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Abstract

Erwin Schrodinger posed, and to a large extent solved in 1931/32 the
problem of finding the most likely random evolution between two contin-
uous probability distributions. This article considers this problem in the
case when only samples of the two distributions are available. A novel iter-
ative procedure is proposed, inspired by Fortet-Sinkhorn type algorithms.
Since only samples of the marginals are available, the new approach fea-
tures constrained maximum likelihood estimation in place of the nonlinear
boundary couplings, and importance sampling to propagate the functions
o and ¢ solving the Schrédinger system. This method mitigates the curse
of dimensionality, compared to the introduction of grids which in high
dimensions lead to numerically unfeasible methods. The methodology is
illustrated in two applications: entropic interpolation of two-dimensional
Gaussian mixtures, and the estimation of integrals through a variation of
importance sampling.

1 Introduction

This article proposes a methodology for solving the following problem: given m
and n independent samples {z;} and {y;} from two distributions with probabil-
ity densities po(x) and p1(y) respectively, and a prior probability p(¢1, z, ta, y)
that a “particle” at position x at time ¢; will end up at position y at time ¢o, find
the most likely intermediate evolution p(z,t), t € [0,1] satisfying p(z,0) = po(z)
and p(y,1) = p1(y). This is a data-driven version of the Schrédinger Bridge
Problem, which we describe below. In addition to the evolving density p(z,t),
the solution provides the posterior transition density p*(t1, x, t2,y) most consis-
tent with the observed initial and final distributions, useful for model improve-
ment.

1.1 Motivation, examples and extensions

Many problems of practical and theoretical interest can be directly formulated as
data-driven Schrodinger bridges. Consider the following two examples, arising
in climate studies and evolutionary biology:



1. With the current knowledge of oceanic or atmospheric flows described
in terms of a velocity field v(z,t) and a diffusion operator D, the corre-
sponding Fokker-Planck evolution equation yields the prior p(t1,x,ta,y)
for the trajectories of tracers. If at any point in time a cloud of parti-
cles is released into the fluid such as a volcanic eruption, or its current
concentration pg is sampled, and at some other time its distribution p; is
sampled again, the data-driven bridge problem provides an estimate for
the most likely intermediate evolution p(z,t) of the tracer cloud and to an
improved model for the currents v.

2. Given the distribution of traits (genomic or phenomic) for a species at two
points in time, and a stochastic model for their evolution, the problem
asks for the most likely intermediate evolutionary stages, and provides as
additional output an improved stochastic evolutionary model.

In other problems, it is not an intermediate evolution that one is after, but
the probabilistic matching 7(z,y) between two distributions po(z) and p1(y)
under a prior matching model p(y|z). In this case, both the problem and the
methodology proposed for solving it extend without changes to situations where
the variables = and y do not have the same dimensions, arising frequently in
practice. For instance, in applications to the employment market, there is no
reason for the number of variables characterizing employers and employees to
be the same.

In a third type of scenarios, there is only one data-given distribution p;(y);
the other distribution pg(z) and the prior p(t1, z, t2, y) are introduced for conve-
nience by the modeler, so as to perform p;(y)-related tasks. As an example, in
Section 4 we apply the Schrodinger bridge to develop a variation of importance
sampling where the distribution over which expected values of a function are
sought is known only through samples.

In other applications, one has only p;(y) and the prior p(¢;,z,ts,y), and
would like to determine p;(z) for ¢ < 1. Two prototypal examples are inverse
problems, such as describing the most likely previous temperature distribution
of a system given its current one, and large deviation problems: if the stochastic
process described by p has a statistically steady state p.,, what are the most
likely paths that will lead to a p; different from p.4, such as the one correspond-
ing to a strong storm or a drought in applications to weather and climate.

Most of these examples involve prior transition probabilities suited to the
particular application being considered. This article focuses on a methodology
for the case where the prior is the Wiener process (the one that Schrodinger
considered originally.) The extension to more general priors is work in progress.
Nevertheless, we foresee that the extension to the case when the prior measure
corresponds to a reversible Markov diffusion presents no difficulty. In that case,
by Kolmogorov’s characterization, the (forward) Ito differential is of the form

dXt = —VH(J?t)dt + th

where H : R” — R is sufficiently smooth and such that exp[—2H (x)] is in-
tegrable. In that case, X is reversible with stationary probability density



p(x) = cexp[—2H (z)], where c is a normalizing constant. Moreover, the back-
ward (reverse-time) drift in the sense of Nelson [47] is b(x) = VH(x) and the
reverse time transition density p satisfies
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This can be used in simulations. Another family of non translation invariant
prior measures to which our methodology can be extended is the case when
the prior is a general Gauss-Markov process as considered in [15, 16]. Both
extensions will be considered in future work.

1.2 The methodology

The solution to the Schrodinger Bridge Problem can be factorized in the form
(see (14) in Section 2 below)

pe(x) = @i(x)Pe (),

where p;(x) represents the distribution at time ¢, and ¢ and ¢ evolve from ¢ = 1
and t = 0 respectively, following the prior:

buly) = / p(0, 2, £, ) o ()dz,
oe(z) = / Pt 2.1, y)pr (v)dy.

One can therefore, starting from an arbitrary ¢o(z), propagate it into the cor-
responding @1 (y), and write

_
¢1(y)

Then, evolving ¢1(y) back into the corresponding ¢o(z), we write

1(y)

. _ po()
Po(r) = soo(x)’

and repeat. This idea underlies iteration schemes that, under suitable assump-
tions, converge to the solution of the Schrédinger Bridge Problem [32, 12].

