
Resonant Triads Involving a Nondispersive Wave

By Rodolfo R. Rosales, Esteban G. Tabak, and Cristina V. Turner

A simple system is studied, involving a single nondispersive breaking wave and

its interaction with two dispersive modes through a resonant triad. The

dynamics of this system are shown to be quite rich, through a combined

theoretical and numerical analysis. A sharply defined traveling wave with a

corner seems to attract almost all initial data with enough energy, provided the

nondispersive wave is unstable to the other two when standing alone. In other

cases, the solution converges to quasiperiodic final states, unless extra

symmetries force the solution to converge to simpler configurations.

1. Introduction

In the world of wave motion, a sharp distinction exists between dispersive and

nondispersive waves. At the linear level, the former decompose any initial

disturbance into its elementary sinusoidal mode components, each mode

traveling at its own individual group velocity, while the latter preserve the shape

of initial disturbances forever, with all modes traveling together as a pack. At

the outset of nonlinearity, this difference in linear behavior gives rise to mode

interactions of a very different character. Because the various modes of a

nondispersive wave travel together for long periods, they can exchange energy

rather strongly, yielding a nonlinear modulation of the wave’s shape, which, in
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most situations involving waves in fluids, leads to wave breaking and shock

formation. Dispersive modes, in contrast, overlap only over relatively short

periods, so the nonlinear energy exchange among them is highly reduced. The

only exception to this rule is given by resonance: When a set of modes, say

three, is such that the relative phase between the product of two of them and the

remaining one does not change over time, energy exchanges within the set are

again rather strong.

In fluids, the slow modulation of nondispersive waves is often described in

terms of an inviscid Burgers’ equation. The resonant interaction within a triad

of dispersive modes can be modeled by a set of ordinary differential equations

with Hamiltonian structure and enough constants of motion that they can be

fully integrated in terms of elliptic functions. When many resonant or near-

resonant triads are present, on the other hand, the solutions are much less

organized, to the point of requiring a statistical treatment. Systems that are only

weakly dispersive, as free surface waves over shallow but finite depths, yield

reduced equations in the spirit of the Korteweg–de Vries equation [1].

However, often both dispersive and nondispersive waves are solutions of a

single system. An example is provided by Kelvin waves, both coastal and

equatorial, which live as isolated nondispersive waves in a ‘‘dispersive sea,’’

which includes inertial and planetary waves. When this is the case, the two

canonical forms of nonlinear mode interaction get blended together, producing

novel dynamics, which include shocks and smooth traveling waves, with

ubiquitous waves presenting corner singularities in between these two

extremes [2].

In this article, we explore one of the simplest possible blends of dispersive

and nondispersive effects: a nondispersive wave, with Burgers-like self-

interactions conducive to breaking, with one mode coupled to two dispersive

wave modes through a triad resonance. A similar study where one of the

dispersive modes was replaced by topography was conducted in [2]. A curious

tendency was observed there for nearly all initial data to converge to shockless

solutions with corners, either a well-defined traveling wave, when the initial

data have enough energy, or a quasiperiodic wave, for less energetic initial data.

These results are very similar to those investigated in [3–6] for purely

hyperbolic waves, such as those arising in gas dynamics, interacting through a

variable medium or an inhomogeneous entropy.

In the case of interest here with a full triad, a new question arises. It is well

known that, for regular triads, the steady solutions in which only one element of

the triad is excited are stable or unstable, depending on whether or not the

frequency of the corresponding mode agrees in sign with one of the other two.

It has often been speculated that this stability criterion carries through to more

complicated scenarios, where none of the waves is zero, determining a direction

of energy flow through the triad [7]. In our context here, we would like to

determine whether which of the three waves is the ‘‘unstable’’ one, the
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nondispersive, or one of the dispersive ones, has any significant effect on the

dynamics of the system. In particular, we would like to discover whether the

strong convergence of high-energy initial data to traveling waves with a corner

occurs independently of the relative signs of the three frequencies involved.

