
Singular front formation in a model for quasigeostrophic flow 
Peter Constantin 
Department of Mathematics, University of Chicago, Chicago, Illinois 60637 

Andrew J. Majda 
Department of Mathematics and Program in Applied and Computational Mathematics, Princeton 
University, Princeton, New Jersey 08544 

Esteban G. Tabak 
Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 

(Received 4 August 1993; accepted 17 September 1993) 

A two-dimensional model for quasigeostrophic flow which exhibits an analogy with the 
three-dimensional incompressible Euler equations is considered. Numerical experiments show 
that this model develops sharp fronts without the need to explicitly incorporate any ageostrophic 
effect. Furthermore, these fronts appear to become singular in finite time. The numerical 
evidence for singular behavior survives the tests of rigorous mathematical criteria. 

We study a two-dimensional (2-D) model for quasi- 
geostrophic flow. Our motivation is twofold. On the one 
hand, we would like to know how much of the behavior of 
real flows is captured by this model; in particular, whether 
it predicts the formation of sharp fronts associated with 
boundaries between air masses in the atmosphere. On the 
other hand, we would like to exploit a formal analogy 
between the equations governing this model and those de- 
scribing incompressible inviscid flows in three dimensions 
to gain insight into the latter. We will concern ourselves 
with the existence of finite time singularities, which are 
associated in the quasigeostrophic case with the formation 
of fronts. 

The equations under study are 

DB aa 

where 

(1) 

and 

(-A)1’2$=-a (IkI&k)=-i(k)). 

The variable 0 represents the potential temperature, v the 
flow velocity and Jt the streamfunction, which can be iden- 
tified with the pressure. These equations are derived’ for 
the evolution of temperature on the 2-D boundary of a 
half-space with small Rossby and Ekman numbers and 
constant potential vorticity. They have been investigated in 
various contexts.“3 

For simplicity, we will take 0, v and 1,6 to be spatially 
periodic with period 2rr and zero average. 

We can differentiate ( 1) and write the resulting equa- 
tions in the form 

Dval 
---=vv.vaL , 

Dt 

where 

val = (-a,,a,) 

and 

(2) 

f&)=--i+ t&l1 (k), 
where “hat” denotes Fourier transform. By identifying the 
V@ from (2) with the vorticity vector w, we note the 
analogy between (2) and the vorticity formulation of the 
three-dimensional (3-D) Euler equations 

DW 
--=w vu, 
Dt 

where 

G(k) =i (kxd(k)) @k 

WI2 * 

The quantities V& and ic) in (2) and (3) amplify in the 
same fashion through a quadratic nonlinear interaction 
with Vu. In both cases, the “rate of strain” Vu is related to 
the strained variable, respectively VB* and w, by a nondi- 
mensional singular integral operator, i.e. with a Fourier 
symbol homogeneous of degree zero. Whether the 3-D 
Euler equations develop finite time singularities from 
smooth initial data is an important and highly controver- 
sial open problem.+’ We may ask the same question for the 
equations in (2). These equations should be thought of in 
this context as a 2-D member of a hierarchy of problems 
that has the one-dimensional (1-D) member proposed in 
Ref. 7, for which the development of finite time singulari- 
ties from general initial data has been established. 

In this Letter, we present numerical evidence that the 
equations in (2) do develop finite time singularities along 
very elongated structures, corresponding to fronts in the 
geophysical context. The formation of fronts is very fast 
and seems to occur for a wide range of initial conditions. 
An analytic treatment of these singularities and their con- 
sequences is the subject of current work.8 

The numerical determination of the occurrence of sin- 
gularities is a difficult task, since, close to the singular time, 
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truncation errors become of the same order of the solution, 
no matter how fine a computational grid we choose. We 
would like, therefore, to have at least some rigorous crite- 
ria to make the detection of a false singularity less likely. 

Two such mathematical criteria, similar to those found 
in Ref. 9 for the 3-D Euler equations, can be established 
rigorously for Eq. ( 1). These criteria state that, for the 
occurrence of any singularity in 8 at time T* , the maxima 
of both V& and the stretching rate Q must blow up at time 
T, in specific ways: t 
lim s max(IV& I)dt=co, lim 

I-T* 0 s i max(cr) dt = CO. 
t-T-* 0 

(4) 

Here a is defined by 
1 

a=(* (Vv*c) , where {=&. (5) 

These conditions are necessary and sufficient for singular- 
ity formation. Of course, IV@ I is the length element of 
the corresponding contour line. 

A third rigorous constraint, more geometric in nature, 
can be stated as follows. If the contour line of 8 which will 
pass through the singularity does not become wildly oscil- 
latory, its curvature must tend to zero as t approaches 
T, .’ 