Yet this procedure assumes that the initial and final distributions pg and
p1, as well as the transition probability p, are known explicitly, and that the
integrals propagating ¢ and ¢ between ¢ = 0 and ¢t = 1 can be evaluated in
closed form. By contrast, in applications py and p; are typically only known
through samples. In addition, it is often the case that the transition probability
p can be sampled through the integration of a stochastic differential equation,
but not evaluated, which would require solving the corresponding Fokker-Plank
equation. Moreover, even if py, p; and p are known, one still needs to estimate
the integrals propagating ¢ and ¢ numerically.



The methodology developed in this article mimics the iterative procedure
above, but replacing each step by a sample-based equivalent. Thus the state-
ments that

vo(T)po(z) = po(xr) and @1(y)P1(y) = p1(y)

are interpreted as density estimations and implemented via maximum likelihood,
and the propagators for ¢ and ¢ are estimated via importance sampling. Both
tasks involve elements unique to the Schrodinger Bridge Problem, described in
Section 3.

1.3 Prior work

Schrodinger’s statistical mechanical thought experiment (large deviations prob-
lem) was motivated by analogies with quantum mechanics. On the other hand,
since Boltzmann’s fundamental work [7], and then through Sanov’s theorem
[62], we know that finding the most likely Zustandverteilung (macrostate) is
equivalent to solving a maximum entropy problem. This connection provides a
second important motivation for Schrédinger bridges, as an inference method-
ology that prescribes a posterior distribution making the fewest number of as-
sumptions beyond the available information. This approach has been developed
over the years, thanks in particular to the work of Jaynes, Burg, Dempster and
Csiszar [39, 40, 8, 9, 26, 19, 20, 21]. A more recent third motivation for studying
Schrédinger bridges is that they can be viewed as regularizations of the Opti-
mal Mass Transport (OMT) problem [44, 45, 46, 41, 42, 10] which mitigates its
computational challenges [3, 4, 50]. A large number of papers have since ap-
peared on computational regularized OMT (Sinkhorn-type algorithms), see e.g.
[22, 5, 14, 12, 17, 43, 2, 18]. While most of the classical work concentrates on
the continuous problem, see e.g. the bibliography in [42] and Section 2 below,
these papers concern the discrete Schrodinger Bridge Problem [48, 34]. Hardly
any attention, however, has been given to the case when only samples of con-
tinuous marginals are available. One exception is [27] which deals with using
regularized optimal transport for hard and soft clustering. One might think
that the latter case may be readily treated by discretizing the spatial variables
through grids. As we argue in the beginning of Section 3, such an approach is
often numerically unfeasible and/or not reliable. Thus, in this paper we provide
what appears to be the first numerically viable approach to the data-driven
continuous Schrodinger Bridge Problem.

As discussed at the end of Subsection 2.4, this approach permits finding a
map from pg to p;, relating this work to [59] and [57] developed in the context
of optimal transport.

1.4 Organization of the article

The paper is organized as follows. In Section 2, we provide an introduction to
Schrédinger bridges. We include a concise description of Schrodinger’s original
motivation, and elements of the connection between the large deviation problem



and a path space maximum entropy problem, and with Optimal Transport. We
also sketch derivations of the Schrédinger system and of the stochastic control
and fluid dynamic formulations, focusing on the case when the prior transition
density is the heat kernel.

In Subsection 2.5, we outline Fortet’s iterative algorithm, dating back to
1940, which represents a sort of guideline for the numerical methods we de-
velop in the rest of the paper. Section 3 features the novel methodology to
attack the data-driven bridge problem, motivated by numerical, statistical and
optimization considerations. First, the so-called half-bridge problem is treated,
and then the full bridge, leading to the algorithm of Subsection 3.3. In Sec-
tion 4, we illustrate the methodology in two relevant applications: the entropic
interpolation between two Gaussian mixtures on R? and a new application of
Schrédinger bridges to a variation of Importance Sampling. Finally, in Section
5 we summarize the results and propose future avenues of research.

2 Background on Schrodinger bridges

2.1 Schrodinger’s hot gas experiment and maximum en-
tropy formulation

In the early 1930s, Erwin Schrodinger proposed the following Gedankenexper-
iment [53, 54]. Consider the evolution of a cloud of N independent Brownian
particles in R™. This cloud of particles has been observed to have at the initial
time ¢ = 0 an empirical distribution approximately equal to po(z)dz. At time
t = 1, an empirical distribution is observed approximately equal to pi(y)dy
which considerably differs from what it should be according to the law of large
numbers (N is large, typically of the order of Avogadro’s number), namely

p1(y) # /RS p(0,2,1,y)po(x)dz,

where )

p(s,y t,x) = [2m(t — )] 2 exp [_|x—y|] s<t (1)

T 2(t—s) ]’

is the transition density of the Wiener process. It is apparent that the particles
have been transported in an unlikely way. But of the many unlikely ways in
which this could have happened, which one is the most likely? In modern prob-
abilistic terms, this is a problem of large deviations of the empirical distribution
as observed by Follmer [31]. Thanks to Sanov’s theorem [52], Schrédinger’s
problem can be turned into a maximum entropy problem for distributions on
trajectories. Let C([0,1];R™) be the space of R™ valued continuous functions
and let W be Wiener measure on C([0, 1];R™)). Then Sanov’s theorem roughly
asserts that the most likely random evolution between two given marginals is
the solution of the Schrodinger Bridge Problem:

Problem 1.
Minimize D(P||W) over P € D(pg,p1)- (2)



where D(pg, p1) are distributions on C([0, 1];R™) having marginal densities pg
and p; at times t = 0 and ¢ = 1, respectively, and