2. The resonant equations and their conserved quantities

We consider the system

ut þ
 
1

2
u2

!
x

¼ 2Re
�
i k a b e�i k x

�
; ð1Þ

at ¼ �i !a b ûk ; ð2Þ

bt ¼ �i !b a ûk ; ð3Þ
where u = u(x, t) is the nondispersive wave amplitude (real valued, 2�-periodic
in space and normalized to zero mean), a = a(t) and b = b(t) are the (complex)

amplitudes of the dispersive waves, !a and !b are the corresponding dispersive

wave frequencies, the bars represent complex conjugation, ûk is the k th Fourier

coefficient of u (for some integer k),

ûkðtÞ ¼
1

2�

Z 2�

0

uðx; tÞ e� i k x
dx;

and the condition for resonance,

k þ !a þ !b ¼ 0;

is satisfied.

This system arises as a reduced asymptotic model for the nonlinear interaction

between three waves: one nondispersive and two dispersive, the latter in

resonance with one mode of the former. Physical examples include wave

dynamics in the equatorial wave guide, where a nondispersive Kelvin wave may

exchange energy resonantly with either Rossby, Yanai, or Poincaré waves.

Typically, in an asymptotic derivation of the equations, t is a slow time,

t = �T, where 0 < � � 1 is the nonlinear strength, and T is the fast ‘‘real’’ time.

Similarly, x represents the phase of the nondispersive wave, x = X � cT, where c

(taken equal to 1 here for concreteness) is the linear speed of the nondispersive

wave, and X is the space coordinate in a fixed frame of reference. To leading

order, the full waves have the form

UðX ; TÞ ¼ uðx; tÞ;
AðX ; TÞ ¼ aðtÞ ei kaX�i !aT ;
BðX ;TÞ ¼ bðtÞ ei kbX�i !bT ; ð4Þ
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with the additional resonance condition ka + kb + k = 0. For the k th mode in the

nondispersive wave, we have:

dûk

dt
¼ �i k a bþ NSIT;

da

dt
¼ �i !a b ûk ;

db

dt
¼ �i !b a ûk ;

ð5Þ

where NSIT (Nonlinear Self-Interaction Terms) are the terms generated by

ð1
2
u2Þx in (1), arising from the nonlinear coupling among all modes of the

nondispersive wave. If we ignore these terms, (5) is the standard form of the

reduced interaction equations for three resonant waves.

The system (1–3) is Hamiltonian, with Hamiltonian

H ¼ 1

12�

Z 2�

0

u3dx þ 2Reða b ûkÞ: ð6Þ

The Hamiltonian form of the equations is

ut ¼ � @

@x

�H

�u
;

at ¼ �i !a

�H

�a
;

bt ¼ �i !b

�H

�b
: ð7Þ

This Hamiltonian form is valid only as long as the solution remains smooth.

When shocks develop, the Hamiltonian is no longer a conserved quantity and it

starts to evolve according to the equation

dH

dt
¼
X

shocks

1

4�

 
s

3
u3
� �

� 1

4
u4
� �!

;

where the brackets stand for the magnitude of the jumps in the enclosed

variables across the shocks (value behind minus value ahead), and s is the shock

speed. However, the Hamiltonian does not have a definite sign. A (probably)

more relevant wave energy is given by

EðtÞ ¼
Z 2�

0

1

2
u2dx þ 2�( aj j2þ bj j2): ð8Þ

The positive definite quantity E(t) is conserved while the solution remains

smooth, and becomes monotone decreasing when shocks are present, the rate of

change then given by
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dE

dt
¼ �

X
shocks

1

12
½u	3 < 0:

Here the inequality follows from the Entropy Condition [u] > 0, that must apply

across shocks. In addition, the following (Manley–Rowe) quadratic form is

always conserved, with or without shocks:

Q ¼ !a bj j2�!b aj j2:
The nature of this invariant, which depends on the signs of !a and !b, will

be shown below to affect significantly the nature of the solutions to the system

in (1–3).

