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Abstract

Erwin Schrödinger posed, and to a large extent solved in 1931/32 the problem
of finding the most likely random evolution between two continuous probability
distributions. This article considers this problem in the case when only sam-
ples of the two distributions are available. A novel iterative procedure is pro-
posed, inspired by Fortet-IPF-Sinkhorn type algorithms. Since only samples of
the marginals are available, the new approach features constrained maximum
likelihood estimation in place of the nonlinear boundary couplings, and impor-
tance sampling to propagate the functions ϕ and ϕ̂ solving the Schrödinger sys-
tem. This method mitigates the curse of dimensionality, compared to the intro-
duction of grids which in high dimensions lead to numerically unfeasible meth-
ods. The methodology is illustrated in two applications: entropic interpolation
of two-dimensional Gaussian mixtures, and the estimation of integrals through a
variation of importance sampling.

c© 2000 Wiley Periodicals, Inc.

1 Introduction

This article proposes a methodology for solving the following problem: given
m and n independent samples {xi} and

{
y j
}

from two distributions with probabil-
ity densities ρ0(x) and ρ1(y) respectively, and a prior probability p(t1,x, t2,y) that
a “particle” at position x at time t1 will end up at position y at time t2, find the
most likely intermediate evolution ρ(z, t), t ∈ [0,1] satisfying ρ(x,0) = ρ0(x) and
ρ(y,1) = ρ1(y). This is a data-driven version of the Schrödinger Bridge Problem,
which we describe below. In addition to the evolving density ρ(z, t), the solution
provides the posterior transition density p∗(t1,x, t2,y) most consistent with the ob-
served initial and final distributions, useful for model improvement. The method-
ology applies to general priors p(t1,x, t2,y), and it does not require that these be
known in closed form. In particular, in order to find the induced coupling π(x,y)
between ρ0(x) and ρ1(y), the only requirement is to be able to sample p(0,x,1, :).
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1.1 Motivation, examples and extensions
Many problems of practical and theoretical interest can be directly formulated

as data-driven Schrödinger bridges. Consider the following two examples, arising
in climate studies and evolutionary biology:

(1) With the current knowledge of oceanic or atmospheric flows described in
terms of a velocity field v(x, t) and a diffusion operator D, the correspond-
ing Fokker-Planck evolution equation yields the prior p(t1,x, t2,y) for the
trajectories of tracers. If at any point in time a cloud of particles is re-
leased into the fluid, for instance through a volcanic eruption, or its current
concentration ρ0 is sampled, and at some other time its distribution ρ1 is
sampled again, the data-driven bridge problem provides an estimate for
the most likely intermediate evolution ρ(z, t) of the tracer cloud and to an
improved model for the currents v.

(2) Given the distribution of traits (genomic or phenomic) for a species at two
points in time, and a stochastic model for their evolution, the problem asks
for the most likely intermediate evolutionary stages, and provides as addi-
tional output an improved stochastic evolutionary model.

In other problems, it is not an intermediate evolution that one is after, but the
probabilistic matching π(x,y) between two distributions ρ0(x) and ρ1(y) under a
prior matching model p(y|x). In this case, both the problem and the methodology
proposed for solving it extend without changes to situations where the variables x
and y do not have the same dimensions, arising frequently in practice. For instance,
in applications to the employment market, there is no reason for the number of vari-
ables characterizing employers and employees to be the same. Another example
is the determination of the effect of a treatment or habit. For instance, if ρ0(x)
characterizes the distribution of clinical variables x among non-smokers and ρ1(y)
among smokers, then the coupling π(x,y) describes the effect of smoking on those
variables.

In a third type of scenarios, there is only one data-given distribution ρ1(y); the
other distribution ρ0(x) and the prior p(t1,x, t2,y) are introduced for convenience
by the modeler, so as to perform ρ1(y)-related tasks. As an example, in Section
4 we apply the Schrödinger bridge to develop a variation of importance sampling
where the distribution over which expected values of a function are sought is known
only through samples.

In other applications, one has only ρ1(y) and the prior p(t1,x, t2,y), and would
like to determine ρt(z) for t < 1. Two prototypal examples are inverse problems,
such as describing the most likely previous temperature distribution of a system
given its current one, and large deviation problems: if the stochastic process de-
scribed by p has a statistically steady state ρeq, what are the most likely paths that
will lead to a ρ1 different from ρeq, such as the one corresponding to a strong storm
or a drought in applications to weather and climate.
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Notice that these examples involve prior transition probabilities suited to the
particular application being considered, while Schrödinger’s original proposal re-
stricted attention to the Wiener process.

1.2 The methodology
The solution to the Schrödinger Bridge Problem can be factorized in the form

(see (2.15) in Section 2 below)

ρt(x) = ϕt(x)ϕ̂t(x),

where ρt(x) represents the distribution at time t, and ϕ and ϕ̂ evolve from t = 1
and t = 0 respectively, following the prior:

ϕ̂t(y) =
∫

p(0,x, t,y)ϕ̂0(x)dx,(1.1)

ϕt(x) =
∫

p(t,x,1,y)ϕ1(y)dy.(1.2)

One can therefore, starting from an arbitrary ϕ̂0(x), propagate it into the corre-
sponding ϕ̂1(y), and write

ϕ1(y) =
ρ1(y)
ϕ̂1(y)

.

Then, evolving ϕ1(y) back into the corresponding ϕ0(x), we write

ϕ̂0(x) =
ρ0(x)
ϕ0(x)

,

and repeat. This idea underlies iteration schemes that, under suitable assumptions,
converge to the solution of the Schrödinger Bridge Problem [33, 13].

Yet this procedure assumes that the initial and final distributions ρ0 and ρ1,
as well as the transition probability p, are known explicitly, and that the integrals
propagating ϕ and ϕ̂ between t = 0 and t = 1 can be evaluated in closed form. By
contrast, in applications ρ0 and ρ1 are typically only known through samples. In
addition, it is often the case that the transition probability p can be sampled, such
as through the integration of a stochastic differential equation, but not evaluated,
which would require solving the corresponding Fokker-Plank equation. Moreover,
even if ρ0, ρ1 and p are known, one still needs to estimate the integrals propagating
ϕ and ϕ̂ numerically.

The methodology developed in this article mimics the iterative procedure above,
but replacing each step by a sample-based equivalent. Thus the statements that

ϕ0(x)ϕ̂0(x) = ρ0(x) and ϕ1(y)ϕ̂1(y) = ρ1(y)

are interpreted as density estimations and implemented via maximum likelihood,
and the propagators for ϕ and ϕ̂ are estimated via importance sampling. Both tasks
involve elements unique to the Schrödinger Bridge Problem, described in Section
3.
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1.3 Related work
Schrödinger’s statistical mechanical thought experiment (a large deviations prob-

lem) was motivated by analogies with quantum mechanics. On the other hand,
since Boltzmann’s fundamental work [8], and then through Sanov’s theorem [56],
we know that finding the most likely Zustandverteilung (macrostate) is equivalent
to solving a maximum entropy problem. This connection provides a second im-
portant motivation for Schrödinger bridges, as an inference methodology that pre-
scribes a posterior distribution making the fewest number of assumptions beyond
the available information. This approach has been developed over the years, thanks
in particular to the work of Jaynes, Burg, Dempster and Csiszár [40, 41, 9, 10, 27,
20, 21, 22]. A more recent third motivation for studying Schrödinger bridges is
that they can be viewed as regularizations of the Optimal Mass Transport (OMT)
problem [47, 48, 49, 42, 43, 11, 67] which mitigates its computational challenges
[3, 4, 54]. A large number of papers have since appeared on computational regular-
ized OMT using IPF-Fortet-Sinkhorn type algorithms, with [45] among the first to
use IPF for the discrete optimal matching problem in economics followed by a rich
literature e.g. [23, 5, 15, 13, 18, 44, 2, 19]. While most of the classical work con-
centrates on the continuous problem, see e.g. the bibliography in [43] and Section
2 below, these papers concern the discrete Schrödinger Bridge Problem [51, 35]
between two empirical measures given by convex combinations of Dirac’s deltas.
In this context, [59, 46], among other topics, describe how the expected error be-
tween the discrete and the continuous Schrödinger Bridge Problem goes to zero
as O(1/

√
n) for fixed diffusivity γ (see eq. (2.5)). These sample complexity re-

sults are based on the dual formulation of the Schrödinger Bridge Problem and on
the representation of the dual potentials in a suitable Reproducing Kernel Hilbert
Space (RKHS) developed in [34].

