Resonant Triads Involving a Nondispersive Wave

By Rodolfo R. Rosales, Esteban G. Tabak, and Cristina V. Turner

A simple system is studied, involving a single nondispersive breaking wave and
its interaction with two dispersive modes through a resonant triad. The
dynamics of this system are shown to be quite rich, through a combined
theoretical and numerical analysis. A sharply defined traveling wave with a
corner seems to attract almost all initial data with enough energy, provided the
nondispersive wave is unstable to the other two when standing alone. In other
cases, the solution converges to quasiperiodic final states, unless extra
symmetries force the solution to converge to simpler configurations.

1. Introduction

In the world of wave motion, a sharp distinction exists between dispersive and
nondispersive waves. At the linear level, the former decompose any initial
disturbance into its elementary sinusoidal mode components, each mode
traveling at its own individual group velocity, while the latter preserve the shape
of initial disturbances forever, with all modes traveling together as a pack. At
the outset of nonlinearity, this difference in linear behavior gives rise to mode
interactions of a very different character. Because the various modes of a
nondispersive wave travel together for long periods, they can exchange energy
rather strongly, yielding a nonlinear modulation of the wave’s shape, which, in
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most situations involving waves in fluids, leads to wave breaking and shock
formation. Dispersive modes, in contrast, overlap only over relatively short
periods, so the nonlinear energy exchange among them is highly reduced. The
only exception to this rule is given by resonance: When a set of modes, say
three, is such that the relative phase between the product of two of them and the
remaining one does not change over time, energy exchanges within the set are
again rather strong.

In fluids, the slow modulation of nondispersive waves is often described in
terms of an inviscid Burgers’ equation. The resonant interaction within a triad
of dispersive modes can be modeled by a set of ordinary differential equations
with Hamiltonian structure and enough constants of motion that they can be
fully integrated in terms of elliptic functions. When many resonant or near-
resonant triads are present, on the other hand, the solutions are much less
organized, to the point of requiring a statistical treatment. Systems that are only
weakly dispersive, as free surface waves over shallow but finite depths, yield
reduced equations in the spirit of the Korteweg—de Vries equation [1].

However, often both dispersive and nondispersive waves are solutions of a
single system. An example is provided by Kelvin waves, both coastal and
equatorial, which live as isolated nondispersive waves in a “dispersive sea,”
which includes inertial and planetary waves. When this is the case, the two
canonical forms of nonlinear mode interaction get blended together, producing
novel dynamics, which include shocks and smooth traveling waves, with
ubiquitous waves presenting corner singularities in between these two
extremes [2].

In this article, we explore one of the simplest possible blends of dispersive
and nondispersive effects: a nondispersive wave, with Burgers-like self-
interactions conducive to breaking, with one mode coupled to two dispersive
wave modes through a triad resonance. A similar study where one of the
dispersive modes was replaced by topography was conducted in [2]. A curious
tendency was observed there for nearly all initial data to converge to shockless
solutions with corners, either a well-defined traveling wave, when the initial
data have enough energy, or a quasiperiodic wave, for less energetic initial data.
These results are very similar to those investigated in [3—-6] for purely
hyperbolic waves, such as those arising in gas dynamics, interacting through a
variable medium or an inhomogeneous entropy.

In the case of interest here with a full triad, a new question arises. It is well
known that, for regular triads, the steady solutions in which only one element of
the triad is excited are stable or unstable, depending on whether or not the
frequency of the corresponding mode agrees in sign with one of the other two.
It has often been speculated that this stability criterion carries through to more
complicated scenarios, where none of the waves is zero, determining a direction
of energy flow through the triad [7]. In our context here, we would like to
determine whether which of the three waves is the ‘“unstable” one, the
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nondispersive, or one of the dispersive ones, has any significant effect on the
dynamics of the system. In particular, we would like to discover whether the
strong convergence of high-energy initial data to traveling waves with a corner
occurs independently of the relative signs of the three frequencies involved.

