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1. Introduction

The change of sign of the Coriolis force in the Equator produces an effective
waveguide for a large class of long atmospheric waves. Among these waves,
the longest and slowest are the nondispersive Kelvin and the dispersive Rossby
and Yanai —or mixed Rossby-gravity— waves. These waves, which have been
observed in the troposphere and lower stratosphere, are believed to play a sig-
nificant role in the dynamics of the tropical atmosphere.

The most prominent waves observed are very long Kelvin waves [2], with
wavenumbers [ = 1 and [ = 2 —i.e. inverse wavelength equal to the whole and
a half of the circumference of the Earth— and Yanai waves [8] with [ = 4. It
has been proposed in [9] that these waves force the stratosphere from below,
contributing to generate the quasi-biennial oscillation of the mean wind in the
tropical middle atmosphere. The occurrence and persistence of these waves

raise a number of important questions:

a) Why are these particular waves selected?

b) Why do they not dissipate away? The Kelvin wave, in particular, should
rapidly generate shocks, which dissipate energy very efficiently [5]. In addition,
one would expect a significant amount of energy transfer to shorter waves, par-
ticularly to other Kelvin, Yanai and Rossby modes, and to the faster Poincaré

waves.
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¢) Do these various waves interact nonlinearly? And do they feel the equatorial

topography and the distribution of land and sea?

In this work, we present a reduced model which sheds light on these ques-
tions. A more thorough description of this model together with various geophys-
ical applications can be found in [4]. In its simplest version, the model has only
two waves: an [ = 1 Kelvin and an [ = 4 Yanai, interacting through the [ =5
mode of the topography, which roughly corresponds to the distribution of the
continents. However, the model can be straightforwardly extended to include
a larger set of very long waves, which realistically should probably include at
least two Kelvin modes (I = 1 and 2) and about four Yanai and Rossby modes.

For clarity, we present the model in the simplest possible scenario of the
(-plane one-layer shallow-water equations with topography and no mean flow,
where the dependent variables are required to be bounded as y — +oo. All
these simplifying hypothesis can be relaxed, however, in order to build a more
realistic model. We are presently extending the model to deal with more general
vertically stratified flows, with a mean zonal wind component, with full plane-
tary scales, and with waves interacting through a more general “topography”,
such as the one provided by convection. In addition, various applications of
the model are being pursued, particularly to the Madden-Julian oscillation of
tropical cloud clusters and to El Nino Southern Oscillation of the surface sea t
emperature.

In our reduced model, the non linear interaction between Kelvin and Yanai
waves through the topography is described by two coupled differential equations.
The equation describing the evolution of the Kelvin wave is an inviscid Burgers
equation forced by the Yanai wave, and the evolution of the latter is described
by an ordinary differential equation forced by just one Fourier mode of the

Kelvin wave. After scaling, the equations take the canonical form

1 . _ .
K.+ (51&”2) = Y(T)ew + Y(T)e_w
9

Y, = —K(1),
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where K(0,7) and Y(7) are the amplitudes of the Kelvin and the [ = 4 Yanai
wave respectively. The independent variables are § = (x—ct), where & measures
length in the zonal direction, ¢ is time and ¢ is the speed of a linear Kelvin wave,
and 7 = €t, a slow time variable scaled by €, a measure of the strength of the
nonlinearity. The reason why only the [ = 1 mode of K appears in the second
equation, is that this is the only mode which interacts with the topography to

generate a Yanai wave, the [ = 4 Yanai mode represented by Y.

This reduced model has a conserved energy, and a shock-free traveling wave
solution for K" with a corner, dominated by the [ = 1 mode. Moreover, numerical
experiments show that most big enough initial data converge to a shock-free
wave close to this traveling solution. Thus the reduced model provides a simple
explanation for questions a, b and ¢ above: the [ = 1 Kelvin and the [ = 4 Yanai
wave are observed because, interacting nonlinearly through the topography,
they avoid shock formation, the main dissipative mechanism for Kelvin waves.
A Kelvin wave with any initial shape generates the [ = 4 Yanai, and this in turn
feeds the [ = 1 mode of the Kelvin. For a range of vertical scales comparable
to the observations, no other Yanai or Rossby modes are generated nonlinearly.
Fast Poincaré waves may be generated initially by large gradients in the Kelvin
wave but, once this reaches its shock-free final state, such generation of fast

waves is highly reduced.