Hardly any attention, however, has been given to the case when only samples
of continuous marginals are available. Exceptions are [28], which deals with using
regularized optimal transport for hard and soft clustering, [34] and [6]. The latter
paper has multiple points of contact with the present work. In particular, simulation
and regression-based approximations are used in the architecture of the Fortet-IPF-
Sinkhorn algorithm to derive what is there named a Schrödinger bridge sampler.
No mention of [53], of which the present paper is a minor modification, is made
in [6] nor in [59, 46]. Regarding [34], the use of RKHS has certainly the same
flavor of the basis functions expansion of ϕ we adopt in this paper (see Section
3) but there are remarkable differences. For example, dividing the problem into
half bridges, each of them solved using maximum likelihood, and the fact that the
procedure in [34] requires the knowledge of the two marginal distributions, which
are sampled at each iteration step, in order to obtain the posterior π∗(x,y) from the
potentials of the dual problem that the algorithm outputs.

One might think that the scenario with samples drawn from continuous distri-
butions may be readily treated by discretizing the spatial variables through grids.
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As we argue in the beginning of Section 3, such an approach is often numerically
unfeasible and/or not reliable. Thus, in this paper we provide what appears to be
the first numerically viable approach to the data-driven continuous Schrödinger
Bridge Problem.

As discussed at the end of Subsection 2.4, this approach permits finding a map
from ρ0 to ρ1, relating this work to [64] and [62] developed in the context of opti-
mal transport.

1.4 Original contribution
This article’s approach differs from prior work in the problem addressed, the

data required and the methodology proposed.

The problem. Schrödinger’s original proposal restricted the prior to the
Wiener process, which is also the prior implicitly underlying the entropy-
regularized optimal transport of [23] and the works that followed. By con-
trast, we consider arbitrary prior processes p(t0,x, t1,y). The motivation
is that, unlike Schrödinger, who had diffusion and its formal relation to
quantum mechanics specifically in mind, and [23], which uses entropy as
a regularizer of the optimal transport problem, we develop tools applica-
ble to a broad array of matching problems, where p encompasses the field
knowledge prior to the observations being considered. Thus a significant
component of the original contribution is motivational, showing that the
Schrödinger bridge has applications that go far beyond quantum mechan-
ics, the regularization of optimal transport and stochastic optimal control
[25], including inverse problems, model improvement, importance sam-
pling and matching problems in the presence of priors.
Data required. Prior work on the Schrödinger bridge is mostly analytical,
taking as input the distributions ρ0,1 and the prior p(t0,x, t1,y), typically a
Wiener process. This is also the case of the entropy-regularized optimal
transport, though here the distributions ρ0,1 are generally discrete. Our
proposal, instead, inspired by the original idea of Schrödinger, applies to
situations where only samples from ρ0,1 are available. Moreover, in order
to find the coupling π(x,y), the only requirement from the prior is the
ability to sample p(t0 = 0,x, t1 = 1, :). If the intermediate distributions
ρt(z) are sought too, then one needs to sample the process p backward and
forward for arbitrary intermediate times.
Methodology. The procedure presented here is based on the iteration
scheme on which Fortet based his proof, applied already in [33, 13] to the
case where the initial and final distributions ρ0 and ρ1 and the transition
probability p, are known explicitly at every point of their domain of defini-
tion. In order to apply this scheme to the case where ρ0 and ρ1 are known
only through a finite set of sample points, we impose the boundary condi-
tions in the Fortet iteration in terms of relative entropy, which corresponds



6 M. PAVON, E.G. TABAK, G. TRIGILA

to a maximal likelihood characterization of the estimated densities. Ac-
commodating to situations where the prior process can only be sampled,
not evaluated, requires the use of importance-sampling-like estimates of
the integrals propagating the potentials φ and φ̂ back and forth through
the prior. Finally, parametrizations of these potentials are proposed that
guaranty their positivity.

1.5 Organization of the article
The paper is organized as follows. In Section 2, we provide an introduction to

Schrödinger bridges. We include a concise description of Schrödinger’s original
motivation, and elements of the connection between the large deviation problem
and a path space maximum entropy problem, and with Optimal Transport. We also
sketch derivations of the Schrödinger system and of the stochastic control and fluid
dynamic formulations, focusing on the case when the prior transition density is the
heat kernel.

In Subsection 2.5, we outline Fortet’s iterative algorithm, dating back to 1940,
which represents a sort of guideline for the numerical methods we develop in the
rest of the paper. Section 3 features the novel methodology to attack the data-
driven bridge problem, motivated by numerical, statistical and optimization con-
siderations. First, the so-called half-bridge problem is treated, and then the full
bridge, leading to the algorithm of Subsection 3.3. In Section 4, we illustrate the
methodology in two relevant applications: the entropic interpolation between two
Gaussian mixtures on R2 and a new application of Schrödinger bridges to a varia-
tion of Importance Sampling. Finally, in Section 5 we summarize the results and
propose future avenues of research.

2 Background on Schrödinger bridges

2.1 Schrödinger’s hot gas experiment and maximum entropy formula-
tion

In the early 1930s, Erwin Schrödinger proposed the following Gedankenex-
periment [57, 58]. Consider the evolution of a cloud of N independent Brownian
particles in Rn. This cloud of particles has been observed to have at the initial time
t = 0 an empirical distribution approximately equal to ρ0(x)dx. At time t = 1, an
empirical distribution is observed approximately equal to ρ1(y)dy which consid-
erably differs from what it should be according to the law of large numbers (N is
large, typically of the order of Avogadro’s number), namely

ρ1(y) 6=
∫
R3

p(0,x,1,y)ρ0(x)dx,

where

(2.1) p(s,y, t,x) = [2π(t− s)]−
n
2 exp

[
− |x− y|2

2(t− s)

]
, s < t
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is the transition density of the Wiener process. It is apparent that the particles
have been transported in an unlikely way. But of the many unlikely ways in which
this could have happened, which one is the most likely? In modern probabilis-
tic terms, this is a problem of large deviations of the empirical distribution as
observed by Föllmer [32]. Thanks to Sanov’s theorem [56], Schrödinger’s prob-
lem can be turned into a maximum entropy problem for distributions on trajecto-
ries. Let C([0,1];Rn) be the space of Rn valued continuous functions and let W be
Wiener measure on C([0,1];Rn)). Then Sanov’s theorem roughly asserts that the
most likely random evolution between two given marginals is the solution of the
Schrödinger Bridge Problem:

Problem 1.

