defined operationally by state and parameter
estimates and their accuracy. Meaning, when estimating models that lack a
first principles origin or fundamental physical properties, the interpretation
of the model estimation often lives in between ideological frameworks such
as Bayesian interpretations that may apply to parameters and Frequentist
interpretations that may apply to models, or visa versa. But multiobjective
optimization sits beside these frames and ideas and by including more in-
formation in the model estimation process, can both increase the robustness
of the estimation process, and can serve as a probe to better interpret and
understand how the model is estimating data and where its failure points or
shortcomings lie. This is particularly important here because many models
are estimated with data for a variety of reasons, including forwarding a deeper
understanding of the system, to validate or reject mechanistic hypotheses, or
more practically to estimate a model that accurately represents the system
to guide decision support where physical fidelity may not may not be as
important as accuracy in forecasting. The point is that, because biological
and physiological models do not have first principles origins, multiobjective
optimization may provide a scientific framework to support both better un-
derstanding of estimated models’ relationship to data and more robust and
accurate model estimation, while remaining flexible enough to incorporate
and surface limitations of our interpretations of probabilistic structures.

Data assimilation initialization. Accurate initialization for data assimi-
lation is crucial for immediate and accurate forecasting and for DA use with
sequential smoothing and filtering. Our method provides a new path for DA
initialization when data are particularly sparse and there is some knowledge
of underlying model dynamics and state.

Measurement functions and intra-window parameter trajectories.
Computed parameter trajectories were dependent on the measurement func-
tions. It is not obvious how to identify whether a parameter trajectory is cor-
rect. In the case where the trajectory does not vary over the estimation win-
dow, this is not a problem. Similarly, if the parameter intra-estimation win-
dow time variation is only a matter of accounting for noise and the trajectory
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variability is not scientifically important, identification of intra-estimation-
window trajectories is not a problem. But, if the intra-estimation-window
parameter trajectories are scientifically or otherwise important, this opens a
new problem of trying to understand and quantify the uncertainty in esti-
mated parameter trajectories as they depend on measurement functions.

Data sparsity and non-stationarity. Data sparsity and non-stationarity
are deeply coupled concepts because non-stationarity can induce sparsity.
If a system’s parameters change substantially and faster than we measure,
there will not exist statistically stable data set to estimate the model, and
all data sets will be sparse. This induces a balance in estimation error due
to use of small data sets against estimation errors due to data sets that are
not statistically stable. The intra-estimation window parameter temporal
variability was designed to manage this complexity along with allowing a
rigid model to be more robust to errors in measurement times.

Managing data sparsity. When data are not sparse, the estimation prob-
lem is relatively straightforward, and using both standard methods and our
new method, minimizing point-wise errors can reproduce many global prop-
erties such as the distribution of model states. Our estimation results show
that data sparsity, when the generating dynamics are complex, can have a
substantial impact on our ability to accurately estimate the underlying dy-
namics and model states and parameters. Model estimation with limited
data decays as data become increasingly sparse, and it becomes difficult to
quantify or identify what information we can reliably determine from sparse
data. Our method was developed to help push the boundaries of the infor-
mation we can extract from data when paired with external knowledge of
the system. And while we were able to estimate global and local proper-
ties of the system, explicit new open problems could be articulated related
to identifying the limits of what information can be extracted and how to
compute the uncertainty of that information. In the background, there is
surely a Nyqist-Shannon-type theorem for data assimilation and mechanistic
modeling [4] just as there has been for other spaces such as the reproducing
kernel Hilbert space (32, 33]. Even rough numeric guidelines that could help
limit the estimation errors given sparse data would be helpful, but such a
result does not currently exist to our knowledge.