2. The resonant equations and their conserved quantities

We consider the system

1 2 _ . —ikx
u; + (Eu > fZRe(zkabe ), (1)

a, = —i w, by, (2)

b[ =—I Wp a—ﬁ/{, (3)

where u = u(x, f) is the nondispersive wave amplitude (real valued, 2m-periodic
in space and normalized to zero mean), a = a(f) and b = b(f) are the (complex)
amplitudes of the dispersive waves, w, and wj, are the corresponding dispersive
wave frequencies, the bars represent complex conjugation, 7, is the kth Fourier
coefficient of u (for some integer k),

1 2 )
i (1) / u(x,f) e "Frdx,
0

T

and the condition for resonance,
k+w,+w, =0,

is satisfied.

This system arises as a reduced asymptotic model for the nonlinear interaction
between three waves: one nondispersive and two dispersive, the latter in
resonance with one mode of the former. Physical examples include wave
dynamics in the equatorial wave guide, where a nondispersive Kelvin wave may
exchange energy resonantly with either Rossby, Yanai, or Poincaré waves.

Typically, in an asymptotic derivation of the equations, ¢ is a slow time,
t = €T, where 0 < € < 1 is the nonlinear strength, and T is the fast “real” time.
Similarly, x represents the phase of the nondispersive wave, x = X — ¢7, where ¢
(taken equal to 1 here for concreteness) is the linear speed of the nondispersive
wave, and X is the space coordinate in a fixed frame of reference. To leading
order, the full waves have the form

UX,T)=u(xt),
AX,T) =a(t) efkaxffwar,
BUX.T) = b{s) & W7, @
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with the additional resonance condition k, + k;, + k= 0. For the £th mode in the
nondispersive wave, we have:

da S
M ik ab+NSIT,

dt

da . T

a:—l Wy buk, (5)
db . -

— = —1lWpau

dt b k>

where NSIT (Nonlinear Self-Interaction Terms) are the terms generated by
(% u?), in (1), arising from the nonlinear coupling among all modes of the
nondispersive wave. If we ignore these terms, (5) is the standard form of the
reduced interaction equations for three resonant waves.

The system (1-3) is Hamiltonian, with Hamiltonian

=5 OZW udx + 2Re(a b iy). (6)
The Hamiltonian form of the equations is
0 0H
U = — ox ou’
. OH
a = —iwip—,
OH
by =—i Wy (7)

This Hamiltonian form is valid only as long as the solution remains smooth.
When shocks develop, the Hamiltonian is no longer a conserved quantity and it
starts to evolve according to the equation

dH 1 (s 1

e X (g
shocks

where the brackets stand for the magnitude of the jumps in the enclosed

variables across the shocks (value behind minus value ahead), and s is the shock

speed. However, the Hamiltonian does not have a definite sign. A (probably)

more relevant wave energy is given by

27

1

E(t) = / S #2dx -+ 2n(jaf+bP). (8)
0

The positive definite quantity E(¢) is conserved while the solution remains

smooth, and becomes monotone decreasing when shocks are present, the rate of

change then given by
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dE 1.3
—_— = — 0.
TR ORTICN
shocks
Here the inequality follows from the Entropy Condition [u] > 0, that must apply
across shocks. In addition, the following (Manley—Rowe) quadratic form is

always conserved, with or without shocks:
2 2
0 = wylb|"—wpla|”.

The nature of this invariant, which depends on the signs of w, and w,, will
be shown below to affect significantly the nature of the solutions to the system
in (1-3).

Two other invariants (modulus dissipation at shocks) can be found by
combining £ and Q:

and

The three invariants O, Q.. and Q. are instrumental in proving the
following stability criterion. Consider a state where only one of u(x), a and b is
nonzero. Such a state is stable unless the nonzero mode is the one associated
with a frequency (&, w,, or wy) of sign opposite to the other two (for otherwise,
the Manley—Rowe invariant associated with the other two modes is positive
definite, so these modes cannot, even nonlinearly, depart from zero.) Hence, this
criterion distinguishes one of the three modes as unstable to the other two,
which raises the question of whether this mode being u, or one of ¢ and b has
any significant effect on the dynamics of the system in situations where all three
waves are nonzero.