(2.2) Minimize D(P‖W ) over P ∈D(ρ0,ρ1).

where D(ρ0,ρ1) are distributions on C([0,1];Rn) having marginal densities ρ0 and
ρ1 at times t = 0 and t = 1, respectively, and

D(P‖W ) =

{
EP
(
log dP

dW

)
, if P�W

+∞ otherwise

is the relative entropy functional or Kullback-Leibler divergence between P and
W . The optimal solution is called the Schrödinger Bridge between ρ0 and ρ1 over
W , and its marginal flow (ρt) is the entropic interpolation. Two good surveys on
Schrödinger bridges are [66, 43]. Let

W y
x =W [ · | X0 = x,X1 = y]

be the disintegration W with respect to the initial and final positions. Then the
solution of Problem 1 can be shown [32] to have the form

P∗(·) =
∫
Rn×Rn

W y
x (·)π∗(x,y)dxdy,

where π∗(x,y) is the joint initial-final time density under P∗ solving the static prob-
lem:

Problem 2. Given the joint initial-final time density πW under W , minimize over
densities π on Rn×Rn the index

(2.3) D(π‖πW ) =
∫ ∫ [

log
π(x,y)

πW (x,y)

]
π(x,y)dxdy

subject to the (linear) constraints

(2.4)
∫

π(x,y)dy = ρ0(x),
∫

π(x,y)dx = ρ1(y).
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Consider now the case when the prior is Wγ , namely Wiener measure with variance
γ , so that

(2.5) p(0,x,1,y) = [2πγ]−
n
2 exp

[
−|x− y|2

2γ

]
.

Let Π(ρ0,ρ1) be the family of joint densities over Rn×Rn having marginals ρ0
and ρ1, respectively. It can be shown [43, 30] that the initial marginal density of
the prior can WLOG always be taken equal to ρ0 and that Problem 2 of minimizing
D(π‖πWγ ) over Π(ρ0,ρ1) is equivalent to

(2.6) inf
π∈Π(ρ0,ρ1)

∫ |x− y|2

2
π(x,y)dxdy+ γ

∫
π(x,y) logπ(x,y)dxdy.

This is just a regularization of Optimal Mass Transport (OMT) [65] with quadratic
cost.

In fact, this result can be extended to any prior W . Writing

π
W

∝ e−c(x,y),

the corresponding generalized Schrödinger bridge problem is equivalent to

inf
π∈Π(ρ0,ρ1)

∫
c(x,y) π(x,y) dxdy+

∫
π(x,y) logπ(x,y) dxdy,

an entropic regularization of the optimal transport problem with cost function c(x,y).

2.2 The Schrödinger system
Using Lagrange multipliers for the linear constraints (2.4), Schrödinger showed

that the optimal π∗(·, ·) has the form

(2.7) π
∗(x,y) = ϕ̂(x)p(0,x,1,y)ϕ(y),

where ϕ and ϕ̂ must satisfy

ϕ̂(x)
∫

p(0,x,1,y)ϕ(y)dy = ρ0(x),(2.8)

ϕ(y)
∫

p(0,x,1,y)ϕ̂(x)dx = ρ1(y).(2.9)

Define ϕ̂0(x) = ϕ̂(x), ϕ1(y) = ϕ(y). Also let, for 0 ≤ t ≤ 1, ϕ̂t and ϕt be
defined as in (1.1)-(1.2). Then, (2.8)-(2.9) can be replaced by the system

ϕ̂1(y) =
∫

p(0,x,1,y)ϕ̂0(x)dx,(2.10)

ϕ0(x) =
∫

p(0,x,1,y)ϕ1(y)dy,(2.11)

coupled with the boundary conditions

(2.12) ϕ0(x) · ϕ̂0(x) = ρ0(x), ϕ1(y) · ϕ̂(1,y) = ρ1(y).
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Notice that dividing both sides of (2.7) by ρ0(x), we get that the optimal transition
density p∗ relates to the heat kernel as in

(2.13) p∗(0,x,1,y) :=
π∗(x,y)
ρ0(x)

=
1

ϕ0(x)
p(0,x,1,y)ϕ1(y).

Here ϕ , in Doob’s language, is the space time harmonic satisfying (2.11) or, equiv-
alently,

(2.14)
∂ϕ

∂ t
+

1
2

∆ϕ = 0.

Thus the solution is obtained from the prior distribution via a multiplicative func-
tional transformation of the prior Markov processes [38]. The question of exis-
tence and uniqueness of positive functions ϕ̂ , ϕ satisfying (2.10, 2.11, 2.12), left
open by Schrödinger, is a highly nontrivial one and has been settled in various
degrees of generality by Fortet, Beurlin, Jamison and Föllmer [33, 7, 39, 32], see
also [43, Proposition 2.5]. The pair (ϕ, ϕ̂) is unique up to multiplication of ϕ by
a positive constant c and division of ϕ̂ by the same constant. At each time t, the
marginal ρt factorizes as

(2.15) ρt(x) = ϕt(x) · ϕ̂t(x).

Schrödinger observes: “Merkwürdige Analogien zur Quantenmechanik, die mir
sehr des Hindenkens wert erscheinen.”1 Indeed (2.15) resembles Born’s relation
ρt(x) = ψt(x) · ψ̄t(x) with ψ and ψ̄ satisfying two adjoint equations like ϕ and ϕ̂ .
Moreover, the solution of Problem 1 enjoys the following remarkable reversibility
property: exchanging the two marginal densities ρ0 and ρ1, the new solution is the
time reversal of the previous one. This explains the title “On the reversal of natural
laws” of [57].

2.3 “Half bridges”
Consider the following variant of Problem 1 with prior distribution Wγ :

Problem 3.

(2.16) Minimize D(P‖Wγ) over P ∈D(ρ1),

namely, we only impose the final marginal. The same argument as before shows
that Problem 3 reduces to the following variant of Problem 2:

Problem 4. Minimize over densities π on Rn×Rn the index

(2.17) D(π‖πWγ ) =
∫ ∫ [

log
π(x,y)

πWγ (x,y)

]
π(x,y)dxdy

subject to the (linear) constraint

(2.18)
∫

π(x,y)dx = ρ1(y).

1 Remarkable analogies to quantum mechanics which appear to me very worth of reflection.
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A simplified variational analysis, with µ as Lagrange multiplier for the constraint
(2.18), gives the optimality condition

1+ logπ
∗(x,y)− log p(0,x,1,y)− logρ

W
0 (x)+µ(y) = 0,

where ρW
0 (x) is the initial marginal for the reference measure. We then get

(2.19)
π∗(x,y)

p(0,x,1,y)
= exp

[
logρ

W
0 (x)−1−µ(y)

]
= ρ

W
0 (x)exp [−1−µ(y)] .

Thus, in the previous notation, we can set ϕ̂(x)= ρW
0 (x) and ϕ(y)= exp [−1−µ(y)].

Let

ρ
Wγ

1 (y) =
∫

[2πγ]−
n
2 exp

[
−|x− y|2

2γ

]
ρ

W
0 (x)dx

which replaces (2.10) with ϕ̂0(x) = ρW
0 (x) and ϕ̂1(y) = ρ

Wγ

1 (y).Then (2.9) gives
immediately

(2.20) ϕ(y) =
ρ1(y)

ρ
Wγ

1 (y)
.

We now get the form of the optimal initial-final joint distribution of the half-bridge:

π
∗(x,y) = ρ

W
0 (x)p(0,x,1,y)

ρ1(y)

ρ
Wγ

1 (y)

= ρ
W
0 (x) [2πγ]−

n
2 exp

[
−|x− y|2

2γ

]
ρ1(y)

ρ
Wγ

1 (y)
= π

Wγ (x,y)
ρ1(y)

ρ
Wγ

1 (y)
.