Managing non-stationarity. The impact of non-stationarity on the mea-
surement functions and parameter estimation was interesting and differed de-
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pending on the generating dynamics. When the system was non-stationary,
here the ICU patients, it seems that random sparse measurements may lead
to parameter estimation that is more representative to the parameters esti-
mated in the densely measured case. In contrast, the case where the system
is relatively stationary, here the in-the-wild patient, differences in the sparse
measurement functions translated to little variability in the intra-estimation-
window parameter trajectories. Of course, two cases are not enough to under-
stand and establish general rules of such measurement function dependent
variability other than establishing that there can be important estimation
dependencies on measurement functions.

Next steps. There are at least six directions for advancement. First, we
need to construct a scalable and generalizable computational pipeline such
that this methodology can be applied to any ODE and SDE models. For
example, because optimizing the L3 and L, components of the objective
function require derivatives of the model, integrating the methodology with
auto-differentiation would be a meaningful advancement. Second, our frame-
work presents an set of variables to optimize over, the weights A\, attached
to the components L, of the objective function. While in this paper we set
these weights heuristically, there is room to further develop a utility function
that is generalized and computed automatically. Third, while some stan-
dard UQ methods apply to our methodology, there are many opportunities
for UQ methods development. For example, devising verifiable methods for
computing the model parameter estimate uncertainty given sparse data for
the parameter trajectory and a parameter distribution estimated from the pa-
rameter trajectory within a given estimation window would be substantial
advancements. Fourth, our method allows us to imbue the model with a
given underlying dynamic such as oscillatory or fixed point dynamics. In our
motivating example, we know from other work, what the baseline underlying
dynamics are. However, learning more accurate initial parameters beyond a
crude set of parameters that produce, e.g., oscillatory dynamics, could be de-
vised as an iterative application of the methods devised here. fFfth, given the
motivation for the work in this paper, adapting and applying our method-
ology directly to modeling patients in the ICU and other similar settings
would be highly valuable. And sizth, understanding how log-likelihood func-
tions like the ones here could fit into a more formal framework such as the R2
utility would be helpful for better understanding the relationships between
the optimal solutions the various cost functions find, and for computing more
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reliable solutions.

5. Conclusions

Motivated by an inability to robustly estimate model parameters to ini-
tialize a DA-filter given sparse, non-stationary, noisy data, we developed a
new methodology. This methodology has three notable features. First, it
balances optimizing local point-wise errors with global distributional errors
and agreement with the model. Second, it allows users to imbue the model
with known, underlying dynamics such as oscillatory dynamics. Third, the
method allows for the parameters to vary in time over an optimization win-
dow to manage both errors in measurement times and their impact on model
rigidity and non-stationarity of the generating processes over the optimiza-
tion window. When we applied this method in a few contexts using both
simulated (estimated) and real blood glucose data from two contexts includ-
ing the ICU and a patient in the wild, the method was able in all cases to
manage the sparse data issues, balance point-wise errors and global distri-
butional errors while also allowing agreement with the model. This implies
that we were able to robustly preserve global dynamics properties while also
minimizing point-wise errors, a major goal of this work. We believe that this
methodological pathway will be useful in inverse problems applications as
well as embedded within sequential smoothing and DA-initialization appli-
cations. A public Github with the code used in this paper can be found in
XXX.

Appendix A. Computing the derivative for the L;’s

This appendix contains explicit formulas for the derivatives of the various
components Lj of the objective function, required for gradient descent. We
write them down here for completeness and easy reproducibility, but also to
stress a point: even for the relatively simple model that we have adopted
for the examples in this article, computing and implementing the required
derivatives is a laborious task, prone to errors. In order to add flexibility to
the selection of models, one should consider resorting to automatic differen-
tiation.