Two other invariants (modulus dissipation at shocks) can be found by

combining E and Q:

Qea ¼
1

2�

Z 2�

0

1

2
u2dx � k

!a

aj j2

and

Qeb ¼
1

2�

Z 2�

0

1

2
u2dx � k

!b

bj j2:

The three invariants Q, Qea, and Qeb are instrumental in proving the

following stability criterion. Consider a state where only one of u(x), a and b is

nonzero. Such a state is stable unless the nonzero mode is the one associated

with a frequency (k, !a, or !b) of sign opposite to the other two (for otherwise,

the Manley–Rowe invariant associated with the other two modes is positive

definite, so these modes cannot, even nonlinearly, depart from zero.) Hence, this

criterion distinguishes one of the three modes as unstable to the other two,

which raises the question of whether this mode being u, or one of a and b has

any significant effect on the dynamics of the system in situations where all three

waves are nonzero.

3. Some exact solutions

The equations (1–3) have some interesting exact solutions that play a

fundamental role in their dynamics, as we show in the numerical simulations

below. First, we seek traveling waves of the form

uðx; tÞ ¼ Fðx� stÞ; ð9Þ
where s is an arbitrary constant. For concreteness, we take k = 1. The first

Fourier coefficient of u is then given by

û1 ¼ F̂1e
�ist;

Resonant Triads Involving a Nondispersive Wave 109



so the equations for a and b become

at ¼ �i !a bF̂1e
ist;

bt ¼ �i !b aF̂1e
ist:

For simplicity, let us pick the origin of time in such a way that F̂1 is real and

negative. Then the equations in (10) have the particular family of solutions

a ¼

ffiffiffiffiffiffiffiffiffi
	

!b












s
J ei
t; ð11Þ

b ¼ �

ffiffiffiffiffiffiffiffiffi



!a












s
J ei	t; ð12Þ

where 
 and 	 satisfy


þ 	 ¼ s and 
	 ¼ !a!b F̂1



 

2; ð13Þ
with � ¼ sign 
=!að Þ ¼ sign 	=!bð Þ; and J an arbitrary complex constant.

Thus, Equation (1) becomes the O.D.E.

½�sþ FðzÞ	F 0ðzÞ ¼ 2� Jj j2 F̂1



 

 sinðzÞ;

with solution

FðzÞ ¼ s� 2 Jj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j F̂1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � � cosðzÞ;

pq
ð14Þ

where C � 1 is a constant of integration. Notice that, if C is strictly larger than

1, the solution is smooth but, when C = 1, it develops a corner. In the latter case,

the solution is

FðzÞ ¼ s� 2 Jj j
ffiffiffiffiffiffiffiffiffiffiffi
2j F̂1j

q
sinðz=2Þj j

when � = 1, and

FðzÞ ¼ s� 2 Jj j
ffiffiffiffiffiffiffiffiffiffiffi
2j F̂1j

q
cosðz=2Þj j

when � = �1. The value of s follows from equating the first Fourier mode of the

solution to F̂1, and imposing the requirement that F have zero mean. In the case

with a corner, we have

F̂1 ¼ 
�
4
ffiffiffi
2

p

3�
Jj j

ffiffiffiffiffiffiffiffi
j F̂1j

q
) F̂1 ¼ � 32 Jj j2

9�2
;

and

} (10)
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FðzÞ ¼ sþ 16 Jj j2

3�
sinðz=2Þj j or FðzÞ ¼ s� 16 Jj j2

3�
cosðz=2Þj j:

ð15Þ
Then, the condition that F have vanishing mean becomes

0 ¼
Z �

��

FðzÞdz ¼ 2�sþ �
64 Jj j2

3�
) s ¼ ��

32 Jj j2

3�2
:

Now we may return to (13) and compute 
 and 	; they are


; 	 ¼ 16 Jj j2

3�2

 
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4!a!b

9

r !
: ð16Þ

Notice that, because !a + !b = �1, (!a!b) � 1/4. Thus, 
 and 	 are always real.