3. Some exact solutions

The equations (1-3) have some interesting exact solutions that play a
fundamental role in their dynamics, as we show in the numerical simulations
below. First, we seek traveling waves of the form

u(x,t) = F(x — st), 9)

where s is an arbitrary constant. For concreteness, we take £ = 1. The first
Fourier coefficient of u is then given by

lfll :F]efm,
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so the equations for a and » become

a; = —i wy bE e,
(10)
b, = —iw ak e,
For simplicity, let us pick the origin of time in such a way that £ is real and
negative. Then the equations in (10) have the particular family of solutions

a= wﬁbJe’m, (11)
b=rv = J e, (12)
a

where « and [ satisfy
a—l—B:S and a/@:wawb‘ﬁll27 (13)

with v = sign(a/w,) = sign(B/wp), and J an arbitrary complex constant.
Thus, Equation (1) becomes the O.D.E.

[—s + F(2)]F'(z) = 29|J|*| F1] sin(z),

with solution

F(z) = 5+ 21/ | Fi[y/C = ycos(a), (14)

where C > 1 is a constant of integration. Notice that, if C is strictly larger than
1, the solution is smooth but, when C = 1, it develops a corner. In the latter case,
the solution is

F(z) = s & 2|J|\/2|Fi||sin(z/2)]
when v = 1, and
F(z) = s & 2|J|\/2|Fi]|cos(z/2)|

when = —1. The value of s follows from equating the first Fourier mode of the
solution to F', and imposing the requirement that " have zero mean. In the case
with a corner, we have

4v2

5 327
7 3T

JWIF| = F =
ARVAYEL 1 92

Fi=7

and
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16717 16717
F(z)=s+ 1 |sin(z/2)] or F(z)=s5-— 1
™ ™

|cos(z/2)].

Then, the condition that " have vanishing mean becomes

N 64|J 32171
02/ F(Z)dZ:27TS—|-")/% = s=—n 3|2| ‘
—T v T

Now we may return to (13) and compute « and 3; they are

16]J]? 4
o 5= 0V (-Vi - w”“"b). (16)

372 9

Notice that, because w, + wy, = —1, (w,wp) < 1/4. Thus, o and G are always real.
Finally, from the definition of the invariant Q,

0=(a—pB)JP
This allows us to compute |.J| from the initial data,
3 2
V= £ ————0. (17)
32/1 — 2ue

9

as well as determining which of the two solutions in (16) are « and S,
depending on the sign of Q. The only remaining parameter in the exact solution
is the sign of v = £1, which determines the orientation of the corner (upward or
downward) as well as the direction of propagation of the traveling wave. Here,
the situation depends rather strongly on the signs of w, and w;,. When they are
both negative, any sign of 7y gives a solution, whereas, when they have opposite
signs, only one choice of ~y is consistent with a given sign of Q.

This can be explained in terms of a symmetry of the system in (1-3): Note
that, when the signs of w, and w; are both negative, the equations remain
invariant under the switch

Wa
a— /—b,

Wh

Wh
b— /—a,

Wa

which changes the sign of O, while leaving u invariant. The equations are also
invariant under the transformation
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u(x) — —u(—x),

a— |45,
Wph
wp _

b— /—a
Wy

)

which changes both the sign of O and the orientation of possible corners in u.
When one w is positive, on the other hand, a similar symmetry does not seem to
exist.

In the particular case when w, = wp, we are led to consider a symmetric
solution with u(x) odd and a and b real and equal. Adopting k = 1, and hence
w, = —0.5, we can write

) = —iS(t),
where
1 s
S(t) = 2 / u(x, 1) sin(x) dx
™ Jo

Then, the equations reduce to

2

u, + (u?) = 24’ sin(x),

1
a, = EaS.

These admit a particular solution of the form

u=—1f(), (18)

_t—t()

1 c

a= —_
t—1ty V2

where ¢ > 0 is a constant, f(x) satisfies the O.D.E.

—f + (;)x: ¢? sin(x),

with f(0) = 0, fl = 2 and a shock at x = w. The constant ¢ follows from the
constraint that f; =2. We show below that this particular solution is an attractor
to all symmetric initial data.
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Even for arbitrary w, a weaker symmetry persists: solutions that start with
u(x) odd and a and b real remain that way. Note that such data exclude any
traveling wave solution, because these do not preserve parity.