Ep(log$£), i#P<W
400 otherwise

DUﬂWU{

is the relative entropy functional or Kullback-Leibler divergence between P and
W. The optimal solution is called the Schrdidinger Bridge between py and pq
over W, and its marginal flow (p;) is the entropic interpolation. Two good
surveys on Schrodinger bridges are [61, 42]. Let

Wé/:W[-|X0:£L',X1:y]

be the disintegration W with respect to the initial and final positions. Then the
solution of 2 can be shown [31] to have the form

Pr() = / WOz g)dody
’I'L>< n

where 7*(z,y) is the joint initial-final time density under P* solving the static
problem:

Problem 2. Given the joint initial-final time density 7V under W, minimize
over densities 1 on R™ x R" the index

D)= [ [ [bg M} (e, y)drdy 3)

subject to the (linear) constraints

/ r(z,y)dy = polx), / (2 y)dz = pa (y). (4)

Consider now the case when the prior is W.

~, namely Wiener measure with
variance -y, so that

M—yw

p(0,2,1,y) = [2m9] " % exp {— o

It can be shown [42, 29] that the initial marginal density of the prior can WLOG
always be taken equal to py and that Problem 2 of minimizing D(7||7W~) over
II(pg, p1), namely the “couplings” of py and pyis equivalent to

2
inf /\x Y W(J;,y)dmdy—l—v/w(x,y) log (x, y)dzdy. (5)
m€Il(po,p1) 2

This is just a regularization of Optimal Mass Transport (OMT) [60] with quadratic
cost.



2.2 The Schrodinger system

Using Lagrange multipliers for the linear constraints (4), Schrodinger showed
that the optimal 7*(+,+) in the form

™ (z,y) = ¢(2)p(0, 7,1, y)p(y), (6)

where ¢ and ¢ must satisfy
ba) [ P02 1 y)el)dy = pl) @
o) [p02 106 = po). 0
Define ¢o(z) = &(z),  ¢1(y) = ¢(y) and
£10)i= [ 202100, eolae) = [ 90,21 g)er ().
Then, (7)-(8) can be replaced by the system
610) = [ p0.2,1,9)60(z)ds, )
polz) = [ p(0.2. 1)1 (), (10)
coupled with the boundary conditions

wo(w) - po(x) = po(x), w1(y) - &(1L,y) = p1(y). (11)

Notice that dividing both sides of (6) by po(z), we get

p*(05x717y) = p(oax’Ly)(pl(y)v (12)

1
po(x)
where ¢, in Doob’s language, is the space time harmonic satisfying (10) or,

equivalently,
dp 1
— 4+ -Ap=0. 13
or T 2°% (13)

The solution is namely obtained from the prior distribution via a multiplicative
functional transformation of the prior Markov processes [37]. The question of
existence and uniqueness of positive functions ¢, ¢ satisfying (9, 10, 11), left
open by Schrodinger, is a highly nontrivial one and has been settled in various
degrees of generality by Fortet, Beurlin, Jamison and Follmer [32, 6, 38, 31], see
also [42, Proposition 2.5]. The pair (¢, ®) is unique up to multiplication of ¢
by a positive constant ¢ and division of ¢ by the same constant. At each time
t, the marginal p, factorizes as

pi(x) = @i(x) - Pi(). (14)



Schrédinger observes: “Merkwiirdige Analogien zur Quantenmechanik, die mir
sehr des Hindenkens wert erscheinen.”! Indeed (14) resembles Born’s relation
pi(z) = b (x) -1y (x) with ¢ and ¢ satisfying two adjoint equations like ¢ and .
Moreover, the solution of Problem 2 enjoes the following remarkable reversibility
property: Exchanging the two marginal densities py and p;, the new solution is
the time reversal of the previous one. This explains the title “On the reversal
of natural laws” of [53].

2.3 “Half bridges”

Consider the following variant of Problem 2 with prior distribution W.:

Problem 3.
Minimize D(P|W,) over P € D(p1), (15)

namely, we only impose the final marginal. The same argument as before shows
that Problem 15 reduces to the following variant of Problem 2:

Problem 4. Minimize over densities m on R™ x R™ the index

D(w||xV7) = / / {log va(x(f)y)} wla, y)dady (16)

subject to the (linear) constraint

/ r(z,y)dz = pr (1), (17)

A simplified variational analysis, with p as Lagrange multiplier for the constraint
(17), gives the optimality condition

1 +log 7*(z,y) — logp(0,2,1,y) — log p} () + pu(y) = 0,

where p (z) is the initial marginal for the reference measure. We then get

™ (z,y) - .
———=_ —exp|lo x)—1—ply)| = x)exp |—1 — u(y)]. 18
SOy~ P Lol @) =1 = )] = A @ exp -1 p)]. - (18)
Thus, in the previous notation, we can set ¢(x) = p§ () and ¢(y) = exp [-1 — u(y)].
Let
2
K -3 rT—y
) = / o] exp {_27} py (x)da

which replaces (9) with ¢o(z) = piV (z) and ¢;(y) = prVW (y).Then (8) gives
immediately

IRemarkable analogies to quantum mechanics which appear to me very worth of reflection.



We now get the form of the optimal initial-final joint distribution of the half-
bridge:

™(x,y) = po (2)p(0,2,1,y) @é(y)
P (y)
Wy ol E e | TV ) w1 (Y)
= W@)em) e p[ - ]p%(y) w0 G
Finally, let
woly) == / (2m)7% [279] " ¥ exp [—'szvy] o(y)dy. (20)

Then, the initial marginal of the solution is given by

po(z) = wo(y)py’ (x).