Finally, from the definition of the invariant Q,

Q ¼ ð
� 	Þ Jj j2:

This allows us to compute |J | from the initial data,

Jj j4¼ � 3�2

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4!a!b

9

q Q; ð17Þ

as well as determining which of the two solutions in (16) are 
 and 	,
depending on the sign of Q. The only remaining parameter in the exact solution

is the sign of � = ±1, which determines the orientation of the corner (upward or

downward) as well as the direction of propagation of the traveling wave. Here,

the situation depends rather strongly on the signs of !a and !b. When they are

both negative, any sign of � gives a solution, whereas, when they have opposite

signs, only one choice of � is consistent with a given sign of Q.

This can be explained in terms of a symmetry of the system in (1–3): Note

that, when the signs of !a and !b are both negative, the equations remain

invariant under the switch

a !
ffiffiffiffiffiffi
!a

!b

r
b;

b !
ffiffiffiffiffiffi
!b

!a

r
a;

which changes the sign of Q, while leaving u invariant. The equations are also

invariant under the transformation
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uðxÞ ! �uð�xÞ;

a !
ffiffiffiffiffiffi
!a

!b

r
b;

b !
ffiffiffiffiffiffi
!b

!a

r
a;

which changes both the sign of Q and the orientation of possible corners in u.

When one ! is positive, on the other hand, a similar symmetry does not seem to

exist.

In the particular case when !a = !b, we are led to consider a symmetric

solution with u(x) odd and a and b real and equal. Adopting k = 1, and hence

!a = �0.5, we can write

û1 ¼ �iSðtÞ;

where

SðtÞ ¼ 1

�

Z �

0

uðx; tÞ sinðxÞ dx:

Then, the equations reduce to

ut þ
�u2
2

�
x
¼ 2a2 sinðxÞ;

at ¼ 1

2
a S:

These admit a particular solution of the form

u ¼ 1

t � t0
f ðxÞ; ð18Þ

a ¼ 1

t � t0

cffiffiffi
2

p ; ð19Þ

where c > 0 is a constant, f (x) satisfies the O.D.E.

�f þ f 2

2

� �
x

¼ c2 sinðxÞ;

with f (0) = 0, f̂1 = 2 and a shock at x = �. The constant c follows from the

constraint that f̂1 = 2. We show below that this particular solution is an attractor

to all symmetric initial data.
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Even for arbitrary !, a weaker symmetry persists: solutions that start with

u(x) odd and a and b real remain that way. Note that such data exclude any

traveling wave solution, because these do not preserve parity.

4. The numerical scheme

Because shocks are expected to play a central role in the dynamics of the model

equations, it is important that their numerical solution make use of the

conservation form of the equations. To this end, the amplitude of the

nondispersive wave u = u(x, t) is replaced by an array: u = [u1. . . uN],

where un = un(t) is the average of u(x, t) over the nth cell [the interval of width

dx = 2�/N, centered at xn = (n � 0.5)dx].

The equations are then solved by a second-order Strang splitting algorithm

[8], with one step solving the Burgers’ equation via a second-order Godunov

method and the other step solving the purely ODE part through a standard

second-order Runge–Kutta.

With the interpretation of un as the average of u over the nth cell, the ODE

part of the equation for u becomes:

dun

dt
¼ 2Re ði k a b e�ikxnÞ 2

kdx
sin

 
kdx

2

!
¼ �4Im ða b e�ikxnÞ

sinðkdx
2
Þ

dx
;

where the extra factor (2/(k dx)) sin (k dx/2) arises from the averaging of e�ikx

over each cell. The correction brought about by this extra factor is at the same

level as the second-order error in the scheme, so it is not really required. On the

other hand, it involves so little extra work, that it seems worthwhile keeping, as

we have done in the numerical calculations that follow.