Finally, let

(2.21) ϕ0(y) :=
∫
(2π)−

n
2 [2πγ]−

n
2 exp

[
−|x− y|2

2γ

]
ϕ(y)dy.

Then, the initial marginal of the solution is given by

ρ0(x) = ϕ0(y)ρW
0 (x).

Notice that here there is no delicate question about existence and uniqueness for
the Schrödinger system as ϕ̂ coincides at all times with the prior one-time mar-
ginal. This, in turn, provides the terminal condition for the ϕ function at time
t = 1 which then only needs to be propagated backward through (2.21) to pro-
vide the full solution. In the special case when ρW

0 (x) = δ (x), we have ρ
Wγ

t (x) =

(2πγt)−
n
2γ exp

[
− |x|

2

2γt

]
and, in particular, ρ

Wγ

1 (y) = (2πγ)−
n
2 exp

[
− |y|

2

2γ

]
.

An immediate application of the half-bridge problem is the reconstruction of
the past of a system given its current state and a prior model for its evolution. The
availability of a prior here is crucial, as without a prior or other regularization such
inverse problems are typically ill-posed. Another application concerns deviations
from equilibrium. Consider a stochastic system whose dynamics p(t1,x1, t2,x2)
has a statistically steady state ρeq(x), possibly modulated in time. What is the most
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likely path that would take us at time t to a state ρ1(x) away from equilibrium?
For example, one may want to anticipate the likely path of strong storms or large
waves, so as to be able to forecast them.

2.4 Stochastic control and fluid-dynamic formulations
In addition to the formulations above, there exist also dynamic versions of the

problem such as the following stochastic control formulation originating with [24,
25, 52]: Problem 1 (when the prior has variance γ) is equivalent to

Problem 5.

Minimizeu∈U J(u) = E
[∫ 1

0

1
2γ
‖ut‖2dt

]
,

subject to dXt = utdt +
√

γdWt , X0 ∼ ρ0(x)dx, X1 ∼ ρ1(y)dy,
(2.22)

where the family U consists of adapted, finite-energy control functions.

The optimal control is of the feedback type

(2.23) ut = γ∇ logϕt(Xt),

where (ϕ, ϕ̂) solve the Schrödinger system (2.10, 2.11, 2.12). These formulations
are particularly relevant in applications where the prior distribution on paths is not
simply the Wiener measure, but is associated to the uncontrolled (“free”) evolution
of a dynamical system, see e.g [16, 17, 14] and in image morphing/interpolation
[13, Subsection 5.3]. In the case of the half bridge, (2.23) still holds with ϕ satis-
fying

∂ϕ

∂ t
+

γ

2
∆ϕ = 0, ϕ(1, ·) = ρ1(·)

ρ
Wγ

1 (·)
.

Problem 5 leads immediately to the following fluid dynamic problem:

Problem 6.

inf
(ρ,b)

∫
Rn

∫ 1

0

1
2
‖b(x, t)‖2

ρ(t,x)dtdx,(2.24a)

∂ρ

∂ t
+∇ · (bρ)− γ

2
∆ρ = 0,(2.24b)

ρ(0,x) = ρ0(x), ρ(1,y) = ρ1(y).(2.24c)

where b(·, ·) varies over continuous functions on Rn× [0,1]. This problem is not
equivalent to Problems 1, 2 and 5 in that it only reproduces the optimal entropic
interpolating flow {ρt ;0≤ t ≤ 1}. Information about correlations at different times
and smoothness of the trajectories is here lost. As γ ↘ 0, the solution to this prob-
lem converges to the solution of the Benamou-Brenier Optimal Mass Transport
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problem [4, 47, 48, 49, 43, 42]:

inf
(ρ,v)

∫
Rn

∫ 1

0

1
2
‖v(x, t)‖2

ρ(t,x)dtdx,(2.25a)

∂ρ

∂ t
+∇ · (vρ) = 0,(2.25b)

ρ(0,x) = ρ0(x), ρ(1,y) = ρ1(y).(2.25c)

Let (ρ,b) be optimal for Problem 6 and define the current velocity field [50]

v(x, t) = b(x, t)− γ

2
∇ logρt(x)

= γ∇ logϕt(x)−
γ

2
∇ logρt(x) =

γ

2
∇ log

ϕt(x)
ϕ̂t(x)

,(2.26)

where we have used (2.23) and (2.15). Assume that v guarantees existence and
uniqueness of the initial value problem on [0,1] for any deterministic initial condi-
tion and consider

(2.27) Ẋ(t) = v(X(t), t), X(0)∼ ρ0dx.

Then the probability density ρt(x) of X(t) satisfies (weakly) the continuity equation

∂ρ

∂ t
+∇ · (vρ) = 0

as well as (2.24b) with the same initial condition and therefore coincides with
ρ(x, t). This suggests that an alternative fluid-dynamic problem characterizing the
entropic interpolation flow {ρt ;0 ≤ t ≤ 1} may be possible. Indeed, such time-
symmetric problem was derived in [15]:

Problem 7.

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1
2
‖v(x, t)‖2 +

γ

8
‖∇ logρ‖2

]
ρ(t,x)dtdx,(2.28a)

∂ρ

∂ t
+∇ · (vρ) = 0,(2.28b)

ρ(0,x) = ρ0(x), ρ(1,y) = ρ1(y).(2.28c)

The two criteria differ by (γ/8)I (ρ) where the Fisher information functional I
is given by

I (ρ) =
∫
‖∇ logρt‖2

ρt(x)dx

while the Fokker-Planck equation (2.24b) has been replaced by the continuity equa-
tion (2.28b). Both Problems 6 and 7 can be thought of as regularizations of the
Benamou-Brenier problem (2.25) and as dynamic counterparts of (2.6). Also no-
tice that, precisely as in Problem (2.25), the optimal current velocity (2.26) in Prob-
lem 7 is of the gradient type.



THE DATA-DRIVEN SCHRÖDINGER BRIDGE 13

Finally, consider the family of diffeomorphisms {Tt ;0≤ t ≤ 1} satisfying

(2.29)
dTt

dt
(x) = v(Tt(x), t), T0 = I,

where v is defined by (2.26). Then, in analogy to the displacement interpolation of
Optimal Mass Transport, we have the following relation for the entropic interpola-
tion flow

(2.30) ρt(x)dx = Tt#ρ0(x)dx,

namely ρt(x)dx is the push-forward of the measure ρ0(x)dx under the map Tt . In
particular, the map Tγ = T1 pushes ρ0(x)dx onto ρ1(x)dx and represents therefore
the entropic counterpart of the map solving the original Monge problem. It may be
called the Monge-Schrödinger map.

2.5 Fortet’s iterative algorithm
The oldest proof of existence and uniqueness for the Schrödinger system (2.10,

2.11, 2.12), due to Fortet [33], is algorithmic in nature, establishing convergence
of successive approximations. More explicitly, let g(x,y) be a nonnegative, con-
tinuous function bounded from above. Suppose g(x,y) > 0 except possibly for a
zero measure set for each fixed value of x or of y. Suppose that ρ0(x) and ρ1(y) are
continuous, nonnegative functions such that∫

ρ0(x)dx =
∫

ρ1(y)dy.

Suppose, moreover, that the integral∫
ρ1(y)∫

g(z,y)ρ0(z)dz
dy

is finite. Then, [33, Theorem 1], the system

φ(x)
∫

g(x,y)ψ(y)dy = ρ0(x),(2.31)

ψ(y)
∫

g(x,y)φ(x)dx = ρ1(y)(2.32)

admits a solution (φ(x),ψ(y)) with φ ≥ 0 continuous and ψ ≥ 0 measurable.
Moreover, φ(x) = 0 only where ρ0(x) = 0 and ψ(y) = 0 only where ρ1(y) = 0.

