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Abstract

Optimal transport seeks the most efficient way to transform one probability distribution into another, typically under constraints
that preserve total mass. However, in many practical applications, such as point cloud and image co-registration, the source and
target data distributions may have unequal masses. Herein, this is overcome by relaxing the aforementioned constraints. This
proposed “partial” optimal transport framework adaptively selects and matches subsets of both source and target distributions,
thereby enabling robust outlier rejection and noise reduction. The method relaxes the strict constraints typically used in linear
programming formulations of optimal transport, thus allowing flexibility on both sides of the matching problem. The resulting
transport plan is then refined through branch-and-cut and mass bounding procedures that enforce binary mass assignments and
further prune undesired points. For scalability, traditional linear programming solvers are replaced by an efficient gradient-based

algorithm. This approach is validated on synthetic two-dimensional data and real three-dimensional point cloud data.

1. Introduction

Fully automated co-registration of non-contemporaneous point
clouds remains a long-standing challenge in the remote sens-
ing community. The line-of-sight nature of laser-scanning, the
multiplicity of platforms from which it can be collected, and
the constant upward trajectory of point density collection are
all major factors (Vo et al., 2015). The problem is further com-
pounded by the non-static nature of natural and manmade en-
vironments: vegetation grows, built infrastructure changes, and
entities are transitory (e.g., humans, cars enter and leave scenes
at high rates). Such modifications often defy the use of seg-
mentation and object-detection-based co-registration strategies.
The size of such data sets are also fundamentally incompatible
with iterative point cloud matching. In an effort to overcome
these difficulties, this paper proposes a partial optimal transport
approach. In this paper, the focus will be to simultaneously
address partially overlapping scenes that have different distri-
butions of a single scene.

2. Background

Optimal transport (OT) was first conceived by Gaspard Monge
(Monge, 1781) as a method of ideal transport of physical ma-
terial, such as sand or soil, earning the common moniker “Earth
Mover’s problem”. At its core, OT provides a principled way to
compare two probability distributions by computing how much
“effort” is needed to transform one into the other. Today, OT is
applied to diverse areas of machine learning, including generat-
ive models, computer vision, and natural language processing.

The original formulation assumes two distributions: a source
probability distribution p on set X and a target probability dis-
tribution v on set Y. Monge’s formulation searches for a con-
tinuous map 7" : X — Y that pushes source points x € X to
the target points y € Y such that the externally provided cost
c(z,T(x)) of moving point z to T'(x) is minimized.

This idea is captured mathematically by Equation (1).
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Here 7% (1) = v denotes a measure-preserving pushforward.
It simply ensures that the transported source mass matches the
target exactly, with no mass lost or created in the process. Kan-
torovich later relaxed Monge’s problem to instead find a joint
probability distribution 7 € X X Y that couples the source
and target marginal distributions, p and v, respectively (Kan-
torovich, 1942). In the continuous setting described above,
Kantorovich’s problem seeks the minimum [Equation (2)]

min { /ny c(z,y) dn(z,y)

where II(p, v) is the set of all couplings in which the marginal
distributions are exactly p and v.
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In a discrete setting, Kantorovich’s formulation becomes a lin-
ear programming problem. The optimal transport map is the
real-valued matrix IT = (m;;) € R™ ™ that minimizes the
total cost C, a sum of pairwise costs (c;;) € R"*™ of trans-
port between weighted samples {z;};—; and {y;}7,. The Eu-
clidean distance can be used to measure transport cost. Irre-
spective of the selected measurement metric, each source point
x; has an associated mass p; = p(z;), each target point y; has
mass ¢; = v(y;), and masses in each marginal sum to one. The
Kantorovich linear program is written in Equation (3):
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That formulation represents the “full” optimal transport prob-
lem in a discrete setting. While it can be solved exactly, this
comes at significant computational expense. As an alternative,
Sinkhorn’s algorithm (Cuturi, 2013) can be used to obtain an
approximation with less computation.