5. Numerical results and discussion

5.1. Generic initial data and parameters

The first two sets of experiments are designed to study the behavior of the

solutions to (1–3) with generic initial data. In the first set, the nondispersive

wave u(x, t) is the one unstable to the other two; whereas, in the second, it is the

dispersive mode b(t). In both cases, the initial data are

uðx; 0Þ ¼ G sinðxÞ þ 0:6 cosð2xÞ � 0:4 sinð2xÞ þ 0:2 sinð3xÞ½ 	;

að0Þ ¼ 1þ 0:2i;

bð0Þ ¼ 0:75þ 0:5i;
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where G is a tunable amplitude that distinguishes the various experiments

within a set.

The frequencies are, for the first set,

k ¼ 1 (u is the unstable wave);

!a ¼ �0:3;

!b ¼ �0:7;

and, for the second,

k ¼ 1;
!a ¼ 0:5;
!b ¼ �1:5 (b is the unstable mode):

In both cases, we solve the system for the time interval 0 � t � 1,200, with

n = 2,000 spatial cells and a fixed Dt satisfying a conservative estimate for the

CFL condition based on the initial data.

5.1.1. Experiments with u the unstable wave. The results of the first set of

experiments with G = 1 and G = 1/4 are plotted in Figures 1 and 2,

respecitvely. Figure 1A shows the energy E as a function of time which, after

a sharp initial decay attributable to shocks, settles down to a nonzero value,

precisely the one corresponding to the exact traveling wave solution (15) for

the initial value of the Manley–Rowe invariant Q. Figure 1B shows snapshots

of u(x, t) at the initial time t = 0, intended to represent generic data, at an early

time t = 2, when a strong shock is dominating the solution, and at the final

time of the computation t = 1200, when the exact traveling wave solution has

taken over. For comparison, this figure includes a plot of the exact solution

(15), which agrees to a surprising degree with the numerical one, leaving little

doubt that the final state of the experiment is, indeed, the exact traveling wave

with a corner. Figures 1C and D and display the absolute values and actual

complex amplitudes of a and b as functions of time, the former at the

beginning and the latter only near the end of the computation. We see both

dispersive waves converging very rapidly to their values in the exact solution

(11, 12).

In Figure 2A, we see the evolution of E(t) for the smaller amplitude G = 1/4.

Although it also settles down to a final nonzero value, this is smaller than that

of the exact traveling wave. Snapshots of u(x, t) for various values of t (from

t = 1170 to t = 1200), plotted in Figure 2B, show an evolving profile, where

the wave shape seems to (almost) recur. This strongly suggests a

quasiperiodic (in time) wave, one that undergoes a periodic deformation in

shape as it travels. More evidence for this is given by Figure 2C, which
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plots the norm of the change in shape as a function of time. The norm of the

change in shape is defined by

u; u0k kshape¼ min
x0

uðxÞ � u0ðx� x0Þk k1; ð20Þ

where u0(x) is a reference profile; in our case u0(x) = u(x, 1100). Further

evidence can be found in Figure 2D, which shows the late evolution of |a(t)|

and |b(t)|, periodic with a period different from (and in all likelihood

incommensurable with) that of the phases of a and b (not displayed).
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Figure 1. Solution to (1–3), with generic initial data and u(x, t) the unstable wave. Specifically:

u(x, 0) = [sin(x) + 0.6 cos(2x) � 0.4 sin(2x) + 0.2 sin(3x)], a(0) = 1 + 0.2 i, and b(0) = 0.75 + 0.5 i,

with frequencies k = 1, ! a =�0.3, and ! b =�0.7. Figure 1A shows the energy E settling down to