Notice that here there is no delicate question about existence and unique-

ness for the Schrodinger system as ¢ coincides at all times with the prior

one-time marginal. This, in turn, provides the terminal condition for the ¢

function at time ¢ = 1 which then only needs to be propagated backward

through (20) to provide the full solution. In the special case when py (z) =
||

§(z), we have prV” (z) = (2myt)” % exp [—Q—,ﬂ} and, in particular, p‘fV” (y) =

- 2
(2my)~ = exp [—%} .

An immediate application of the half-bridge problem is the reconstruction
of the past of a system given its current state and a prior model for its evo-
lution. The availability of a prior here is crucial, as without a prior or other
regularization such inverse problems are typically ill-posed. Another applica-
tion concerns deviations from equilibrium. Consider a stochastic system whose
dynamics p(t1, z1, 2, z2) has a statistically steady state peq(x), possibly modu-
lated in time. What is the most likely path that would take us at time ¢ to a
state p1(z) away from equilibrium? For example, one may want to anticipate
the likely path of strong storms or large waves, so as to be able to forecast them.

2.4 Stochastic control and fluid-dynamic formulations

In addition to the formulations above, there exist also dynamic versions of the
problem such as the following stochastic control formulation originating with
[23, 24, 49]: Problem 2 (when the prior has variance ) is equivalent to

Problem 5.

1
1
Minimize, ey J(u) = E / — [lug||?dt] ,
0o 2v

subject to dX; = wdt + /ydWy,  Xo ~ po(z)dz, X1 ~ p1(y)dy,

(21)

where the family U consists of adapted, finite-energy control functions.



The optimal control is of the feedback type

uy = vV log @t(Xt)a (22)

where (¢, @) solve the Schrodinger system (9, 10, 11). These formulations are
particularly relevant in applications where the prior distribution on paths is
not simply the Wiener measure, but is associated to the uncontrolled (“free”)
evolution of a dynamical system, see e.g [15, 16, 13] and in image morph-
ing/interpolation [12, Subsection 5.3]. In the case of the half bridge, (22) still
holds with ¢ satisfying

0 .
8(tp VAw_O 90(1“):/)?‘1’5().)'

Problem 21 leads immediately to the following fluid dynamic problem:
Problem 6.

1nf/ / Lo, 0)12p(t, 2)dtdz, (23a)

(p;b)
E + V- (bp) — pr =0, (23b)
p(0,2) = po(z),  p(Ly) = pr(y)- (23¢)

where b(-,-) varies over continuous functions on R™ x [0,1]. This problem is
not equivalent to Problems 2, 2 and 21 in that it only reproduces the optimal
entropic interpolating flow {p;;0 < t < 1}. Information about correlations
at different times and smoothness of the trajectories is here lost. As v \, 0,
the solution to this problem converges to the solution of the Benamou-Brenier
Optimal Mass Transport problem [4, 44, 45, 46, 42, 41]:

1

1
inf / / Lo t)12o(t, 2)dde, (24a)
(pyv) Jrn Jo 2

dp
o TV (vp) =0, (24Db)

p(0,2) = po(z),  p(Ly) = pr(y)- (24¢)

Let (p,b) be optimal for Problem 6 and define the current velocity field [47]

v@,t) = bla,t) = JVlogpi(x)

pi(x)
Gi(x)’
where we have used (22) and (14). Assume that v guarantees existence and

uniqueness of the initial value problem on [0,1] for any deterministic initial
condition and consider

YV log i (x) — %V log pi(z) = %V log (25)

X(t) =v(X(t),t), X(0)~ pode. (26)

10



Then the probability density p:(z) of X(t) satisfies (weakly) the continuity
equation

dp

S v =0
5tV (vp)
as well as (23b) with the same initial condition and therefore coincides with
p(x,t). This suggests that an alternative fluid-dynamic problem characterizing
the entropic interpolation flow {p;;0 < ¢ < 1} may be possible. Indeed, such

time-symmetric problem was derived in [14]:

Problem 7.
in / / Lo, 012 + LIV iog pl2| p(t, 2)dtdz,  (27a)
(o) Jrn Jo |2 8
% +V.(vp) =0, (27b)

The two criteria differ by (v/8)Z(p) where the Fisher information functional Z
is given by

T(p) = / IV log pe () da

while the Fokker-Planck equation (23b) has been replaced by the continuity
equation (27b). Both Problems 6 and 7 can be thought of as regularizations of
the Benamou-Brenier problem (24) and as dynamic counterparts of (5). Also
notice that, precisely as in Problem (24), the optimal current velocity (25) in
Problem 7 is of the gradient type.

Finally, consider the family of diffeomorphisms {73;0 < ¢ < 1} satisfying

dTi

(@) =@, To=1, (28)

where v is defined by (25). Then, in analogy to the displacement interpolation
of Optimal Mass Transport, we have the following relation for the entropic
interpolation flow

pe(z)dx = Ty#po(z)de, (29)

namely p;(x)dx is the push-forward of the measure po(z)dz under the map T;. In
particular, the map T., = Ty pushes po(z)dz onto p;1(z)dx and represents there-
fore the entropic counterpart of the map solving the original Monge problem.
It may be called the Monge-Schridinger map.

2.5 Fortet’s iterative algorithm

The oldest proof of existence and uniqueness for the Schrodinger system (9,
10, 11), due to Fortet [32], is algorithmic in nature, establishing convergence
of successive approximations. More explicitly, let g(z,y) be a nonnegative,
continuous function bounded from above. Suppose g(x,y) > 0 except possibly

11



for a zero measure set for each fixed value of z or of y. Suppose that py(x) and
p1(y) are continuous, nonnegative functions such that

[ miwiae= [ may

Suppose, moreover, that the integral

p1(y)
—d
./mmwmwmy

is finite. Then, [32, Theorem 1], the system

o) [ g n)vlody = i), (30)

v) [ g olelds = m() (31)
admits a solution (¢(z),1(y)) with ¢ > 0 continuous and ¢ > 0 measurable.
Moreover, ¢(z) = 0 only where po(z) = 0 and 1(y) = 0 only where p;(y) = 0.