Essid et al. (2019) proposed a sample-based adaptive OT
method for framing full OT as a minimax game between a map
T = V¢ and an adversary g to minimize the Kullback-Leibler
divergence between the source and target distribution using a
variational approach. By composing simple local maps between
intermediate distributions, their method avoids density estima-
tion and adaptively learns features from sample data, thereby
making it suitable for high-dimensional tasks like point cloud
co-registration.

However, classical optimal transport methods assume fully bal-
anced measures with complete mass transfer, which is often re-
strictive in real-world scenarios. Several extensions have been
proposed to address these limitations, particularly in the form of
“partial” optimal transport (POT) or unbalanced OT. Caffarelli
and McCann (2010) and Figalli (2010) established foundational
results on the existence and uniqueness of continuous POT
maps and characterize transport regions via free boundaries in
Monge—Ampere-type formulations. These works provided im-
portant theoretical insights in a continuous space.

More recent efforts focus on computational methods for dis-
crete POT. Riaz et al. (2023) introduced a semi-relaxed formu-
lation with entropic regularization and a proximal solver, aimed
at support subset selection on the source dataset. Chapel et al.
(2020) reformulated POT as a standard OT problem through
dummy mass embedding, enabling exact solvers for tasks such
as positive-unlabeled learning. Subsequently, Bai et al. (2023)
proposed a version of POT that reduced high-dimensional trans-
port to a set of repeated one-dimensional problems.

Several works have also applied POT using Sinkhorn-based
solvers for point cloud registration and domain adaptation. For
example, Besi¢ et al. (2022) employed POT to compute soft cor-
respondences between local descriptors in point clouds as part
of a pose estimation pipeline. Similarly, Cattaneo et al. (2022)
used Sinkhorn-regulated transport to align intermediate feature
distributions across domains for better segmentation transfer.
However, entropy-regularized formulations like Sinkhorn’s al-
gorithm yield dense, fractional mappings between points that
are difficult to interpret in co-registration tasks.

3. Scope and Methodology
3.1 Discrete Partial Kantorovich

The discrete Kantorovich problem, as previously described, can
be adapted to address partial optimal transport. In this formu-
lation, it may be preferable to exclude the transportation of cer-
tain points if the associated cost becomes comparatively high
(as would be happen if there is no matching point in the other
dataset). Consequently, the problem is restructured to allow
the redistribution of masses, modifying the source masses p;
into new masses p;, and similarly, the target masses g; into g;.
This reconfiguration involves completely removing mass at se-
lected high-cost points and redistributing it among the remain-
ing points. Since the masses are considered probabilities, the
constraint that the masses of the source and target each sum to
one is preserved.

The corresponding problem shown in Equation (4) reads like
Equation (3), but with p; and ¢; replaced by
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with scaling parameters «, 5 > 1 allowing adjustment of the
extent of partial transport and the addition of the further con-
straints shown in Equation (5)
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To tractably frame the problem into a form solvable by linear
programming, the conditions in Equation (4) are relaxed into
the inequalities p; < ap; and ¢; < fSg;.

When the scaling parameters « and 3 equal one, the problem
reverts to the original full transport formulation. As o and 3
grow, the formulation allows the remaining masses at more sig-
nificant points to grow, while points with the highest transport
costs (i.e., the furthest points) are ideally shrunk to a mass of
zero and, thus, excluded from the transport plan. Very large
values of « and f3 lead to an “extreme” partial transport, where
only the closest points between the source and target sets are
matched, effectively converting this formulation into a search
for the minimizer of a nearest-neighbor problem. Riaz et al.
(2023) also applied a similar scaling parameter in their partial
optimal transport formulation, although they only applied this
to the source data. In the formulation, herein, it is applied to
both the source and the target datasets.