1 P g 1 ¢ |
leﬁzj:log (1—6)Ky(y3,xj)+GEZKy(yJ,y)

=1
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For L3 and L4, the components of the objective function that enforce
compliance with the model, the pairs (77!, 2771) are replaced by (r~1,6771),
and we have, with all variables evaluated at time t;_;,
0 x—b0 z 0

or  r Or r2of’
00 eovd
Oz ror r2 06’
0 _I—bﬁ z 0

o r or + 2089
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Appendix B. Ultradian glucose-insulin model

The primary state variables include the plasma glucose concentration G,
the plasma insulin concentration I,,, and the interstitial insulin concentration
I;. Additionally there is a delay in the hepatic response of plasma insulin
to glucose approximated using the linear chain trick resulting in (hq, ho, h3)
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[35]. The system of ordinary differential equations take the form [19]:

I, I, L, I,

o= f1(G) E(Vp Vz) " (B.1a)
a, I, L, I

g E(Vp VZ) o (B.1b)
dG

il fa(hs) + Ig(t) — fo(G) — f3(1;)G (B.1c)
dhy 1

dhy 1

dhy 1

prli E(hQ h3) (B.1f)

This model includes many parameterized processes including the rate of in-
sulin production, f;(G), insulin-independent glucose utilization f»(G), insulin-
dependent glucose utilization, f3(/;)G, and represents insulin-dependent glu-
cose utilization, delayed insulin-dependent glucose utilization, f4(hs), defined

by:
R,
MG =173 exp(gz¢, + 1) B2
f(G) = U(1— eXp((;zV ) (B.3)
g
1 Un — U
R
hs) = ! B.5
) = ot 1) .
1,1 1
K= a(vi—E—ti), (B.6)
respectively.

The nutritional driver of the model /(%) is defined over N non-overlapping
intervals where nutrition is delivered through an enteral tube at constant
rates.
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N
]G(t) = Z mj]l{tjgt<tj+1}<t)7 (B?)

j=1

where m; is the carbohydrate rate (mg/min) delivered over the interval
[t;,tj+1) and 1(-) is the characteristic function.

Appendix C. The multiobjective function

Our choice of an objective function L to maximize raises some theoretical
issues, both general considerations on how to combine more than one goal into
a single objective function and the theoretical underpinning of the component
of the chosen multiobjective function associated to each goal. This appendix
discusses both of these aspects.

A full discussion of multiobjective optimization, however, is far beyond
this article’s scope, we refer the reader to [42] for a current review. Given
a set of M objective functions {L,,} to maximize, we seek a Pareto optimal
through their linear scalarization through coefficients {\,,} > 0, writing the
single objective function

m=1

Our approach has the distinctive feature that the {\,,} are not constant
throughout the procedure: in order to initialize the {z'} to values close to
the data, we assign initially values different from zero only to {A;2}. Then,
to adjust the hidden, emergent variable z, we freeze during a second phase
the {2’} and all parameters « to their previously initialized values and evolve
only z through ascent of first Ly and then {Ls4}, setting all other {\,,} to
zero. Only in a third, final phase, are all {\,,} fixed at nonzero values.
What follows is a brief analysis of the individual {L,,}.

o [: Recall that

Li= > log (1= 0" (#]a7) + o (4')]
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measures the point-wise agreement between the observations {y’} and
the corresponding estimated states {z'}, through a postulated distri-
bution p°(y|z) that quantifies the probability that an observation will
yield the value y when the actual state is . With € = 0, L; is simply
the log-likelihood function for the {z'}, whole maximization when p, is
a Gaussian centered at = agrees with the least-square error, the most
conventional way of quantifying point-wise discrepancy. Our proposal
extends LSE in two ways: it permits using more realistic conditional
distributions consistent with the true observation methodology, and it
is made more robust to outliers than LSE through the addition of a
background distribution

P (y) = %ZK" (v.9')

that mollifies p°(y|x), allowing some of the {z'} to deviate considerably
from the corresponding {y'} if required to make them more consistent
with the model. Switching from LSE to a likelihood-based quantifica-
tion of point-wise agreement is consistent with the methodology as a
whole, where all objective functions {L,,} are based on an underlying
stochastic assumption.