The result is proven by setting up a complex approximation scheme to show
that equation
p1(y)dy

SACIL A (32)
[z )55 dz

mm=mm=/aaw

has a positive solution. Notice that

_Iw—ylz}

g(z,y) = p(0,2,1,y) = [2m7] % exp [ >

satisfies all assumptions of Fortet’s theorem. Uniqueness, in the sense described
in Subsection 2.2, namely uniqueness of rays, is much easier to establish. In the
recent paper [29], the bulk of Fortet’s paper has been rewritten filling in all the
missing steps and providing explanations for the rationale behind the various
articulations of his approach.

Independently, at about the same time and in the discrete setting, an iter-
ative proportional fitting (IPF) procedure, was proposed in the statistical liter-
ature on contingency tables [25]. Convergence for the IPF algorithm was first
established (in a special case) by Richard Sinkhorn in 1964 [55]. The iterates
were shortly afterwards shown to converge to a “minimum discrimination in-
formation” [36, 30, 51], namely to a minimum entropy distance. This line of
research, usually called Sinkhorn algorithms, continues to this date, see e.g.
[22, 2, 58]. Tt is apparent that an iterative scheme can be designed based on
(32) which, in the previous notation, reads

Qpo(x)) = [ p(0, 2,1, pily)dy : 33
(ola)) = [ o e Ly B (33)

12



This was accomplished in [12], showing convergence of the iterates in a suitable
projective metric, but only for the case when both marginals have compact
support.

Setting up an iterative scheme based on (33) when only samples of the two
marginals are available is obviously much more challenging: This is the main
topic of this paper which we shall pursue starting from the next section. This
will also provide an approach to data-driven Optimal Mass Transport alternative
to [59] since, as observed at the end of Subsection 2.1, the Schrédinger Bridge
Problem may be viewed as a regularization of OMT.

3 Numerical methodology

This section develops a sample-based numerical methodology for the solution of
the Schrodinger Bridge Problem. This is the case, ubiquitous in applications,
where the distributions py and p; are only known through the finite sample sets
{x;} and {y;} of cardinality m and n respectively.

One could propose a scheme whereby one first estimates pg and p; from
the samples provided, and then solves the regular Schrodinger Bridge Problem
between these two estimates. Yet there are a number of reasons why a procedure
based directly on the sample sets is preferable. In particular,

1. Density estimation adds an extra computational layer to the algorithm,
and hence a source of additional potential approximation errors. Notice
that the formula (6) for the posterior joint probability 7*(z,y) does not
involve the two marginal densities explicitly, only the potentials ¢ and ¢.

2. Even with estimations for py and p; known in closed form, the solution to
the Schrédinger Bridge Problem requires the calculation of integrals that
in most cases cannot be performed in closed form.

For conciseness, we shall denote p(y|x) the prior transition density p(0, x, 1,y),
and write @g(z) and o1 (y) instead of ¢(z) and p(y), respectively. Then (6) reads

™ (z,y) = o(®) p(ylz) ¥1(y).

The entropic interpolation between py and p; is given by pi(z) = pi(2)Pe(2),
where

o) = [plta Loy Gl = [pO.0t )o@ (30
In particular, one needs to solve the system

po(x) = po(z)Po(x),  p1(y) = e1(y)P1(y),
with

po(z) = / PR W) dy  ¢aly) = / p(y|z)go(z)de.

To begin, we need to reformulate the problem so that it involves the distributions
only through their available samples.

13



3.1 The half-bridge problem through maximal likelihood

We develop first an algorithm for the half-bridge problem. Even though this
is much simpler than the full bridge, it includes some of its main ingredients.
Recalling that ¢; is known (see Subsection 2.3), the equality ¢1(y)e1(y) = p1(y)
can be reformulated in a data-friendly way by minimizing the Kullback-Leibler
divergence between p;(y) and @1(y)p1(y), leading to the following constrained
optimization problem:

p1 = arg maX/log(w(y))m(y) dy, /(@1(y)s01(y))dy =1,

»1(y)=>0

where two functions ¢; are considered equal if they differ on a set of measure
zZero.

We can satisfy the positivity constraint automatically by proposing an ex-
ponential form for ¢1:

©o1(y) = eg(y)7
which yields

mgX/g(y)m(y)dy s.t. /@1(y)e”(y)dy= 1,

or, introducing a Lagrange multiplier A for the constraint,

maxmin L(g, A) = /g(y)pl(y) dy — A </ G1(y)e’Wdy — 1) :

Maximizing over g first yields

oL _
Sg

— A 9W) — (0 resulting i — 1o (P}(?ﬂ)
p1(y) — Ap1(y)e resulting in  g(y) G W)

Then the minimization over A becomes

mgn [—log(A)+ Al = A=1

Hence the value of the optimal \ is known explicitly, and the estimation problem
becomes:

mng(g) = /g(y)pl(y) dy — /@1(y)69(y)dy+ 1. (35)

Notice that the solution to (35) is

p1(y) p1(y)
g(y)=log(A ) = ei(y) =
¢1(y) ¢1(y)
the exact answer to the problem. Yet in the true problem p;(y) is only known
through samples {y;}, so the first integral in (35) must be replaced by its em-
pirical counterpart:

/g(y)pl(y) dy — %Zg(yj)
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Then, introducing a rough estimate p; of p; that one can sample, such as a
Gaussian, and drawing 1 samples g, from it, we can replace the second integral
above by its Monte Carlo simulation:

(r,)e9(w)

3 ed( 1
/@@wmwyi/“g@>pmﬁwa o alier i

= p1(Tr)

(Notice that for p; = p; and g the true maximizer, this is an estimation with zero
variance.) Regarding the use of Monte Carlo in high dimensions, one must be
aware of the results derived in [11] and [1], showing that the sample size needed
to obtain accurate importance sampling estimates can grow exponentially with
the dimension.