To balance the extent of partial optimal transport, a regulariz-
ation term A is introduced into the objective function, which
provides the user with control over the degree of partiality in
the transport solution. The selection of A is critical, as it has a
direct relationship with the extent of subset selection. Smaller
values of A\ couple fewer points while larger values revert the
mapping to the full transport case. The magnitude of A depends
on the size of the dataset, with one value not necessarily yield-
ing the same behavior for another. This makes the selection
criteria inherently dependent on the preference of the user.

With these modifications, partial optimal transport can then be
formulated as the following linear programming problem as
shown in Equation (6):
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Fig. 1 demonstrates the feasibility of this reformulation with
uniformly weighted, synthetically generated source points (blue
unfilled) and target points (red unfilled) in a two-dimensional
coordinate plane. By selecting an arbitrary large value of A,
the full transport map depicted in Fig. 1b is obtained, where
each target point accumulates mass from multiple source points,
yielding a complex and soft coupling system (shown in green).



Using the partial optimal transport method outlined in Equation
(6), only a subset of source (blue filled) and target (red filled)
points are coupled in a one-to-one fashion, leaving the rest un-
touched. This is depicted in Fig. 1c. The subset selection is
controlled by arbitrarily setting A to 0.25. Different values of A
would yield different couplings. The case of extreme partial op-
timal transport is shown in Fig. 1d with A set to the very small
value of 0.01. In this case, only the closest pair of points in the
system is matched, illustrating minimal transport distance.

3.2 Branch-and-Cut

The solution to the above linear programming problem may
have points that satisfy strict inequalities 0 < p; < ap; and
0 < G; < Bqj that are allowed by the relaxation, yet remain un-
desirable. This soft coupling makes no practical sense in Light
Detection and Ranging (LiDAR) point matching, as the pres-
ence of intermediate mass values indicates that certain points
are neither fully included nor excluded in a co-registration set-
ting. This issue is addressed through a finite-depth branch-and-
cut procedure described below, which is made practical by the
fact that the number of points where the inequality is strict is
very small - an empirical observation that can be partially un-
derstood through the following theorem.

Theorem 1: For any value of A, there always exists an optimal
solution in which any two points indexed by 41, iz satisfying the
strict inequalities

0<pi; <ap;; and 0 < Py, < apiy
have disjoint targets, i.e. there is no j such that 7, ; > 0 and
Tig,j > 0.

Proof: Suppose there are two points indexed by i1 and io that
satisfy

O<ﬁ’i1 < Qpiy, O<ﬁ’i2 < QPig,

and a target point j such that 7;;, ; > Oand m;,,; > 0. If ¢;, ; >
Ciy,j» the solution cannot be optimal, since another solution with

ﬁil - 732'1 - 67 ]51'2 — ﬁiz + 57

Tiy,j = Tig,j — 0,  Tigj — Tigj + 6,

with § > 0 small enough, satisfies all constraints and has a
smaller total cost. Similarly, if ¢;,,; < ci,,;, then a solution
with lower cost has

ﬁil — ﬁil + 67 ﬁiz - ﬁiz - 57

Tiy,j = Tiy,j + 0, Tiyj — iy — 0.

Finally, if ¢;,,; = ci,,;, then either of the above transformations
preserves the total cost. In this case, either can be applied until
one of the corresponding 7 reaches 0. [

At each branch step, the point with the smallest unresolved
mass is identified and two subproblems are generated: one
which sets the mass to zero and the other to its maximum value
(ap; or Bg;). Both are solved and the point’s status is then
fixed based on the lower cost solution. The status of that point
is then fixed for all subsequent branches. This process repeats
until all mass assignments are resolved to binary values. With a
limited number of intermediate cases, this refinement adds only
modest computational cost while yielding clean, interpretable
couplings. Algorithm 1 outlines this procedure methodically.
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(a) Initial Data: Uniformly weighted source (blue)
and target (red) points in two-dimensional space.
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(b) Full Optimal Transport (A = 10): All points are
matched, producing dense, overlapping assignments.
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(c) Partial Optimal Transport (A = 0.25): A subset of
closer points are coupled, leaving others untouched.
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(d) Extreme Partial Optimal Transport (A = 0.01):
Only the closest pair of points is matched.