Phenomena very similar to those described in this report have been found
in purely hyperbolic systems, particularly in gas dynamics [3] [1] [6] [10]. In
this latter context, the role of the topography is played by a variable entropy,
which acts as a bridge for energy exchange between right and left-going sound

waves.

2. The Reduced Model

We start with the non-dimensionalized equations for long waves in a single layer

of fluid of constant density in the equatorial waveguide:
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ne+[(1+n—hul, +[(1+n—h)v], = 0 (1)
U+ uty +vuy + 1, —yv = 0 (2)
vy + uvg +ovy + 0y Fyu = 0, (3)

where the total depth of the fluid is given by

2
5(1 +n—h).

Here ¢ is the characteristic speed of the linear waves, ¢ is the acceleration of

gravity, n is the non-dimensional perturbation of the free surface, and & the

non-dimensional bottom topography. The z and y velocities u and v are non-

dimensionalized by the characteristic speed ¢, and the spatial variables by the

L:ﬁ,

where 3 is the linear variation of the Coriolis parameter with latitude, given by

scale

2Q
5=
Here Q) = % is the angular velocity of the Earth, and R = 6378 km its radius.
The time-scale T' is given by
="
c

We shall propose an ansatz for the solution to (1,2,3) in which the dependent
variables 1, u and v and the topography h are all small and of the same order
of magnitude e.

There are two classes of solutions to the linearization of the equations above:
a nondispersive Kelvin wave and an infinite set of dispersive waves, the Rossby,
Yanai and Poincaré waves. The Kelvin wave is given by

y2

n = Kx—t)e 2 (4)

S
SE
S
Ot
N

u = K(z—1t)e
v = 0, (6)
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where K is an arbitrary function. The dispersive waves have the general form

0= (o) g )| e ™
R R kaH’H] (et 5
v o= iHn(y)ei(m_m)e_y;, (9)

where H,(y) is the Hermite polynomial of order n, and w = W (k) satisfies the

dispersion relation

(w+k)(w? —kw—1)

w

—2n + =0. (10)

The solutions with positive w to this cubic equation are displayed in figure
1. The case with n = 0 has only two solutions, corresponding to the Yanai
(or mixed Rossby-gravity) wave. The third solution (w = —k) to the cubic is
spurious; it corresponds to a solution that grows exponentially away from the
Equator. For n > 1, the solutions are one Rossby and two Poincaré waves,

characterized respectively by the inequalities

1+2
w? < +2n— n(n+1)
and
142
wi > —|—2n+ n(n 4+ 1).

Notice that there is a wide scale separation between the Rossby and the Poincaré
waves.

We shall concentrate on very long waves, with inverse wavelength compara-
ble to the circumference of the Earth P = 40000 km. In order to see what this
means for the wavenumbers k, we need to express P in the spatial unit of our
nondimensionalization, i.e. L, which depends on the characteristic speed c.

A Kelvin wave K (x — t), for instance, can be written as a Fourier series

o0

l’—t Z zozlxt

=1
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where o = %. A wave with [ = 1, i.e., with period equal to the circumference
of the Earth, has a wavenumber k& = «, and all other wavenumbers are integer

multiples of this. Similarly, each mode D; of the dispersive waves has the form
D(x,t)=D; glli)e—wst \

where j is an integer and w; = W(ja). The actual value of o depends on the
vertical structure of the waves under consideration. Throughout this communi-
cation, we shall choose a value of ¢ = 187 m /s, with corresponding L = 3000 km,
T =4 h 15 min and o = 0.45. Other realistic values for ¢ can be found in Ta-
ble 1 of [4]. The main effect of ¢ on this model is to select sets of resonant waves.
In [4] , we show how different choices affect this selection, without changing,
however, the qualitative properties of the resulting model. Notice that the grid
underlying the dispersion relation in figure 1 has been drawn using this value
of a = 0.45 as a grid-size.