Finally, proposing a parameterization of the unknown g(y), such as

B)=>_BFiy)
l

where the F; are functions externally provided, we end up with the following
algorithm for estimating @1(y). Let @1(y,3) be the parametrization of ¢1(y)
given by

p1(y, B) = eXt 1Y),

where [ solves

BiF(x)

1 yk 621
o = 3 (13 )| 51— 3 20
l J

Notice that L is concave, since the

82L Z 301 yk ezlﬂlFl(yk)
oBiB; p1 (k)

Fi (k) 5 (9r)

form a negative definite matrix.
More generally, we could have adopted a parametrization o1 (y, 3) for 1 (y)
different from the exponential, while still guaranteeing positivity, such as

Sol(ya/B) = g(yvﬂ)27

where ¢(y, ) is any family of real functions with parameters 8. Then the
problem above would have become

= arg max :l 0 ; 1 M
B = argmax L nzjjlg(sﬂ(ypﬂ)) n; R

3.2 The full bridge problem
Since the solution of the Schrodinger problem is given in (6) by

(2, y) = ¢o(@)p(ylT)e1(y),
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it is natural to parameterize in closed form only the functions @o(z) and 1 ().
As in the half-bridge problem, we guarantee the positivity of these two functions
directly through their parameterization @g(z, B), v1(y, B), for instance writing
them as the exponential or square of some other real functions.

If 1 were given, we would find the coefficients S defining ¢; by solving an
optimization problem entirely analogous to the half-bridge problem before:

5 = agmax Ly = 3" log (e1(u5.8)) — [ é1u)er (v, Dy
J

However, at every step in the algorithm, only ¢g(z) is available in closed form;
in order to find ¢1(y) we need to propagate the former through

B1(y) = / plyle) po(e, B)de

Then

[owawna = | [ / p<y|x>¢o<x,/9>dm] o1y, B)dy

/U (yl)er(y ﬂ)dy} o(, B)dx

Since the inner integral equals ¢o(z), and @g(x)Po(z) = po(x), we can multiply
and divide by a sampleable estimator pg of pg with m samples {Z;}, and write

/¢1(y)<p1(y,5)dy ~ %Z [/p(ylfi)sal(yyﬂ)dy] ~((; )B)

an estimation with zero variance at the exact solution if py = pg. Since the Z;
are fixed throughout the algorithm, we can at little expense extract, for each 4,
. samples ¢ from the prior p(y|Z;), and write the final estimator

/@1( )e1(y, B)d

so the problem for S becomes

1
= =371
B = argmax — j og (#1(y;, )

For the parameters B , we have

where

wo(z) = /p(ylx)@l(y,ﬁ)dy
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Then

[ Bz = [ [ / p(ymm(y,ﬁ)dy] bo(z, B)da

X
L -
>
5
=
G,
=
>
(=}
s
s
S~— E>

(The fact that this is exactly the same estimation as for the integral [ ¢1(y)e1(y, 8)dy
should not be entirely surprising, as both equal one and involve the same pa-
rameters.) Finally,

B = arg max — Z log (Lpo(m“ )

3.3 The algorithm

Summarizing the results above, we have developed the following algorithm:

1. Data: We are provided with m samples {x;} of po(z), n samples {y;} of
p1(y), and a prior conditional probability density p(y|z). The latter needs
not be known in closed form, but one should be able to sample it for any
value of = (if the opposite is true, i.e. we know p(y|x) in closed form
but cannot sample it, an alternative algorithm presented below should be
applied.)

2. Goal: To find the most likely joint distribution m(x,y) under the prior
p(y|x) consistent with the two marginals, and the corresponding posterior
p*(ylx). When p(y|z) is the end result of the prior p(ty, z,ta,y) for a time
dependent process, we also seek the more detailed posterior p*(¢,z, ta,y)
for this process, as well as the intermediate distributions p;(z) for ¢ € [0, 1].

3. Preliminary work: Based on the samples {x;}, we need to produce a
first estimate pg of po(z) and m independent samples {Z;} drawn from it.
More specifically, we will need these 7 samples and the values jo(Z;) of pg
on them. For instance, one can use the Gaussian kernel density estimator

= %ZG(x—xi),

where G is an isotropic Gaussian with suitable bandwidth. In building
this estimate, we can use, in addition to the samples {z;}, any additional
prior information that we may have on pp(x). For instance, its support
may be known to be contained within some set §2, typically not to include
unrealistic negative values of some components of x. One simple way to
address this particular case is to multiply the unconstrained estimator pg

17



by the characteristic function of 2, reject any sample outside of 2, and
normalize the resulting distribution through division by the factor
m+m,

~ )

m
where m,. is the total number of rejections that occurred.

For each sample Z;, we need to produce n samples gg drawn independently
from p(y|Z;). For instance, if p is the result of a diffusive process between
t =0and t = 1, with drift u(z, t) and diffusivity v(z, t), we would simulate
the stochastic process

de = u(z, t)dt + v(x, t)dW, z(0) =z, vyl =z(1).