4. The numerical scheme

Because shocks are expected to play a central role in the dynamics of the model
equations, it is important that their numerical solution make use of the
conservation form of the equations. To this end, the amplitude of the
nondispersive wave u = u(x,t) is replaced by an array: u = [uy... up],
where u,, = u,(?) is the average of u(x, f) over the nth cell [the interval of width
dx = 27/N, centered at x,, = (n — 0.5)dx].

The equations are then solved by a second-order Strang splitting algorithm
[8], with one step solving the Burgers’ equation via a second-order Godunov
method and the other step solving the purely ODE part through a standard
second-order Runge—Kutta.

With the interpretation of u, as the average of u over the nth cell, the ODE
part of the equation for u becomes:

du, . iy 2 kdx) i sin(E)
m =2Re(ikabe )msm<2> = —4Im (abe )T’

where the extra factor (2/(k dx)) sin (k dx/2) arises from the averaging of e ***
over each cell. The correction brought about by this extra factor is at the same
level as the second-order error in the scheme, so it is not really required. On the
other hand, it involves so little extra work, that it seems worthwhile keeping, as

we have done in the numerical calculations that follow.

5. Numerical results and discussion

5.1. Generic initial data and parameters

The first two sets of experiments are designed to study the behavior of the
solutions to (1-3) with generic initial data. In the first set, the nondispersive
wave u(x, f) is the one unstable to the other two; whereas, in the second, it is the
dispersive mode b(7). In both cases, the initial data are

u(x,0) = I'[sin(x) + 0.6 cos(2x) — 0.4 sin(2x) + 0.2 sin(3x)],
a(0) = 1+ 0.2i,

b(0) = 0.75 + 0.5i,
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where I' is a tunable amplitude that distinguishes the various experiments
within a set.
The frequencies are, for the first set,

k=1 (u is the unstable wave),
wy, = —0.3,
Wp = —0.7,

and, for the second,

k=1,
w, = 0.5,
wp = —1.5 (bis the unstable mode).

In both cases, we solve the system for the time interval 0 < ¢ < 1,200, with
n = 2,000 spatial cells and a fixed At satisfying a conservative estimate for the
CFL condition based on the initial data.

5.1.1. Experiments with u the unstable wave. The results of the first set of
experiments with I' = 1 and I' = 1/4 are plotted in Figures 1 and 2,
respecitvely. Figure 1A shows the energy E as a function of time which, after
a sharp initial decay attributable to shocks, settles down to a nonzero value,
precisely the one corresponding to the exact traveling wave solution (15) for
the initial value of the Manley—Rowe invariant Q. Figure 1B shows snapshots
of u(x,¢) at the initial time ¢ = 0, intended to represent generic data, at an early
time ¢ = 2, when a strong shock is dominating the solution, and at the final
time of the computation ¢ = 1200, when the exact traveling wave solution has
taken over. For comparison, this figure includes a plot of the exact solution
(15), which agrees to a surprising degree with the numerical one, leaving little
doubt that the final state of the experiment is, indeed, the exact traveling wave
with a corner. Figures 1C and D and display the absolute values and actual
complex amplitudes of a and b as functions of time, the former at the
beginning and the latter only near the end of the computation. We see both
dispersive waves converging very rapidly to their values in the exact solution
(11,12).

In Figure 2A, we see the evolution of E(¢) for the smaller amplitude I' = 1/4.
Although it also settles down to a final nonzero value, this is smaller than that
of the exact traveling wave. Snapshots of u(x, ¢) for various values of ¢ (from
t = 1170 to ¢t = 1200), plotted in Figure 2B, show an evolving profile, where
the wave shape seems to (almost) recur. This strongly suggests a
quasiperiodic (in time) wave, one that undergoes a periodic deformation in
shape as it travels. More evidence for this is given by Figure 2C, which
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Figure 1. Solution to (1-3), with generic initial data and u(x, f) the unstable wave. Specifically:
u(x, 0) = [sin(x) + 0.6 cos(2x) — 0.4 sin(2x) + 0.2 sin(3x)], a(0) =1+ 0.2 i, and b(0) = 0.75 + 0.5 i,
with frequencies k=1, w , = —0.3, and w , = —0.7. Figure 1A shows the energy E settling down to
the nonzero value (after a sharp initial decay attributable to shocks) corresponding to the traveling
wave solution (15), with the Manley—Rowe invariant Q given by the initial data. Figure 1B shows
snapshots of u(x, 7) at =0, at an early time 7= 2 (a strong shock dominates the solution) and at the
computation final time ¢ = 1200 (the exact traveling wave solution has taken over). A plot of the
exact solution (15) is included for comparison. Figures 1C and 1D display the absolute values and
the complex amplitudes of @ and b as functions of time. Both waves converge rapidly to the exact
solution (11, 12). Figure 1D clearly shows b moving on a circle at a constant rate.