Ly: We measure the discrepancy between the estimated states {z'}
and the corresponding observations {y'} not only point-wise but also
distribution-wise. Since we are dealing with typically non-stationary
time series, we allow said distributions to vary slowly over time. Then
we adopt

L= —%ZF (a7, 6) = F (y/,¥'), F(z,1) = p(2[t) — p"(2]1),

where the conditional densities are estimated using Nadaraya-Waston’s
formula:

ot (2]t) = m ;Ky (z,xl) Kt (t,tl) :

Y — 1 Y t
pY(z|t) = W EZ:K (z,9") K' (¢, 1)
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We have used Gaussian kernels, with bandwidths in x and y given by
the rule of thumb, and in ¢ by the modulation timescale 7" discussed
below. The L, so defined is an empirical representation of minus the
L2-difference between the two conditional distributions:

Lo~ =[G = PG Gl ) de
+ [ el = PG Gl () dede
= [l = G ) e
Ls.: The two problem-specific components,

Ly = %Zlog [p" (272771, 2771 AP, o) ]
J

and

— Z (0| pd—1 Li—1 J J
L4_n % log[p (z |27 2 ,At,oz)]

enforce agreement with the model in the maximum likelihood sense.
Even though they could be made slightly more general by consoli-
dating them into a single component based on the joint conditional
distribution p™* (x7, 27|27 2971 A#/ a7), the pair L34 provides more
flexibility, allowing in particular the implementation of a stage when z
is updated using only Ls. The L34 are the only components where the
model plays a role; any bio-medically-based Markov model can replace
the simple oscillatory one used in this article.

L,,~4: These last components of the objective function, one per model
parameter «;, enforce continuity of the parameters over time, while
allowing them to vary slowly and relax toward default values when the
data is sparse. They adopt the maximum-likelihood form

1 . ,
Ly = - Zlog [0 (af|ad ™, AF)],
J
where we have adopted
o'~ N [dla] + (1—d])a, (1—d]) o]

o1



) At
Here &; is a default value of oy, while d] = e 7 is a decaying weight
starting at 1 and ending up at 0.

Thus all of the Ly 34,54 are log-likelihoods, based on stochastic models

for the observational process (L;), the dynamics (L3 4) and the time evolu-
tion of the models’ parameters (L,,~4) respectively, while Ly compares the
possibly time-dependent distributions underlying the observations {y’} and
the estimated underlying states {z’} through an empirical, kernel-based es-
timation of their L2-discrepancy.
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Table B.2: Full list of parameters for the ultradian glucose-insulin model [19]. Note
that IIGU and IDGU denote insulin-independent glucose utilization and insulin-dependent
glucose utilization, respectively.

Ultradian model parameters

Name ‘ Nominal Value ‘ Meaning

’ Vo ‘ 31 ‘ plasma volume ‘
’ Vi ‘ 111 ‘ interstitial volume ‘
’ Vy \ 101 \ glucose space ‘
E 0.2 1 min—! exchange rate for insulin between remote and
plasma compartments
tp 6 min time constant for plasma insulin degradation
(via kidney and liver filtering)
t; 100 min time constant for remote insulin degradation
(via muscle and adipose tissue)
tq 12 min delay between plasma insulin and glucose
production
k 0.5 min~* rate of decayed appearance of ingested glu-
cose
’ R, \ 209 mU min—*! \ linear constant affecting insulin secretion ‘
a; 6.6 exponential constant affecting insulin secre-
tion
Ch 300 mg 17} exponential constant affecting insulin secre-
tion
| O | 144 mg 1! | exponential constant affecting IIGU |
] Cs \ 100 mg 171 \ linear constant affecting IDGU ‘
’ Cy ‘ 80 mU 171 ‘ factor affecting IDG ‘
| Cs [ 26 mU 1! | exponential constant affecting IDGU |
U, | 72mg min~' | linear constant affecting IIGU |
’ Uy \ 4 mg min~* \ linear constant affecting IDGU ‘
| Un | 94 mg min~" | linear constant affecting IDGU |
’ R, ‘ 180 mg min~ ‘ linear constant affecting IDGU ‘
’ « ‘ 7.5 ‘ exponential constant affecting IDGU ‘
’ I5; \ 1.772 \ exponent affecting IDGU ‘
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