If p(y|x) is known in closed form but is not easily sampled, one can propose
another conditional probability ¢(y|x) not very far from p but sampleable,

and produce weighted samples y! from ¢(y|@;), with weights

W o= P(yﬂfz)

i

ay]|7:)’
to be included as extra factors under the second sum in problems (36) and
(37).

. Model selection and initialization: We need to propose a parametric
family of non-negative real functions ¢(z, §). Examples are

2
p(2,8) = eXr eFE)and w(z,ﬁ)<25m(z>> . (38)
k

where the F} are a given set of functions (monomials, Legendre functions,
sines and cosines, splines, etc.) In high dimensions, we may want to use
instead a low-rank tensor factorization as in [35, 56]. The final estimated
joint density will adopt the form

m(x,y) = ¢(z, B) p(ylz) ¢(y,B),

and the estimated posterior conditional probability will be

P*(yla) pylz) v(y, B)

[ pelr) (=, B)dz

where the integral in the denominator can be estimated for each desired
value of by simulating p(z|x). In the notation above,

Po(w) = p(z,B) and  ¢1(y) = »(y, B).

We initialize the algorithm with an initial guess for 3, such as the S
that yields the default ¢1(y) = 1 (i.e. 8 = 0 when using the first of
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the parametrizations in (38). This is typically easier than starting with
a guess for 3 approximating the corresponding default ®o(x) = po(x)).
When using the quadratic parametrization in (38), we start with a choice
of B that, depending on the chosen basis functions Fj, yields to the biggest
effective support of ¢(x).

5. Main loop: We alternate between the updates (37) for § and (36) for
[ iteratively until a convergence criterion is met. Some choices for the
family p(z, ), such as

oz, ) = ek BrFk(2)

yield automatically convex optimization problems for B and f.

4 Numerical examples

This section illustrates the proposed methodology on two examples relevant in
applications: the interpolation of probability distributions, and a variation on
importance sampling in the context of Monte Carlo estimates of integrals.

4.1 Interpolation between two Gaussian mixtures

Figure 1 displays the two marginal distributions of a two dimensional numerical
example, where pg and p; are Gaussian mixtures given by

Po=73 Z NV (1, £1) + N (2, X2) + N (u3, X3)]

NV (pa, X)) + N (s, Bs) + N (6, X))

W =

p1=
with parameters
_[-2] o o2 01] _[02]  _[06 -04
Fr= 15" 7 lo1 04727 [12]°727 |-04 06 |
_fo5] o _[o5 04] - _[-18] o _[03 01
s = 1= T Joa o7 "7 11 |""* 7 o1 03]
—0.2 0.5 —-0.3 —0.5 0.6 0.2
Ho = [ 1.2 } » Vs = [—0.3 0.8 ] fe = [0.9 ] » T = {0.2 0.6} - (39)
Figure 2 displays the interpolation between pg and p; obtained by computing
pe(2) = pi(2)Pi(2) for each time ¢ € [0,1] at the data points z(t) obtained by
integrating the equation (25, 26) with v = 2. In this example, both ¢ and ¢

were represented as the square of linear combinations of the first 10 Hermite
functions.
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Figure 1: Initial and final probability density distribution from which points z; and
y; where sampled respectively. This is the only input used by the algorithm.

4.2 A variation on importance sampling

The methodology of this article turns out to be particularly well suited to im-
prove Monte Carlo estimates of the quantity

I= / T(W)p1(y)dy, (40)

when p1(y) is only known through n sample points drawn from it. It is known
that ordinary Monte Carlo estimates suffer of a slow convergence rate as a
function of n. Moreover, when the support of f is localized in regions where
the value of p; is small, we may have very few points where f is substantially
different from zero. If p; where known in closed form, we could remedy these
problems through importance sampling, whereby we would rewrite (40) in the

form
I= /f(y)pl(y)dy —/Wu(y)d%

where u(y) is a distribution easy to sample and such that fp;/p has small
variance (This variance can be made arbitrarily small when f has a definite
sign. If f is bounded, one can always achieve this by adding a constant to f.)
One then estimates I via Monte Carlo:

where the z; are samples drawn independently from p. Yet this procedure
requires the capacity to evaluate p; at the given points. We are considering
instead the frequently occurring situation where p; is only known through a
fixed set of n samples {y;}.
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In this case, we propose to use the sample points {y; } to solve the Schrédinger
Bridge Problem between p1(y) and a distribution pg(x) of our choice. This al-
lows us to map arbitrary points in y-space to x-space. In particular, we can
chose points g; that resolve f well, and use them to estimate the integral I
through the following steps:

1.

Sample points g, from a distribution p;(y) spanning the support of f. A
simple choice is to draw them uniformly from the support of f if this
is finite; another is to draw them form a sampleable estimate p; for
|f1/(J |f|dy). The distribution p; must be chosen so that it can be both
evaluated and sampled from. In the example below, we have adopted
points from a uniform grid spanning the effective support of f, i.e. an
interval outside of which |f| was comparable to machine error. This cor-
responds to adopting a uniform p; on the support of f.

Compute 1 and @g solving the Schrédinger bridge between p;(y) and any
chosen distribution pgp(z) through the procedure described in section 3.3.
The distribution pg can be selected arbitrarily; in the examples below we
have used a standard Gaussian.

For each point §; obtained in the first step, one would like to sample
P(z|y;). Since

~

P (s Dol
P(zly) = P, ( Iy)%(y

~

and

@@:/&@M%MM:/R@M%MM,

one draws @) samples P, (z|y;) instead and assign to each such sample mé
. 1 @o(xh)

a weight ¢; = QZL ENEAR

Perform a Gaussian mixture density estimation v(z) of the distribution
underlying the points !} with weights ¢} po(}) % |f(7;)|/ps (7). This can
be achieved through a modified FM algorithm that takes the weights into
account. By construction, once transferred back via the bridge to y-space,
v will approximate |f|p1, as can be seen in expression (41) below. Then
sample N new points Z; from v.