Figure 1. [lustration of full, partial, and extreme partial optimal
transport couplings between source and target sets under
different values of A using our proposed method.
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(a) Initial Data

(b) Without Branch-and-Cut (A = 0.06)

(c) With Branch-and-Cut (A = 0.06)

Figure 2. In the same setting as Fig. 1, negligible-mass points may remain coupled by the transport map returned by the relaxed linear
program form of partial OT depending on the selection of A, but these are fully pruned with a branch-and-cut procedure.

Algorithm 1 Branch-and-Cut Procedure

Initialize list of active subproblems .S with initial relaxed lin-
ear program
Set best solution (p*, ¢*, T™) < null, objective f* < oo
while S is not empty do
Select and remove a subproblem from .S
Solve the linear program with fixed constraints
if the problem is infeasible then
continue
end if
Let (p, G, T) be the solution with objective f
if f > f* then
continue
end if
if all entries of p and ¢ are either O or full mass then
Update (5", 4", T7) < (5,4, 1), f* < f
continue
end if
Select a partially assigned index ¢ in p or ¢
Create two new subproblems by:

e Fixing p; or g; to 0
e Fixing p; or g; to full mass

Add both subproblems to .S
end while
return (p*,q",T")

Fig. 2 compares results before and after employing the branch-
and-cut procedure. Running the normal discrete partial optimal
transport procedure with A = 0.06 yields a partial mass deletion
for one of the source points and one of the target points. Despite
these points having a negligible mass, the normal procedure still
attempts to couple them. Running the branch-and-cut method
with the same regularization parameter entirely removes the
negligible point masses (Fig. 2c). All remaining source points
have equal mass, as do the remaining target points.

3.3 Implicit Gradient Descent

Traditional linear programming solvers work well for small-
scale optimal transport problems, but struggle with scalability.
As the size of the data set increases, memory requirements for
storing and manipulating the constraint matrix A grow quadrat-
ically, which becomes particularly limiting in high-dimensional
domains such as point clouds. Meanwhile, algorithms based on
entropic smoothing, such as Sinkhorn (Cuturi, 2013), are com-
putationally efficient but tend to produce diffuse, soft matchings
that make it difficult to extract sharp, interpretable one-to-one
correspondences between points.

To address these challenges, an implicit saddle-point optimiz-
ation framework first introduced in Essid et al. (2023) is adop-
ted. This method takes a game-theoretic perspective to solve
saddle point problems as a “two-player game”: one player (the
set of primal variables) minimizes an established Lagrangian
function, while the other (the set of dual variables) maximizes
it. Unlike standard gradient descent, this method takes anticip-
atory steps that account for the future movement of the other
player, resulting in curvature-aware updates that ensure conver-
gence to a true saddle point.

This is begun by deriving the new objective by rewriting the
linear programming problem in its canonical form as shown in
Equation (7):

T
min ¢ 2
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where z € R"= are the primal variables
A is the constraint matrix
b is the constraint vector

As an analog to Equation (6), z contains all the primal variables
for which optimization is sought: the entries of the transport
map 7;;, the relaxed marginals p and ¢, and they scaling para-
meters « and .

The Lagrangian form of this problem introduces dual variables
w € R™ to enforce inequality constraints as seen in Equation
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A straightforward primal-dual gradient step looks like
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7 is the learning rate

J is the identity (I 0 >
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G" is the gradient (§I> at 2" and w™.
Y

However, updating these variables via simple gradient descent

may fail to converge to a saddle point. Instead, an implicit up-
date as shown in Equation (10) is applied that accounts for fu-

ture positions.
Zn+1 Zn "
(wm = () —micm (10)



This update typically does not have a closed-form expression.
Instead, the future position G" 1 is estimated based on current
values of =" and y" using a first-order Taylor approximation
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The implicit update then yields the following procedure:
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which reduces into the closed form
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The variables are then reparameterized

Z(z) =2, W(w)=w" (14)

yielding the new objective:

m>1%)1 max L(z,w) = minmaxc¢' Z(z) — W(w) (AZ(z) —b)
- (15)

Reparameterizing the primal and dual variables ensures that
positivity constraints are satisfied by construction and gives a
non-degenerate Hessian suitable for implicit updates. Other
mappings like exponential can be used, though squaring offers
a straightforward default.