We solved ( 1) numerically with a spectral collocation 
method, computing v( t9) in Fourier space and the product 
u l V0 in physical space, with an exponential filter of high 
frequencies. lo As time advancing routine, we used a fourth- 
order Runge-Kutta method. lo 

Eigenfunctions of the Laplacian define steady exact so- 
lutions of ( 1) . We need therefore to combine modes with 
wave vectors with two different lengths in order to get 
unsteady solutions. In the following example, we have cho- 
sen the simplest initial condition 

a(x,y,o) =cos(y) +sin(x)sin(y). (6) 

The contour lines of 8 at times 0, 2, 4, 6 and 7 are plotted 
in Figs. 1 and 2 (we have used progressively refined grids 
from 128X 128 to 256X256 to 512X512). We see the fast 
formation of two very elongated fronts, across which 0 is 
creating a cusp. At the center of these fronts, r/ develops a 
slightly distorted saddle point. Such saddle points in the 
wind, denoted “deformation fields,” have long been asso- 
ciated with frontogenesis.’ These results show the develop- 
ment of sharp fronts completely within the quasi- 
geostrophic approximation. These candidate singular 
fronts also satisfy the geometric mathematical criterion 
mentioned earlier. 

In Fig. 3, we show a log-log plot of the maximum 
value of I val I versus time for grids with 256 X256 and 
512x512 points. By predicting the singular time at about 
t = 8.25, we obtain an almost perfect fit with a straight line 
with slope -7/4, indicating a behavior of the form 

FIG. 1. Contour lines of ~9 exhibiting front formation, with initial data 
8o=cos(y)+sin(x)sin(y). The resolution varies from 128x128 at the 
times t=O and t=2, to 256~256 at t=4, to 512~512 at t=6. 

The times at which the curve for each grid departs from 
the tell4 behavior, roughly 5.5 and 7, correspond to those 
times at which the grids stop resolving the cusp in w. This 
can be checked visually, for instance, from wiggles arising 
in the contour lines of 8 and, more accurately, from the 
spectrum of val , whose energy at the “cutoff’ frequency 
N/2 becomes abruptly significant precisely at those times. 
We have also checked a coarser grid with 128 X 128 points, 
with a “nonresolving” time, and corresponding departure 
from the straight line of Fig. 3, at about t=4.5. 

In Fig. 4, we show a log-log plot of a, computed at the 
location of the maximum for IVf3l I, versus (8.25-t) for 
the same two grids. The -1 slope corresponds to the 
boundary of nonintegrability and to algebraic blowup of 
V@ . The staircase-like look of the plot is easy to under- 
stand. When the maximum V8’ jumps from one grid point 
to the next one, a experiences a sudden growth, followed 

t=7 

FIG. 2. Contour lines of 0 at time t=7, just before the grid’s resolution 
(5 12 x512) fails. The corresponding streamfunction \Ir has a saddle point 
at the origin. 
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FIG. 3. Log-log pIot of max( IVS’ 1) versus (8.25-f) for two grids and 
the fit with a straight line. The times marked are those at which each grid 
stops resolving the singularity. 

by decay as the real maximum travels to the following 
node. The physical reason is that the strain is concentrated 
along a very thin neighborhood of the front and decays 
very fast away from it. Therefore, when we compute a at a 
point slightly farther away from the front than the real 
maximum of V@ , its value may decrease significantly. 
This mechanism also explains why the curves depart from 
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FIG. 4. Log-log plot of a at the location of maximum IV@ 1 for two 
grids and the fit with the straight line a=7/4<8.25-t. 

a straight line slightly earlier than those of Fig. 3, and 
approach a constant basically independent of the grid size, 
the “far field” value of a. Still the fit with a l/( T,--t) 
growth, particularly for the finest grid, is remarkable. 

We  would like to emphasize that, although for clarity 
we have shown the results corresponding to only one initial 
condition, singular front formation occurs for a wide range 
of initial data.* Therefore frontogenesis appears to be a 
phenomenon robustly associated with Eq. ( 1) . 

We  have presented numerical evidence that a simple 
quasigeostrophic model for thermal winds exhibits fronto- 
genesis without explicitly including any ageostrophic ef- 
fect. In addition to the geophysical significance of these 
fronts, the fact that they appear to become singular in a 
finite time suggests the possibility that integrodifferential 
equations of the type of the 3-D Euler equations might be 
associated with singular behavior. A recent interesting can- 
didate singularity for 3-D Euler was provided in Ref. 6. 
The existence of such singularities would have important 
consequences for our understanding of turbulence. 
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