The result is proven by setting up a complex approximation scheme to show
that equation

(2.33) h(x) = Ω(h) =
∫

g(x,y)
ρ1(y)dy∫

g(z,y)ρ0(z)
h(z) dz

.

has a positive solution. Notice that

g(x,y) = p(0,x,1,y) = [2πγ]−
n
2 exp

[
−|x− y|2

2γ

]
.
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satisfies all assumptions of Fortet’s theorem. Uniqueness, in the sense described in
Subsection 2.2, namely uniqueness of rays, is much easier to establish. In the recent
paper [30], the bulk of Fortet’s paper has been rewritten filling in all the missing
steps and providing explanations for the rationale behind the various articulations
of his approach.

Independently, at about the same time and in the discrete setting, an iterative
proportional fitting (IPF) procedure, was proposed in the statistical literature on
contingency tables [26]. Convergence for the IPF algorithm was first established
(in a special case) by Richard Sinkhorn in 1964 [60]. The iterates were shortly
afterwards shown to converge to a “minimum discrimination information” [37, 31,
55], namely to a minimum entropy distance. This line of research, usually called
Sinkhorn algorithms, continues to this date, see e.g. [23, 2, 63]. It is apparent
that an iterative scheme can be designed based on (2.33) which, in the previous
notation, reads

(2.34) Ω(ϕ0(x)) =
∫

p(0,x,1,y)
ρ1(y)dy∫

p(0,z,1,y) ρ0(z)
ϕ0(z)

dz
.

This was accomplished in [13], showing convergence of the iterates in a suitable
projective metric, but only for the case when both marginals have compact support.

Setting up an iterative scheme based on (2.34) when only samples of the two
marginals are available is obviously much more challenging: This is the main
topic of this paper which we shall pursue starting from the next section. This will
also provide an approach to data-driven Optimal Mass Transport alternative to [64]
since, as observed at the end of Subsection 2.1, the Schrödinger Bridge Problem
may be viewed as a regularization of OMT.

3 Numerical methodology

This section develops a sample-based numerical methodology for the solution
of the Schrödinger Bridge Problem. This is the case, ubiquitous in applications,
where the distributions ρ0 and ρ1 are only known through the finite sample sets
{xi} and

{
y j
}

of cardinality m and n respectively.
One could propose a scheme whereby one first estimates ρ0 and ρ1 from the

samples provided, and then solves the regular Schrödinger Bridge Problem be-
tween these two estimates. Yet there are a number of reasons why a procedure
based directly on the sample sets is preferable. In particular,

(1) Density estimation adds an extra computational layer to the algorithm, and
hence a source of additional potential approximation errors. Notice that the
formula (2.7) for the posterior joint probability π∗(x,y) does not involve
the two marginal densities explicitly, only the potentials ϕ and ϕ̂ .

(2) Even with estimations for ρ0 and ρ1 known in closed form, the solution to
the Schrödinger Bridge Problem requires the calculation of integrals that
in most cases cannot be performed in closed form.
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For conciseness, we shall denote p(y|x) the prior transition density p(0,x,1,y),
and write ϕ̂0(x) and ϕ1(y) instead of ϕ̂(x) and ϕ(y), respectively. Then (2.7) reads

π
∗(x,y) = ϕ̂0(x) p(y|x) ϕ1(y).

The entropic interpolation between ρ0 and ρ1 is given by ρt(z) = ϕt(z)ϕ̂t(z), where

(3.1) ϕt(z) =
∫

p(t,z,1,y)ϕ1(y)dy ϕ̂t(z) =
∫

p(0,x, t,z)ϕ̂0(x)dx.

In particular, one needs to solve the system

ρ0(x) = ϕ0(x)ϕ̂0(x), ρ1(y) = ϕ1(y)ϕ̂1(y),

with
ϕ0(x) =

∫
p(y|x)ϕ1(y)dy ϕ̂1(y) =

∫
p(y|x)ϕ̂0(x)dx.

To begin, we need to reformulate the problem so that it involves the distributions
only through their available samples.

3.1 The half-bridge problem through maximal likelihood
We develop first an algorithm for the half-bridge problem. Even though this is

much simpler than the full bridge, it includes some of its main ingredients.
Recalling that ϕ̂1 is known (see Subsection 2.3), the equality ϕ̂1(y)ϕ1(y) =

ρ1(y) can be reformulated in a data-friendly way by minimizing the Kullback-
Leibler divergence between ρ1(y) and ϕ̂1(y)ϕ1(y), leading to the following con-
strained optimization problem:

ϕ1 = argmax
ϕ1(y)≥0

∫
log(ϕ1(y))ρ1(y) dy,

∫
(ϕ̂1(y)ϕ1(y))dy = 1,

where two functions ϕ1 are considered equal if they differ on a set of measure zero.
We can satisfy the positivity constraint automatically by proposing an exponen-

tial form for ϕ1:
ϕ1(y) = eg(y),

which yields

max
g

∫
g(y)ρ1(y)dy s.t.

∫
ϕ̂1(y)eg(y)dy = 1,

or, introducing a Lagrange multiplier λ for the constraint,

max
g

min
λ

L(g,λ ) =
∫

g(y)ρ1(y) dy−λ

(∫
ϕ̂1(y)eg(y)dy−1

)
.

Maximizing over g first yields
δL
δg

= ρ1(y)−λϕ̂1(y)eg(y) = 0 resulting in g(y) = log
(

ρ1(y)
λϕ̂1(y)

)
.

Then the minimization over λ becomes

min
λ

[− log(λ )+λ ]⇒ λ = 1.
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Hence the value of the optimal λ is known explicitly, and the estimation problem
becomes:

(3.2) max
g

L(g) =
∫

g(y)ρ1(y) dy−
∫

ϕ̂1(y)eg(y)dy+1.

Notice that the solution to (3.2) is

g(y) = log
(

ρ1(y)
ϕ̂1(y)

)
⇒ ϕ1(y) =

ρ1(y)
ϕ̂1(y)

,

the exact answer to the problem. Yet in the true problem ρ1(y) is only known
through samples

{
y j
}

, so the first integral in (3.2) must be replaced by its empirical
counterpart: ∫

g(y)ρ1(y) dy→ 1
n ∑

j
g(y j).

Then, introducing a rough estimate ρ̃1 of ρ1 that one can sample, such as a Gauss-
ian, and drawing ñ samples ỹk from it, we can replace the second integral above by
its Monte Carlo simulation:∫

ϕ̂1(y)eg(y)dy =
∫

ϕ̂1(y)eg(y)

ρ̃1(y)
ρ̃1(y)dy→ 1

ñ ∑
k

ϕ̂1(ỹk)eg(ỹk)

ρ̃1(ỹk)
.

(Notice that for ρ̃1 = ρ1 and g the true maximizer, this is an estimation with zero
variance.) Regarding the use of Monte Carlo in high dimensions, one must be
aware of the results derived in [12] and [1], showing that the sample size needed
to obtain accurate importance sampling estimates can grow exponentially with the
dimension.

Finally, proposing a parametrization of the unknown g(y), such as

g(y,β ) = ∑
l

βlFl(y),

where the Fl are functions externally provided, we end up with the following al-
gorithm for estimating ϕ1(y). Let ϕ1(y,β ) be the parametrization of ϕ1(y) given
by

ϕ1(y,β ) = e∑l βlFl(y),

where β solves

β = argmaxL = ∑
l

(
1
n ∑

j
Fl(y j)

)
βl−

1
ñ ∑

k

ϕ̂1(ỹk)e∑l βlFl(ỹk)

ρ̃1(ỹk)
.

