Singular front formation in a model for quasigeostrophic flow
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A two-dimensional model for quasigeostrophic flow which exhibits an analogy with the
three-dimensional incompressible Euler equations is considered. Numerical experiments show
that this model develops sharp fronts without the need to explicitly incorporate any ageostrophic
effect. Furthermore, these fronts appear to become singular in finite time. The numerical
evidence for singular behavior survives the tests of rigorous mathematical criteria.

We study a two-dimensional (2-D) model for quasi-
geostrophic flow. Our motivation is twofold. On the one
hand, we would like to know how much of the behavior of
real flows is captured by this model; in particular, whether
it predicts the formation of sharp fronts associated with
boundaries between air masses in the atmosphere. On the
other hand, we would like to exploit a formal analogy
between the equations governing this model and those de-
scribing incompressible inviscid flows in three dimensions
to gain insight into the latter. We will concern ourselves
with the existence of finite time singularities, which are
associated in the quasigeostrophic case with the formation
of fronts.

The equations under study are
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The variable 6 represents the potential temperature, v the
flow velocity and ¥ the streamfunction, which can be iden-
tified with the pressure. These equations are derived! for
the evolution of temperature on the 2-D boundary of a
half-space with small Rossby and Ekman numbers and
constant potential vorticity. They have been investigated in
various contexts.>>

For simplicity, we will take 8, v and ¥ to be spatially
periodic with period 27 and zero average.

We can differentiate (1) and write the resulting equa-
tions in the form
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where
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and
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where “hat” denotes Fourier transform. By identifying the
V6" from (2) with the vorticity vector w, we note the
analogy between (2) and the vorticity formulation of the
three-dimensional (3-D) Euler equations
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The quantities V&' and o in (2) and (3) amplify in the
same fashion through a quadratic nonlinear interaction
with Vu. In both cases, the “rate of strain” Vv is related to
the strained variable, respectively V8* and w, by a nondi-
mensional singular integral operator, i.e. with a Fourier
symbol homogeneous of degree zero. Whether the 3-D
Euler equations develop finite time singularities from
smooth initial data is an important and highly controver-
sial open problem.*® We may ask the same question for the
equations in (2). These equations should be thought of in
this context as a 2-D member of a hierarchy of problems
that has the one-dimensional {1-D) member proposed in
Ref. 7, for which the development of finite time singulari-
ties from general initial data has been established.

In this Letter, we present numerical evidence that the
equations in (2) do develop finite time singularities along
very elongated structures, corresponding to fronts in the
geophysical context. The formation of fronts is very fast
and seems to occur for a wide range of initial conditions.
An analytic treatment of these singularities and their con-
sequences is the subject of current work.?

The numerical determination of the occurrence of sin-
gularities is a difficult task, since, close to the singular time,
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truncation errors become of the same order of the solution,

no matter how fine a computational grid we choose. We
would like, therefore, to have at least some rigorous crite-
ria to make the detection of a false singularity less likely.

m i 3 1 imi hnea fAannd
Two such mathematical criteria, similar to those found

in Ref. 9 for the 3-D Euler equations, can be established
rigorously for Eq. (1). These criteria state that, for the
occurrence of any singularity in 8 at time T',,, the maxima
of both V& and the stretching rate & must blow up at time
T, in specific ways:

t t
lim | max(|V8' |)dt =, lim | max(a) df = .

t—~T, t-T ]
* : 4)
Here « is defined by
\(a
a=§-(Vu-§) 5 where §=W (5)

These conditions are necessary and sufficient for singular-
ity formation. Of course, |V&* | is the length element of
the corresponding contour line.