plots the norm of the change in shape as a function of time. The norm of the
change in shape is defined by

e, ]| pape= minlze(x) — so(x = x0)lloc (20)

where uy(x) is a reference profile; in our case ug(x) = u(x, 1100). Further
evidence can be found in Figure 2D, which shows the late evolution of |a(?)|
and |b(?)|, periodic with a period different from (and in all likelihood
incommensurable with) that of the phases of a and b (not displayed).



116 R. R. Rosales et al.
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Figure 2. Solution to (1-3), with everything the same as in Figure 1; except for a smaller
amplitude nondispersive wave: u(x, 0) = 0.25 [sin(x) + 0.6 cos(2x) — 0.4 sin(2x) + 0.2 sin(3x)].
Again, the energy £ settles down to a final nonzero value (Figure 1A), but this value is smaller than
that of the traveling wave. Snapshots of u(x, ) for various values of # (Figure 2B) show an evolving
profile with an (almost) recurrent wave shape. This suggests a quasiperiodic (in time) wave. Figure
2C shows a plot of the norm of the change in shape, as defined by (20). Finally, Figure 2D shows
the late evolution of | a(?)| and | ()|, periodic with a period different from that of the phases of a
and b (not displayed).

Remark: In regard to the norm of the shape change in a solution, defined
above in (20), note that when this norm vanishes, the solution is equal to the
solution at the reference time, except for a space translation. In our
numerical experiments, this norm quite never vanishes, but the observed
behavior indicates that this may just be caused by lack of numerical
resolution. For a given set of parameters, more points in the space grid and
longer runs in time had the effect of producing closer approaches to zero in
the shape norm. We hope that (future) more resolved runs will settle this
question.

All these results are strongly reminiscent of those in [2] for a nondispersive
wave interacting with a dispersive mode through topography, and in [3-6, 9] for
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nondispersive waves interacting through either topography or a variable
entropy. In all these cases, initial data with enough energy converge robustly to
traveling waves with corners, and less energetic initial data, to smaller
quasiperiodic waves. This is a very intriguing phenomena, which still awaits a
full mathematical explanation.

5.1.2. Experiments with b the unstable wave. The situation in the second set
of experiments, where the unstable wave is the dispersive mode b, is rather
different. Figure 3A displays the profiles of u(x,1200) for three different
values of I': 1/4, 2, and 8, together with the exact traveling wave solution
corresponding to the value of the Manley—Rowe invariant 0 common to the
three runs. Neither of the three profiles agrees with this exact solution; in fact,
the three of them seem to correspond to quasiperiodic waves. Figure 3B
illustrates this for the case with I' = 8, by plotting the norm of the change in
shape of the solution. In fact, for I' = 2 (and values nearby, which we have
run but are not plotted here), the solution is relatively close to the exact
traveling wave, although the sharp corner is entirely removed. However
(unlike the cases where the unstable wave is u), as the initial energy of the
runs gets larger, the final state gets smaller and further away from this exact
solution.

5.2. Solutions with symmetries

It is interesting to observe the behavior of solutions with the symmetry u(x, ¢)
odd, a(f) and b(¢) real, which excludes all traveling and most quasiperiodic
waves. We first show the strongly symmetric case, where w, = w, = —0.5 and
a = b. For example, consider the initial data

u(x,0) = sin(x),
a(0) =1,

and
b(0) = 1.