Notice that L is concave, since the

∂ 2L
∂βiβ j

=−1
ñ ∑

k

ϕ̂1(ỹk)e∑l βlFl(ỹk)

ρ̃1(ỹk)
Fi(ỹk)Fj(ỹk)

form a negative definite matrix.
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More generally, we could have adopted a parametrization ϕ1(y,β ) for ϕ1(y)
different from the exponential, while still guaranteeing positivity, such as

ϕ1(y,β ) = g(y,β )2,

where g(y,β ) is any family of real functions with parameters β . Then the problem
above would have become

β = argmaxL =
1
n ∑

j
log(ϕ(y j,β ))−

1
ñ ∑

k

ϕ̂1(ỹk)ϕ (ỹk,β )

ρ̃1(ỹk)
.

3.2 The full bridge problem
Since the solution of the Schrödinger problem is given in (2.7) by

π
∗(x,y) = ϕ̂0(x)p(y|x)ϕ1(y),

it is natural to parameterize in closed form only the functions ϕ̂0(x) and ϕ1(x).
As in the half-bridge problem, we guarantee the positivity of these two functions
directly through their parameterization ϕ̂0(x, β̂ ),ϕ1(y,β ), for instance writing them
as the exponential or square of some other real functions.

If ϕ̂1 were given, we would find the coefficients β defining ϕ1 by solving an
optimization problem entirely analogous to the half-bridge problem before:

β = argmaxL1 =
1
n ∑

j
log(ϕ1(y j,β ))−

∫
ϕ̂1(y)ϕ1(y,β )dy.

However, at every step in the algorithm, only ϕ̂0(x) is available in closed form; in
order to find ϕ̂1(y) we need to propagate the former through

ϕ̂1(y) =
∫

p(y|x)ϕ̂0(x, β̂ )dx.

Then ∫
ϕ̂1(y)ϕ1(y,β )dy =

∫ [∫
p(y|x)ϕ̂0(x, β̂ )dx

]
ϕ1(y,β )dy

=
∫ [∫

p(y|x)ϕ1(y,β )dy
]

ϕ̂0(x, β̂ )dx.

Since the inner integral equals ϕ0(x), and ϕ0(x)ϕ̂0(x) = ρ0(x), we can multiply and
divide by a sampleable estimator ρ̃0 of ρ0 with m̃ samples {x̃i}, and write∫

ϕ̂1(y)ϕ1(y,β )dy≈ 1
m̃ ∑

i

[∫
p(y|x̃i)ϕ1(y,β )dy

]
ϕ̂0(x̃i, β̂ )

ρ̃0(x̃i)
,

an estimation with zero variance at the exact solution if ρ̃0 = ρ0. Since the x̃i
are fixed throughout the algorithm, we can at little expense extract, for each i, n̂
samples ŷ j

i from the prior p(y|x̃i), and write the final estimator∫
ϕ̂1(y)ϕ1(y,β )dy≈ 1

m̃n̂ ∑
i, j

ϕ1(ŷ
j
i ,β )

ϕ̂0(x̃i, β̂ )

ρ̃0(x̃i)
,
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so the problem for β becomes

(3.3) β = argmax
1
n ∑

j
log(ϕ1(y j,β ))−

1
m̃n̂ ∑

i, j
ϕ1(ŷ

j
i ,β )

ϕ̂0(x̃i, β̂ )

ρ̃0(x̃i)
.

For the parameters β̂ , we have

β̂ = argmaxL0 =
1
m ∑

i
log
(

ϕ̂0(xi, β̂ )
)
−
∫

ϕ̂0(x, β̂ )ϕ0(x)dx,

where
ϕ0(x) =

∫
p(y|x)ϕ1(y,β )dy.

Then ∫
ϕ̂0(x, β̂ )ϕ0(x)dx =

∫ [∫
p(y|x)ϕ1(y,β )dy

]
ϕ̂0(x, β̂ )dx

≈ 1
m̃n̂ ∑

i, j
ϕ1(ŷ

j
i ,β )

ϕ̂0(x̃i, β̂ )

ρ̃0(x̃i)
.

(The fact that this is exactly the same estimation as for the integral
∫

ϕ̂1(y)ϕ1(y,β )dy
should not be entirely surprising, as both equal one and involve the same parame-
ters.) Finally,

(3.4) β̂ = argmax
1
m ∑

i
log
(

ϕ0(xi, β̂ )
)
− 1

m̃n̂ ∑
i, j

ϕ1(ŷ
j
i ,β )

ϕ̂0(x̃i, β̂ )

ρ̃0(x̃i)
.

3.3 The algorithm
Summarizing the results above, we have developed the following algorithm:
(1) Data: We are provided with m samples {xi} of ρ0(x), n samples

{
y j
}

of
ρ1(y), and a prior conditional probability density p(y|x). The latter needs
not be known in closed form, but one should be able to sample it for any
value of x (if the opposite is true, i.e. we know p(y|x) in closed form
but cannot sample it, an alternative algorithm presented below should be
applied.)

(2) Goal: To find the most likely joint distribution π(x,y) under the prior
p(y|x) consistent with the two marginals, and the corresponding posterior
p∗(y|x). When p(y|x) is the end result of the prior p(t1,x, t2,y) for a time
dependent process, we also seek the more detailed posterior p∗(t1,x, t2,y)
for this process, as well as the intermediate distributions ρt(z) for t ∈ [0,1].

(3) Preliminary work: Based on the samples {xi}, we need to produce a first
estimate ρ̃0 of ρ0(x) and m̃ independent samples {x̃i} drawn from it. More
specifically, we will need these m̃ samples and the values ρ̃0(x̃i) of ρ̃0 on
them. For instance, one can use the Gaussian kernel density estimator

ρ̃0(x) =
1
m ∑

i
G(x− xi),
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where G is an isotropic Gaussian with suitable bandwidth. In building
this estimate, we can use, in addition to the samples {xi}, any additional
prior information that we may have on ρ0(x). For instance, its support
may be known to be contained within some set Ω, typically not to include
unrealistic negative values of some components of x. One simple way to
address this particular case is to multiply the unconstrained estimator ρ̃0
by the characteristic function of Ω, reject any sample outside of Ω, and
normalize the resulting distribution through division by the factor

m̃+mr

m̃
,

where mr is the total number of rejections that occurred.
For each sample x̃i, we need to produce n̂ samples ŷ j

i drawn indepen-
dently from p(y|x̃i). For instance, if p is the result of a diffusive process
between t = 0 and t = 1, with drift u(x, t) and diffusivity ν(x, t), we would
simulate the stochastic process

dx = u(x, t)dt +ν(x, t)dW, x(0) = xi, y j
i = x(1).

If p(y|x) is known in closed form but is not easily sampled, one can pro-
pose another conditional probability q(y|x) not very far from p but sam-
pleable, and produce weighted samples y j

i from q(y|x̃i), with weights

w j
i =

p(y j
i |x̃i)

q(y j
i |x̃i)

,

to be included as extra factors under the second sum in problems (3.3) and
(3.4).