the nonzero value (after a sharp initial decay attributable to shocks) corresponding to the traveling

wave solution (15), with the Manley–Rowe invariant Q given by the initial data. Figure 1B shows

snapshots of u(x, t) at t = 0, at an early time t = 2 (a strong shock dominates the solution) and at the

computation final time t = 1200 (the exact traveling wave solution has taken over). A plot of the

exact solution (15) is included for comparison. Figures 1C and 1D display the absolute values and

the complex amplitudes of a and b as functions of time. Both waves converge rapidly to the exact

solution (11, 12). Figure 1D clearly shows b moving on a circle at a constant rate.
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Remark: In regard to the norm of the shape change in a solution, defined

above in (20), note that when this norm vanishes, the solution is equal to the

solution at the reference time, except for a space translation. In our

numerical experiments, this norm quite never vanishes, but the observed

behavior indicates that this may just be caused by lack of numerical

resolution. For a given set of parameters, more points in the space grid and

longer runs in time had the effect of producing closer approaches to zero in

the shape norm. We hope that (future) more resolved runs will settle this

question.

All these results are strongly reminiscent of those in [2] for a nondispersive

wave interacting with a dispersive mode through topography, and in [3–6, 9] for
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Figure 2. Solution to (1–3), with everything the same as in Figure 1; except for a smaller

amplitude nondispersive wave: u(x, 0) = 0.25 [sin(x) + 0.6 cos(2x) � 0.4 sin(2x) + 0.2 sin(3x)].

Again, the energy E settles down to a final nonzero value (Figure 1A), but this value is smaller than

that of the traveling wave. Snapshots of u(x, t) for various values of t (Figure 2B) show an evolving

profile with an (almost) recurrent wave shape. This suggests a quasiperiodic (in time) wave. Figure

2C shows a plot of the norm of the change in shape, as defined by (20). Finally, Figure 2D shows

the late evolution of | a(t)| and | b(t)|, periodic with a period different from that of the phases of a

and b (not displayed).
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nondispersive waves interacting through either topography or a variable

entropy. In all these cases, initial data with enough energy converge robustly to

traveling waves with corners, and less energetic initial data, to smaller

quasiperiodic waves. This is a very intriguing phenomena, which still awaits a

full mathematical explanation.

5.1.2. Experiments with b the unstable wave. The situation in the second set

of experiments, where the unstable wave is the dispersive mode b, is rather

different. Figure 3A displays the profiles of u(x, 1200) for three different

values of G: 1/4, 2, and 8, together with the exact traveling wave solution

corresponding to the value of the Manley–Rowe invariant Q common to the

three runs. Neither of the three profiles agrees with this exact solution; in fact,

the three of them seem to correspond to quasiperiodic waves. Figure 3B

illustrates this for the case with G = 8, by plotting the norm of the change in

shape of the solution. In fact, for G = 2 (and values nearby, which we have

run but are not plotted here), the solution is relatively close to the exact

traveling wave, although the sharp corner is entirely removed. However

(unlike the cases where the unstable wave is u), as the initial energy of the

runs gets larger, the final state gets smaller and further away from this exact

solution.

5.2. Solutions with symmetries

It is interesting to observe the behavior of solutions with the symmetry u(x, t)

odd, a(t) and b(t) real, which excludes all traveling and most quasiperiodic

waves. We first show the strongly symmetric case, where !a = !b = �0.5 and

a = b. For example, consider the initial data

uðx; 0Þ ¼ sinðxÞ;
a(0) ¼ 1;

and

b 0ð Þ ¼ 1:

The numerical results converge very accurately to the exact self-similar solution