The numerical results converge very accurately to the exact self-similar solution
(18, 19). Figure 4A shows the energy E(¥) rapidly converging to zero. Figure 4B
includes two snapshots of u(x, 7) at the relatively late times ¢ = 350 and ¢ = 700,
where the self-similarity of the solution becomes clear. Based on this (and other
similar) experiments, it is natural to conjecture that almost all solutions with the
strong symmetry u odd, w, = w;, a and b real and equal, will be attracted to this
exact self-similar solution.
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Figure 3. Solutions to (1-3), with generic initial data and b the unstable wave. For some I" > 0: u(x, 0)=T
[sin(x) + 0.6 cos(2x) — 0.4 sin(2x) + 0.2 sin(3x)], a(0) = 1 + 0.2 i, and 5(0) = 0.75 + 0.5 i, with frequencies k= 1,
w, = 0.5 and wy, = —1.5. Figure 3A displays the profiles of u(x, 1200) for I"=0.25, 2 and 8, together with the
exact traveling wave solution (corresponding to the common value of the Manley—Rowe invariant Q). Neither
of the profiles agrees with this exact solution, and they all seem to correspond to quasiperiodic waves. Figure
3B illustrates this for the case with I = 8, by plotting the norm of the solution’s change in shape. Unlike the
cases where the unstable wave is u, as the initial energy gets larger, the final state gets smaller and farther
away from the traveling wave solution.
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5.3. Solutions with weak symmetries

Finally, we run a weakly symmetric case, where w, # wp, and b is the unstable
wave. We take w, = 0.5, wp, = —1.5 and the same initial data as above. The
results are displayed in Figure 5. Figure 5SA shows the absolute value of a
approaching a nonzero constant; whereas b (slowly) decays to zero. Figure 5B
includes two snapshots of u(x, ) at relatively mature times, which show u
converging to zero through permanent dissipation at two shocks, one at x = 0
and the other at x = 7. Thus, the run seems to converge to a final state where
only a is nonzero. This is consistent with the fact that b is the unstable mode, so
it could not possibly stand alone. Nor could u stand alone, because it then
would dissipate all its energy with shocks (moreover, ¢ and b zero is not
consistent with a nonzero Q). However, it is not clear to us why the solution
needs to settle down to such simple configuration, with only one nonzero mode
present.

6. Conclusions

The interactions between dispersive and nondispersive waves display an
amazingly rich—and mostly unexplained—dynamics. Even the simplest
model considered here, of a single nondispersive wave interacting with only
two dispersive modes through a resonant triad, gives rise to surprising
phenomena (such as the robust convergence of large enough initial data to a
single traveling wave solution with a sharp corner). This single solution seems
to be an attractor only when the frequency of the nondispersive mode has a sign
opposite to the other two (u is unstable to a and b) and the initial energy is large
enough. Otherwise, most initial data converge to quasiperiodic waves, with
finite energy and no shocks.

Shock waves play an obviously prominent role in this selection mechanism;
the corners in the final states are, in fact, leftovers from fully decayed shocks.
How exactly shocks and triad resonances conspire to create this unique
dynamic, however, remains mostly a mystery.
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Energy as a function of time
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Figure 4. Solutions with the strong symmetry u(x, #) odd, a(f) = b(¢) real and w, = w, = —0.5
(k=1). Here, we take the initial data: u(x, 0) = sin(x) and a(0) = b(0) = 1. The solution converges
very accurately to the exact self-similar solution (18,19). Figure 4A shows the energy E(?) rapidly
converging to zero. Figure 4B includes two snapshots of u(x, 7) at the late times # = 350 and
t = 700, where the self-similarity of the solution becomes clear. We conjecture that almost all
solutions with this strong symmetry will be attracted to the self-similar solution (18,19).
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Figure 5. Solutions with the weak symmetry u(x, #) odd, a(?), and b(?) real, but w, # w,. Here,
we consider the case where b is the unstable wave (with w, = 0.5, w, = —1.5) and the same initial
data as in Figure 4. Figure SA shows the absolute value of a approaching a nonzero constant,
while b (slowly) decays to zero. Figure 5B includes two snapshots of u(x, 7) at relatively mature
times (# = 50 and ¢ = 150), which show u converging to zero through permanent dissipation at two
shocks, one at x = 0 and the other at x = 7. Thus, the run seems to converge to a final state where
only a is nonzero.
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