For high-dimensional data, the leading computational cost of
this method comes from calculating the Hessian and the in-
verse (J + nH) ™!, but these can be addressed with relatively
low-cost strategies analogous to predictor-corrector schemes in
ODEs and quasi-Newton methods. Although this implicit up-
date method incurs a higher cost per-iteration, it offers extensib-
ility to more complex, regularized, or learning-driven transport
problems where LP formulations become less practical. Fur-
ther details and extensive theoretical guarantees of local con-
vergence can be found in Essid et al. (2023), including a case
study on the adaptive optimal transport problem introduced in
Essid et al. (2019).

3.4 Mass Bounding

In practice, gradient-based optimization for partial optimal
transport often results in mass values that approach but never
exactly reach a uniform value. This ambiguity makes it the
difficult to interpret which points are truly active (selected) or
inactive (excluded). To resolve this, a bounding procedure gov-
erned by a small tolerance parameter e is introduced, which
helps to refine these intermediate values. After solving the re-
laxed problem, some mass values lie close to the extremes (0 or
the maximum uniform weight), but due to numerical noise or
early stopping, they rarely become exactly binary.

The bounding step addresses this by snapping any mass less
than e to zero, while any mass within e of the maximum uni-
form weight is set to its full value. This immediately classifies
many points as either active or inactive, leaving only a small
subset of points in between. For these unresolved points, the

same branch-and-cut refinement as before is applied. While
setting tolerance e to the halfway point between 0 and the max-
imum uniform weight is possible, that could yield a suboptimal
solution as it circumvents the branch-and-cut procedure. Ulti-
mately, this mass-bounding step helps transition from soft, con-
tinuous solutions to hard, interpretable selections, while main-
taining sensitivity to the transport cost.

3.5 Adaptive Learning Rate

In saddle-point optimization, particularly in non-convex set-
tings, a fixed learning rate n can lead to unstable updates or
convergence to undesirable critical points. To counteract over-
shooting or stagnation, 7 is adaptively adjusted using a proced-
ure that extends the classic backtracking line search algorithm
(Nocedal and Wright, 1999).

The proposed implementation, enforces two directional (also
known as Armijo-Goldstein) conditions as per Equation (16):

L(Zn+17wn) < L(Znywn) < L(Zn: Wn+1) (16)

(1) the Lagrangian must decrease when updating the set of
primal variables z while keeping the set of dual variables w
fixed; and (2) the Lagrangian must increase when updating w,
while keeping z fixed. If either of these conditions is violated,
the learning rate is iteratively halved until both are satisfied or
a maximum number of retries is reached. This ensures stable
progress to the optimal saddle point, even in highly nonlinear
or ill-conditioned settings.

3.6 Preconditioning

To improve numerical stability and reduce the influence of out-
liers on the partial OT procedure, a preconditioning step is ap-
plied that robustly rescales and centers the set of source points x
onto the target y. It uses a robust standardization method based
on the median and interquartile range instead of the mean and
standard deviation, which are more heavily skewed by extreme
values. This reformulation is given by Equation (17):

R e #-1C)
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Here, Q1,Q2, and Q3 are the three quartiles (25th, 50th, 75th
percentile) of the data. This transformation allows the implicit
descent procedure to converge more reliably and efficiently to
the local optimum. This step acts as a lightweight but highly
effective enhancement to the overall transport pipeline, particu-
larly in noisy, real-world scenarios where assumptions of global
alignment may not hold.

x (Qs(y) — Q1(y)) + Q2(y) (A7)

4. Results

This proposed method is evaluated using LiDAR point cloud
data collected by Laefer and Vo (2019), which includes scans
of distinct urban objects including houses, trees, and light poles
that were manually extracted to test the proposed approach. To
ensure spatial coherence across different experimental setups,
additional preprocessing was conducted so that the objects
were positioned appropriately nearby, and their coordinate sys-
tems were aligned so all structures would lie on approximately
the same plane. This setup emulates real-world multi-object
scans where irrelevant structures may be present near objects
of interest. All experiments were conducted using MATLAB
R2023a on a system with 13th Gen Intel Core i7-13700H CPU
and 16GB RAM.