(18, 19). Figure 4A shows the energy E(t) rapidly converging to zero. Figure 4B

includes two snapshots of u(x, t) at the relatively late times t = 350 and t = 700,

where the self-similarity of the solution becomes clear. Based on this (and other

similar) experiments, it is natural to conjecture that almost all solutions with the

strong symmetry u odd, !a = !b, a and b real and equal, will be attracted to this

exact self-similar solution.
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Figure 3. Solutions to (1–3), with generic initial data and b the unstable wave. For some G > 0: u(x, 0) = G

[sin(x) + 0.6 cos(2x)� 0.4 sin(2x) + 0.2 sin(3x)], a(0) = 1 + 0.2 i, and b(0) = 0.75 + 0.5 i, with frequencies k = 1,
!a = 0.5 and !b = �1.5. Figure 3A displays the profiles of u(x, 1200) for G = 0.25, 2 and 8, together with the
exact traveling wave solution (corresponding to the common value of the Manley–Rowe invariant Q). Neither
of the profiles agrees with this exact solution, and they all seem to correspond to quasiperiodic waves. Figure
3B illustrates this for the case with G = 8, by plotting the norm of the solution’s change in shape. Unlike the
cases where the unstable wave is u, as the initial energy gets larger, the final state gets smaller and farther
away from the traveling wave solution.
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5.3. Solutions with weak symmetries

Finally, we run a weakly symmetric case, where !a 6¼ !b, and b is the unstable

wave. We take !a = 0.5, !b = �1.5 and the same initial data as above. The

results are displayed in Figure 5. Figure 5A shows the absolute value of a

approaching a nonzero constant; whereas b (slowly) decays to zero. Figure 5B

includes two snapshots of u(x, t) at relatively mature times, which show u

converging to zero through permanent dissipation at two shocks, one at x = 0

and the other at x = �. Thus, the run seems to converge to a final state where

only a is nonzero. This is consistent with the fact that b is the unstable mode, so

it could not possibly stand alone. Nor could u stand alone, because it then

would dissipate all its energy with shocks (moreover, a and b zero is not

consistent with a nonzero Q). However, it is not clear to us why the solution

needs to settle down to such simple configuration, with only one nonzero mode

present.

6. Conclusions

The interactions between dispersive and nondispersive waves display an

amazingly rich—and mostly unexplained—dynamics. Even the simplest

model considered here, of a single nondispersive wave interacting with only

two dispersive modes through a resonant triad, gives rise to surprising

phenomena (such as the robust convergence of large enough initial data to a

single traveling wave solution with a sharp corner). This single solution seems

to be an attractor only when the frequency of the nondispersive mode has a sign

opposite to the other two (u is unstable to a and b) and the initial energy is large

enough. Otherwise, most initial data converge to quasiperiodic waves, with

finite energy and no shocks.

Shock waves play an obviously prominent role in this selection mechanism;

the corners in the final states are, in fact, leftovers from fully decayed shocks.

How exactly shocks and triad resonances conspire to create this unique

dynamic, however, remains mostly a mystery.
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Figure 4. Solutions with the strong symmetry u(x, t) odd, a(t) = b(t) real and !a = !b = �0.5

(k = 1). Here, we take the initial data: u(x, 0) = sin(x) and a(0) = b(0) = 1. The solution converges

very accurately to the exact self-similar solution (18,19). Figure 4A shows the energy E(t) rapidly

converging to zero. Figure 4B includes two snapshots of u(x, t) at the late times t = 350 and

t = 700, where the self-similarity of the solution becomes clear. We conjecture that almost all

solutions with this strong symmetry will be attracted to the self-similar solution (18,19).
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we consider the case where b is the unstable wave (with !a = 0.5, !b = �1.5) and the same initial

data as in Figure 4. Figure 5A shows the absolute value of a approaching a nonzero constant,

while b (slowly) decays to zero. Figure 5B includes two snapshots of u(x, t) at relatively mature

times (t = 50 and t = 150), which show u converging to zero through permanent dissipation at two

shocks, one at x = 0 and the other at x = �. Thus, the run seems to converge to a final state where

only a is nonzero.
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