A third rigorous constraint, more geometric in nature,
can be stated as follows. If the contour line of § which will
pass through the singularity does not become wildly oscil-
latory, its curvature must tend to zero as ¢ approaches
T,

We solved (1) numerically with a spectral collocation
method, computing v(6) in Fourier space and the product
v+ V@ in physical space, with an exponential filter of high
frequencies.10 As time advancing routine, we used a fourth-
order Runge-Kutta method.® ‘

Eigenfunctions of the Laplacian define steady exact so-
lutions of (1). We need therefore to combine modes with
wave vectors with two different lengths in order to get
unsteady solutions. In the following example, we have cho-
sen the simplest initial condition

6(x,»,0) =cos(y) +sin(x)sin(y). .(6)

The contour lines of 9 at times 0, 2, 4, 6 and 7 are plotted
in Figs. 1 and 2 (we have used progressively refined grids
from 128X 128 to 256X256 to 512X 512). We see the fast
formation of two very elongated fronts, across which 8 is
creating a cusp. At the center of these fronts, i develops a
slightly distorted saddle point. Such saddle points in the
wind, denoted “deformation fields,” have long been asso-
ciated with frontogenesis.! These results show the develop-
ment of sharp fronts completely within the quasi-
geostrophic approximation. These candidate singular
fronts also satisfy the geometric mathematical criterion
mentioned earlier. v

In Fig. 3, we show a log-log plot of the maximum
value of |V8' | versus time for grids with 256256 and
512512 points. By predicting the singular time at about
t=8.25, we obtain an almost perfect fit with a straight line
with slope —7/4, indicating a behavior of the form

c
max | V6* lzw
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FIG. 1. Contour lines of 6 exhibiting front formation, with initial data
Bp=cos(y) +sin(x)sin(y). The resolution varies from 128X 128 at the
times z=0 and ¢t=2, to 256X 256 at t=4, to 512X 512 at r=6.

The times at which the curve for each grid departs from
the t~7/* behavior, roughly 5.5 and 7, correspond to those
times at which the grids stop resolving the cusp in . This
can be checked visually, for instance, from wiggles arising
in the contour lines of & and, more accurately, from the
spectrum of V&' , whose energy at the “cutoff”’ frequency
N/2 becomes abruptly significant precisely at those times.
We have also checked a coarser grid with 128 X 128 points,
with a “nonresolving” time, and corresponding departure
from the straight line of Fig. 3, at about r=4.5.

In Fig. 4, we show a log-log plot of @, computed at the
location of the maximum for | V@' |, versus (8.25—¢) for
the same two grids. The —1 slope corresponds to the
boundary of nonintegrability and to algebraic blowup of
VO . The staircase-like look of the plot is easy to under-
stand. When the maximum V&' jumps from one grid point
to the next one, « experiences a sudden growth, followed
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FIG. 2. Contour lines of 6 at time =7, just before the grid’s resolution
(512X512) fails. The corresponding streamfunction ¥ has a saddle point
at the origin.
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FIG. 3. Log-log plot of max(| V8" |) versus (8.25—1) for two grids and
the fit with a straight line. The times marked are those at which each grid
stops resolving the singularity.

by decay as the real maximum travels to the following
node. The physical reason is that the strain is concentrated
along a very thin neighborhood of the front and decays
very fast away from it. Therefore, when we compute « at a
point slightly farther away from the front than the real
maximum of V&, its value may decrease significantly.
This mechanism also explains why the curves depart from
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FIG. 4. Log-log plot of & at the location of maximum |V&* | for two
grids and the fit with the straight line a=7/4<8.25—¢
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a straight line slightly earlier than those of Fig. 3, and
approach a constant basically independent of the grid size,
the “far field” value of . Still the fit with a 1/(7 ', ~—1¢)
growth, particularly for the finest grid, is remarkable.

We would like to emphasize that, although for clarity
we have shown the results corresponding to only one initial
condition, singular front formation occurs for a wide range
of initial data.® Therefore frontogenesis appears to be a
phenomenon robustly associated with Eq. (1).

We have presented numerical evidence that a simple
quasigeostrophic model for thermal winds exhibits fronto-
genesis without explicitly including any ageostrophic ef-
fect. In addition to the geophysical significance of these
fronts, the fact that they appear to become singular in a
finite time suggests the possibility that integrodifferential
equations of the type of the 3-D Euler equations might be
associated with singular behavior. A recent interesting can-
didate singularity for 3-D Euler was provided in Ref. 6.
The existence of such singularities would have important
consequences for our understanding of turbulence.
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