Now for each &; we would like to sample P(y|Z;). Again, since

©1(y)
wo(z)’

P(ylz) = Py(zly)

and
%m=/awm%@w

produce instead M samples yz from P,(y|Z;) and assign to each such
sample a weight wj, = M1 (y},)/ >, ¢1(yh)-

21



IR = 0.09894
Injc = 0.09941 % 0.0099117
Ig = 0.09888 % 0.0014477

Table 1: Iy indicates the reference value for I, I [ is the Monte Carlo estimates
of I and Igq is the estimate of I obtained with the procedure described above.
Iye and Ig are computed by averaging 100 runs each one obtained using a
N = 1000 sample points from p;(y). The error is estimated by estimating the
standard deviation over 100 runs.

The integral in (40) is then estimated through

po(z)P(y|z)

/f(y)m(y)dy: /f(y) [/po(x)P(y:v)dw} dy = //f(y)ivw) dy dz ~
i)

v(z)
1 o
~ N ;wﬁf@/i)

Hence we have used the Schréodinger bridge to transfer importance sampling
from y to the auxiliary z-space. Notice that, by construction, v is roughly
proportional to |f] * pp and w is close to 1, so this estimate has small variance
when f has a definite sign.

In the numerical experiment in Figure 3, we chose p; to be the equal
weight mixture of the three Gaussians: N'(—1.4,0.8%), N'(2.2,0.42), N'(0.2,0.1%),
and f(y) a mixture of the two Gaussians N'(—0.8,0.02?), N (1,0.03%), again
with equal weights. We compute the reference value IR for the integral I =
[ f(y)p1(y)dy using a uniform grid of step size h = 10~* and compare, over 100
independent evaluations of I, this value with plain MC estimates of I obtained
with 1000 points sampled from p; and with our procedure. As it can be seen
from Table 1, the procedure described above gives a better estimates in terms of
both the error with respect the reference value and the uncertainty associated
with the estimate. Since in practice one has access only to one sample set of
p1(y), not the 100 we have displayed here, the relevant numbers to use to com-
pare straightforward MC and our bridge-based procedure is the mean square
error

eNC = ﬁ \/Z (fac - IR>2 — 0.0099228,

_ 1 i 2
s = o Z (1§ - IR = 0.0014489.
The fact that eq is more than 6 times smaller than epjc shows that the pro-
cedure does indeed improve the estimation significantly, much as conventional
importance sampling does for distributions known in close form.
Other procedures for mapping a known distribution into another known only
from samples have been proposed in the literature, see for instance [59], where
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a data-driven dual formulation of optimal transport is used, extended in [33]
to the entropic regularized case. Yet to the best of our knowledge they have
not been combined with a procedure for importance sampling. In principle, the
procedure that we propose here for importance sampling can be modified so
that it is applicable to those scenarios as well.

5 Conclusions

In this article, we have posed the sample-based Schrodinger Bridge Problem
and developed a methodology for its numerical solution. Characterizing the
initial and final distributions of the bridge in terms of samples is well-suited
for applications and also natural from a theoretical perspective, since what is
a large-deviation problem for a large but finite set of particles becomes a true
impossibility as the number of particles grows unboundedly. One must distin-
guish though between the sample-based formulation, where {z;} and {y;} are
regarded as samples of underlying distributions py and p;, from the discrete
Schrédinger problem, where the latter are replaced by the empirical distribu-
tions - >, 8 (z — ;) and 377, 0 (y — ;). This article studies the former,
finding the joint distribution 7*(x,y) for all values of (x,y), not just the sample
points, and characterizing the intermediate distributions p;(z) also for all z.

The methodology of this article mimics the iterative scheme developed for
the classical bridge problem, but replacing some of its key ingredients by data
analogues. Thus the boundary conditions at ¢t = 0 and ¢ = 1 are re-interpreted
in a maximum likelihood sense, thus giving rise to optimization problems, and
the integrals defining the propagation of the two factors of p; are estimated via
importance sampling.

The data-based Schréodinger problem has a broad scope of applicability. Po-
tential applications include the estimation of atmospheric winds and oceanic
currents from tracers, the solution of inverse diffusive problems, the reconstruc-
tion of the intermediate evolution of species between well-documented stages,
and many more. However, these applications require further development of
the procedure. In particular, they require the ability to sample from the transi-
tion probability associated to the backward prior process. Even though this is
straightforward when the prior is the Wiener process, many applications require
more general priors, which require an extension of the presented methodology,
currently under development. Since this article is concerned with the develop-
ment of a general methodology, we have not dwelled into any application in
particular, but just illustrated the procedure with two relatively simple exam-
ples.
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Figure 2: Interpolation between po and p1. Each image is obtained by interpolating
pe(z) on the points z(t) representing the solution of (25, 26). Both ¢ and ¢ were
represented as the square of linear combinations of the first 10 Hermite functions.
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Figure 3: Left panel: The density p1(y) is plotted in blue while the function f(y)
is plotted in red. Notice that the support of f(y) is substantially different from zero
where the two local minima of p; are placed. The green points y;, appearing one the
x axis are points on a regular grid that were selected based on the value of f being
bigger than a certain threshold. Right panel: estimates of I for 100 different sample
sets from p; each one containing 1000 points. Results from the bridge-based procedure
are in blue and from the plain MC simulation in red. The solid black line represents
the true value of I.
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