(4) Model selection and initialization: We need to propose a parametric fam-
ily of non-negative real functions ϕ(z,β ). Examples are

(3.5) ϕ(z,β ) = e∑k βkFk(z) and ϕ(z,β ) =

(
∑
k

βkFk(z)

)2

,

where the Fk are a given set of functions (monomials, Legendre functions,
sines and cosines, splines, etc.) In high dimensions, we may want to use
instead a low-rank tensor factorization as in [36, 61]. The final estimated
joint density will adopt the form

π(x,y) = ϕ(x, β̂ ) p(y|x) ϕ(y,β ),

and the estimated posterior conditional probability will be

P∗(y|x) = p(y|x) ϕ(y,β )∫
p(z|x) ϕ(z,β )dz

,
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where the integral in the denominator can be estimated for each desired
value of x by simulating p(z|x). In the notation above,

ϕ̂0(x) = ϕ(x, β̂ ) and ϕ1(y) = ϕ(y,β ).

We initialize the algorithm with an initial guess for β , such as the β

that yields the default ϕ1(y) = 1 (i.e. β = 0 when using the first of the
parametrizations in (3.5). This is typically easier than starting with a guess
for β̂ approximating the corresponding default ϕ̂0(x) = ρ0(x)). When us-
ing the quadratic parametrization in (3.5), we start with a choice of β̂ that,
depending on the chosen basis functions Fl , yields to the biggest effective
support of φ(x).

(5) Main loop: We alternate between the updates (3.4) for β̂ and (3.3) for β

iteratively until a convergence criterion is met. Some choices for the family
ϕ(z,β ), such as

ϕ(z,β ) = e∑k βkFk(z)

yield automatically convex optimization problems for β̂ and β . An addi-
tive decomposition of logϕ in a Reproducing Kernel Hilbert Space for the
purpose of obtaining statistical bounds and consistency was used in [34].

4 Numerical examples

This section illustrates the proposed methodology on two examples relevant
in applications: the interpolation of probability distributions, and a variation on
importance sampling in the context of Monte Carlo estimates of integrals.

4.1 Interpolation between two Gaussian mixtures
Figure 4.1 displays the two marginal distributions of a two dimensional numer-

ical example, where ρ0 and ρ1 are Gaussian mixtures given by

ρ0 =
1
3 ∑ [N (µ1,Σ1)+N (µ2,Σ2)+N (µ3,Σ3)]

ρ1 =
1
3
[N (µ4,Σ4)+N (µ5,Σ5)+N (µ6,Σ6)]

with parameters

(4.1) µ1 =

[
−2
1.5

]
,Σ1 =

[
0.2 0.1
0.1 0.4

]
,µ2 =

[
0.2
1.2

]
,Σ2 =

[
0.6 −0.4
−0.4 0.6

]
,

µ3 =

[
0.5
−1

]
,Σ3 =

[
0.5 0.4
0.4 0.7

]
,µ4 =

[
−1.8
1.1

]
,Σ4 =

[
0.3 0.1
0.1 0.3

]
,

µ5 =

[
−0.2
1.2

]
,Σ5 =

[
0.5 −0.3
−0.3 0.8

]
µ6 =

[
−0.5
0.9

]
,Σ6 =

[
0.6 0.2
0.2 0.6

]
.
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Figure 4.2 displays the interpolation between ρ0 and ρ1 obtained by computing
ρt(z) = ϕt(z)ϕ̂t(z) for each time t ∈ [0,1] at the data points z(t) obtained by inte-
grating the equation (2.26, 2.27) with γ = 2. In this example, both ϕ and ϕ̂ were
represented as the square of linear combinations of the first 10 Hermite functions.
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FIGURE 4.1. Initial and final probability density distribution from
which points xi and y j where sampled respectively. This is the only input
used by the algorithm.

4.2 A variation on importance sampling
The methodology of this article turns out to be particularly well suited to im-

prove Monte Carlo estimates of the quantity

(4.2) I =
∫

f (y)ρ1(y)dy,

when ρ1(y) is only known through n sample points drawn from it. It is known
that ordinary Monte Carlo estimates suffer of a slow convergence rate as a function
of n. Moreover, when the support of f is localized in regions where the value of
ρ1 is small, we may have very few points where f is substantially different from
zero. If ρ1 where known in closed form, we could remedy these problems through
importance sampling, whereby we would rewrite (4.2) in the form

I =
∫

f (y)ρ1(y)dy =
∫ f (y)ρ1(y)

µ(y)
µ(y)dy,

where µ(y) is a distribution easy to sample and such that f ρ1/µ has small vari-
ance (This variance can be made arbitrarily small when f has a definite sign. If
f is bounded, one can always achieve this by adding a constant to f .) One then
estimates I via Monte Carlo:

I ≈ 1
n

n

∑
i=1

f (zi)ρ1(zi)

µ(zi)
,



22 M. PAVON, E.G. TABAK, G. TRIGILA

where the zi are samples drawn independently from µ . Yet this procedure requires
the capacity to evaluate ρ1 at the given points. We are considering instead the
frequently occurring situation where ρ1 is only known through a fixed set of n
samples

{
y j
}

.
In this case, we propose to use the sample points

{
y j
}

to solve the Schrödinger
Bridge Problem between ρ1(y) and a distribution ρ0(x) of our choice. This allows
us to map arbitrary points in y-space to x-space. In particular, we can chose points
ỹ j that resolve f well, and use them to estimate the integral I through the following
steps:

(1) Sample points ỹ j from a distribution ρ f (y) spanning the support of f . A
simple choice is to draw them uniformly from the support of f if this is fi-
nite; another is to draw them form a sampleable estimate ρ f for | f |/(

∫
| f |dy).

The distribution ρ f must be chosen so that it can be both evaluated and
sampled from. In the example below, we have adopted points from a uni-
form grid spanning the effective support of f , i.e. an interval outside of
which | f | was comparable to machine error. This corresponds to adopting
a uniform ρ f on the support of f .

(2) Compute ϕ1 and ϕ̂0 solving the Schrödinger bridge between ρ1(y) and any
chosen distribution ρ0(x) through the procedure described in section 3.3.
The distribution ρ0 can be selected arbitrarily; in the examples below we
have used a standard Gaussian.

(3) For each point ỹ j obtained in the first step, one would like to sample
P(x|ỹ j). Since

P(x|y) = Pγ(x|y)
ϕ̂0(x)
ϕ̂1(y)

and
ϕ̂1(y) =

∫
Pγ(y|x)ϕ̂0(x)dx =

∫
Pγ(x|y)ϕ̂0(x)dx,

one draws Q samples Pγ(x|ỹ j) instead and assign to each such sample xl
j a

weight ql
j = Q

ϕ̂0(xl
j)

∑l ϕ̂0(xl
j)

.

(4) Perform a Gaussian mixture density estimation ν(x) of the distribution un-
derlying the points xl

j with weights ql
j ∗ρ0(xl

j) ∗ | f (ỹ j)|/ρ f (ỹ j). This can
be achieved through a modified EM algorithm that takes the weights into
account. By construction, once transferred back via the bridge to y-space,
ν will approximate | f |ρ1, as can be seen in expression (4.3) below. Then
sample N new points x̃i from ν .

(5) Now for each x̃i we would like to sample P(y|x̃i). Again, since

P(y|x) = Pγ(x|y)
ϕ1(y)
ϕ0(x)

,

and
ϕ0(x) =

∫
Pγ(y|x)ϕ1(y)dy,
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produce instead M samples yi
h from Pγ(y|x̃i) and assign to each such sample

a weight wi
h = Mϕ1(yi

h)/∑h ϕ1(yi
h).