4.1 Tree and Light Pole Dataset

Fig. 3 illustrates the point clouds of both the tree and light pole
in CloudCompare, as well as the subsampled datasets used in
the partial optimal transport experiments in a three-dimensional
coordinate plane. From the original point cloud of each ob-
ject, two subsets were randomly extracted. One was selected
as the source and the other as the target. Although the ori-
ginal tree point cloud contained more than 100,000 points, both
subsets were artificially limited to only 925 points each to ac-
commodate constrained computing environments with limited
processing and memory.

To introduce structural variation and simulate realistic chal-
lenges, the source data set was sampled exclusively from the
tree and uniformly scaled by a factor of 2 — simulating scale
misalignment and testing the robustness of both the proposed
preconditioning and transport mechanisms. The target data set
includes an additional 150 points sampled from the light pole
dataset (originally 18,000 plus points). This additional struc-
ture introduces partial mismatch and noise, presenting a chal-
lenging case for correspondence estimation and making the co-
registration task more representative of real-world scenarios in-
volving occlusion or outlier presence.

Fig. 3d shows the output of the proposed transport; setting the
scaling term to A = 3. At this level, only a subset of the tree
points are involved in the coupling, while all points associated
with the light pole are successfully ignored. Remaining masses
are uniform and ambiguous mass values are pruned through
the bounding and branch-and-cut steps, preserving interpretable
correspondences across domains.

4.2 House and Tree Dataset

To further validate the method’s robustness across different geo-
metric structures, additional experiments comparing the per-
formance of the partial optimal transport approach against sev-
eral established co-registration methods were conducted using
a house and tree point cloud from the previously cited data set.
This configuration tested the method’s ability to selectively re-
gister distinct architectural features while ignoring irrelevant
natural structures.

The original house point cloud contains over 250,000 points
while the original tree point cloud remains the same as the pre-
vious section. After a similar preprocessing stage as the tree
and light pole example, the source data randomly sampled 925
points from the house point cloud plus 150 points randomly
sampled from the tree point cloud. Both components are drawn
at their original scale. The target data samples were only 925
points from the house point cloud and then uniformly scaled by
a factor of 2.

Fig. 4 contains visuals for this point cloud and co-registration
results of the Hungarian Algorithm, Robust Point Match-
ing, and partial OT. For fair comparison, all algorithms used
identical convergence criteria (tolerance = le-6, maximum iter-
ations = 100). Correspondence visuals (shown in green) provide
valuable, intuitive understanding of the relative performance of
each algorithm which is difficult to convey quantitatively, con-
sidering the cost metrics for each method are unique.

(a) Original tree and light pole point cloud

(b) Initial source: tree only (rescaled to 2x size)
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(d) Final transport (A = 3): only the tree points are coupled

Figure 3. Despite additional noisy structures in the target set, the
method correctly couples only the tree structure while discarding
the light pole, illustrating robust geometric selectivity.
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(d) Hungarian Algorithm

(b) Initial source: house and tree (original scale)

(e) Robust Point Matching
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(f) Partial Optimal Transport (A = 5)

Figure 4. Qualitative results of co-registration methods on the house-tree dataset. Partial optimal transport effectively couples the
house structure only, demonstrating stronger geometric selectivity compared to traditional co-registration methods.