The integral in (4.2) is then estimated through∫
f (y)ρ1(y)dy =

∫
f (y)

[∫
ρ0(x)P(y|x)dx

]
dy =

=
∫ ∫

f (y)
ρ0(x)P(y|x)

ν(x)
ν(x) dy dx≈ 1

NM ∑
i,h

wi
h f (yi

h)
ρ0(x̃i)

ν(x̃i)
.(4.3)

Hence we have used the Schrödinger bridge to transfer importance sampling from
y to the auxiliary x-space. Notice that, by construction, ν is roughly proportional
to | f | ∗ ρ0 and w is close to 1, so this estimate has small variance when f has a
definite sign.

In the numerical experiment in Figure 4.3, we chose ρ1 to be the equal weight
mixture of the three Gaussians: N (−1.4,0.82), N (2.2,0.42), N (0.2,0.12), and
f (y) a mixture of the two Gaussians N (−0.8,0.022), N (1,0.032), again with
equal weights. We compute the reference value IR for the integral I =

∫
f (y)ρ1(y)dy

using a uniform grid of step size h = 10−4 and compare, over 100 independent
evaluations of I, this value with plain MC estimates of I obtained with 1000 points
sampled from ρ1 and with our procedure. As it can be seen from Table 1, the
procedure described above gives a better estimates in terms of both the error with
respect the reference value and the uncertainty associated with the estimate. Since
in practice one has access only to one sample set of ρ1(y), not the 100 we have
displayed here, the relevant numbers to use to compare straightforward MC and
our bridge-based procedure is the mean square error

eMC =
1

100

√
∑

i

(
Ii
MC− IR

)2
= 0.0099228,

eS =
1

100

√
∑

i

(
Ii
S− IR

)2
= 0.0014489.

The fact that eS is more than 6 times smaller than eMC shows that the procedure
does indeed improve the estimation significantly, much as conventional importance
sampling does for distributions known in close form.

5 Conclusions

In this article, we have posed the sample-based Schrödinger Bridge Problem
and developed a methodology for its numerical solution. Characterizing the ini-
tial and final distributions of the bridge in terms of samples is well-suited for ap-
plications and also natural from a theoretical perspective, since what is a large-
deviation problem for a large but finite set of particles becomes a true impossibil-
ity as the number of particles grows unboundedly. One must distinguish though
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IR = 0.09894
IMC = 0.09941±0.0099117
IS = 0.09888±0.0014477

TABLE 4.1. IR indicates the reference value for I, IMC is the Monte
Carlo estimates of I and IS is the estimate of I obtained with the proce-
dure described above. IMC and IS are computed by averaging 100 runs
each one obtained using a N = 1000 sample points from ρ1(y). The error
is estimated by estimating the standard deviation over 100 runs.

between the sample-based formulation, where {xi} and
{

y j
}

are regarded as sam-
ples of underlying distributions ρ0 and ρ1, from the discrete Schrödinger prob-
lem, where the latter are replaced by the empirical distributions 1

m ∑
m
i=1 δ (x− xi)

and 1
n ∑

n
j=1 δ (y− y j). This article studies the former, finding the joint distribution

π∗(x,y) for all values of (x,y), not just the sample points, and characterizing the
intermediate distributions ρt(z) also for all z.

The methodology of this article mimics the iterative scheme developed for the
classical bridge problem, but replacing some of its key ingredients by data ana-
logues. Thus the boundary conditions at t = 0 and t = 1 are re-interpreted in a
maximum likelihood sense, thus giving rise to optimization problems, and the inte-
grals defining the propagation of the two factors of ρt are estimated via importance
sampling.

The data-based Schrödinger problem has a broad scope of applicability. Poten-
tial applications include the estimation of atmospheric winds and oceanic currents
from tracers, the solution of inverse diffusive problems, the reconstruction of the in-
termediate evolution of species between well-documented stages, and many more.
However, these applications require further development of the procedure. In par-
ticular, they require the ability to sample from the transition probability associated
to the backward prior process. Even though this is straightforward when the prior is
the Wiener process, many applications require more general priors, which require
an extension of the presented methodology, currently under development. Since
this article is concerned with the development of a general methodology, we have
not dwelled into any application in particular, but just illustrated the procedure with
two relatively simple examples.

Appendix

Acknowledgment.
M.P. would like to thank the Courant Institute of Mathematical Sciences of the

New York University for the hospitality during the time this research was carried
out. Tabak’s work was partially supported by NSF grant DMS-1715753 and ONR
grant N00014-15-1-2355.



THE DATA-DRIVEN SCHRÖDINGER BRIDGE 25
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Wärmegleichgewicht. Wiener Berichte 76 (1877), 373–435. Reprinted in F. Hasenoehrl (ed.):
Wissenschaftliche Abhandlungen. Leipzig: J. A. Barth 1909, 2, 164–223.

[9] Burg, J.P. Maximum entropy spectral analysis. In 37th Annual International Meeting Soc. of
Explor. Geophys., Oklahoma City, Okla., Oct. 31, 1967, 1967. Reprinted in Modern Spectru-
mAnalysis, D. G. Childers, Ed. New York: IEEE Press, 34–41, 1978.

[10] Burg, J.P., Luenberger, D.G., and Wenger, D.L. Estimation of structured covariance matrices.
Proceedings of the IEEE, 70(9) (1982), 963–974.
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[44] Li, W., Yin, P., and Osher, S. Computations of optimal transport distance with Fisher informa-
tion regularization. Journal of Scientific Computing, 75(3) (2018), 1581–1595.

[45] Galichon, A., and Salanie, B. Matching with Trade-offs: Revealed Preferences over Competing
Characteristics. 2010, Working Papers hal-00473173, HAL.

[46] Gonzalo, M., and Niles-Weed, J. Statistical bounds for entropic optimal transport: sample com-
plexity and the central limit theorem. In Advances in Neural Information Processing Systems.,
(2019), 4541–4551.

[47] Mikami, T. Monge problem with a quadratic cost by the zero-noise limit of h-path processes.
Probability theory and related fields, 129(2), (2004) 245–260.

[48] Mikami T., and Thieullen, M. Duality theorem for the stochastic optimal control problem. Sto-
chastic processes and their applications, 116(12) (2006), 1815–1835.

[49] Mikami T., and Thieullen, M. Optimal transportation problem by stochastic optimal control.
SIAM Journal on Control and Optimization, 47(3) (2008), 1127–1139.

[50] Nelson, E. Dynamical theories of Brownian motion. Princeton university press, 1967.
[51] Pavon, M., and Ticozzi, F. Discrete-time classical and quantum markovian evolutions: Maxi-

mum entropy problems on path space. Journal of Mathematical Physics, 51(4) (2010), 042104.
[52] Pavon, M., and Wakolbinger, A. On free energy, stochastic control, and Schrödinger processes.

In Modeling, Estimation and Control of Systems with Uncertainty, (1991) 334–348. Birkhäuser.
[53] Pavon, M., Tabak E.G., and Trigila, G. The data-driven Schrödinger bridge. ArXiv e-prints,

arXiv: 1806.01364.
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FIGURE 4.2. Interpolation between ρ0 and ρ1. Each image is obtained
by interpolating ρt(z) on the points z(t) representing the solution of
(2.26, 2.27). Both ϕ and ϕ̂ were represented as the square of linear
combinations of the first 10 Hermite functions.
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FIGURE 4.3. Left panel: The density ρ1(y) is plotted in blue while the
function f (y) is plotted in red. Notice that the support of f (y) is substan-
tially different from zero where the two local minima of ρ1 are placed.
The green points y j, appearing one the x axis are points on a regular grid
that were selected based on the value of f being bigger than a certain
threshold. Right panel: estimates of I for 100 different sample sets from
ρ1 each one containing 1000 points. Results from the bridge-based pro-
cedure are in blue and from the plain MC simulation in red. The solid
black line represents the true value of I.