4.3 Comparison of Co-Registration Methods

The proposed partial OT approach was benchmarked against
two previously published techniques. The first is the Hungarian
Algorithm, also known as the Munkres algorithm (Kuhn, 1955),
which solves the classical assignment problem (a special case
of optimal transport) and can be modified to solve unbalanced
assignment problems like partial co-registration. Fig. 4d con-
veys the results of this algorithm, which shows the most indis-
criminate correspondence behavior among the three methods,
yielding suboptimal assignments that map several house points
to the noisy tree structure.

Partial OT was also compared against Robust Point Matching
(Yew and Lee, 2020), which aims to establish soft correspond-
ences between point sets and handles outliers through an an-
nealing process. The implementation herein initialized the an-
nealing parameter 3 = 0.1, which was increased by a factor of
1.05 per iteration (capped at 50) and combined with a penalty
weight « = 1 for outliers. Fig. 4e shows results with strong
geometric selectivity, as it ignores most tree points, though it
includes lengthy correspondences between house structures.

In contrast, partial OT with scaling parameter A = 5 effect-
ively eliminates all excess connections to irrelevant geometric
features, as evidenced by Fig. 4f, which shows concentrated
coupling within the house structure and complete avoidance of
any tree points. These correspondence lengths are shorter than
those found in Robust Point Matching (as shown in Fig. 4f).

5. Discussion

This paper presents an interpretable framework for discrete par-
tial optimal transport by extending classical OT with a series of
algorithmic innovations tailored for point cloud co-registration.

The main contributions are as follows.

o A fully relaxed linear programming formulation of partial
OT that allows both source and target distributions to vary
within bounded mass constraints.

e A regularization term A to explicitly control the extent of
partial transport induced through two learned scaling para-
meters o and 3, unifying the behavior of full and extreme
transport plans in a single framework.

e A branch-and-cut refinement that converts soft transport
plans into binary support selections, thereby filtering out-
liers and non-informative points.

e Replacement of memory-intensive linear program solvers
with an implicit gradient descent method that is curvature-
aware and does not require entropic smoothing.

Despite its strengths, the proposed method is comparatively
computationally expensive (273.21 seconds runtime versus
75.47 for the Hungarian Algorithm and 6.96 for the Robust
matching). This highlights a trade-off between computational
efficiency and correspondence quality. Although partial OT re-
quires significantly more processing time, its strong perform-
ance in partial correspondence scenarios and robust handling of
geometric outliers make it particularly valuable for applications
where registration quality is prioritized over speed.

The performance of partial OT is sensitive to hyperparameter
selection, particularly the scaling parameter regularization term
A, the mass bounding coefficient €, and the learning rate n for
the gradient descent procedure. Careful tuning is required to
avoid the under- or over-pruning of point masses. Sensitivity
analysis and a methodical hyperparameter selection process are
important future areas to explore.



Finally, the proposed method relies on the preconditioning step
to bring the source and target point clouds into approximate
alignment. Although the implicit gradient method accounts for
mild misalignment, it may struggle in scenarios with significant
structural divergence (e.g., introducing a comparatively large
structure like a skyscraper in only the source or target dataset
but not in other). Notably, traditional full optimal transport and
other co-registration methods would also struggle in such re-
gimes due to inherent assumptions of full support matching.

6. Conclusions

This work offers a step toward making optimal transport more
adaptable to practical geometric tasks, particularly in settings
where full support matching is neither feasible nor desirable.
By unifying relaxation, refinement, and curvature-aware optim-
ization, this work advances the use of partial optimal transport
to a deployable, scalable tool for co-registration tasks where se-
lective, interpretable matching is critical.

Some interesting directions for future research include:

o Applying this method to voxelized or mesh-based versions
of point clouds to reduce memory usage and increase ro-
bustness to sampling density variations.

e Incorporating rotation- and scale-invariant cost functions
or embedding cost-free transformation to the optimization
loop could reduce dependence on manual preconditioning.

o Integrating this method into GPU-accelerated neural
pipelines could decrease its computational cost and sig-
nificantly increase its applicability in the broader remote
sensing community.
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