As a Kelvin wave interacts with the topography, it can generate other waves
through three-mode resonance. If we denote by kg, kr and £* the wavenumbers
of the Kelvin wave, the topography and the dispersive wave, the conditions for

resonarce are

ki +kr = K (11)
ke = wt=W(k), (12)

where we have used the facts that for the Kelvin wave w = k, and that the
topography is time-independent. Since all the wavenumbers have to be multiples
of @ = 0.45, only a discrete set of resonances can take place. In particular, since
the Kelvin wave cannot have a positive wavenumber kz smaller than o = 0.45,
we conclude from inspection of the dispersion relation in figure 1 that no Rossby
waves can result from the interaction of a Kelvin wave with topography, and
the only wave that can be generated by the first two modes of a Kelvin wave
is the £ = —1.8 (I = —4) Yanai mode, generated by the [ = 1 Kelvin wave and
the [ = 5 mode of the topography.
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Based on the argument above, we shall propose an ansatz with only two
waves, a Kelvin wave and a Yanai mode with [ = —4. The corresponding

asymptotic expansion is carried out in [4]. The resulting equations are

1 . _ .
KT—|—<§K2) = Y(r)e 4 V() (13)
4
Y, = —K(1,7) (14)

where K(0,7) and Y (7) stand for the Kelvin wave and the [ = —4 mode of
Yanai respectively, § = (v — ct)/P represents the linear phase of the Kelvin
wave, normalized so that it has period 27, and 7 = ¢t represents the slow
nonlinear time. The dependent variables K and Y and the slow time 7 have
been further rescaled so as to normalize to one the coefficients of the nonlinear
interaction on the right-hand side, which depend on the projection of the (zonal)
mode [ = 5 of the topography on the (longitudinal) first Hermite polynomial.
Equation (13) for the evolution of the Kelvin wave is a Hopf —or inviscid
Burgers— equation, forced on the right-hand side by the interaction of the Yanai
wave with the topography. Equation (14), on the other hand, is an ordinary
differential equation for the evolution of the Yanai wave, forced by the inter-
action of the Kelvin wave with the topography. This system of equations has

very distinctive properties, some of which are treated below.

3. Properties of the Model

The equations (13, 14) have two main conserved quantities, the mean of K and

the total energy, which take the form
L w0, 7y a0
Bl < — 1
& Krya0 =0 (15)

and

d 2r |2
L onyp / 20 = |
(e [T 0] —o (16)

respectively. The energy, however, is only conserved while the solution remains
smooth; when there are shocks, it decays at a rate proportional to the cube of

the shock strength.
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Equations (13) and (14) have a family of exact solutions where K" is a trav-

eling wave of the form

K(0,7)=F(0— sT)

where

F(Z):S:EQ\/—%\/C—I-COS(Z). (17)

Here C' is a constant of integration, and s, the nonlinear correction to the Kelvin
wave speed, is a function of . Notice that, if C' is strictly larger than one, the
solution is smooth but, when €' = 1, it develops a corner. In the latter case,

the solution is

N

F(z)=s+2 —Zﬂ|cos(z/2), (18)

4 12
5= :F—Jj’\’ 1.04.
Ty 3

Thus the wave with a downward peak moves more slowly than a linear Kelvin

with

wave, and the one with the upward peak moves faster. The total energy corre-

sponding to this exact solution is readily computed; its value is

We may wonder about the significance of these traveling wave solutions:
do they act as attractors for a large enough set of initial data? Next we shall
address this question through a numerical experiment; more experiments can
be found in [4].

Solving numerically equations (13,14) is a relatively straightforward task.

We have used a fractional step procedure, solving in one step the Hopf equation

K’
K, + (‘—) —0
2 4

and in the other the system of integro—differential equations

K., = Y(T)ew—I-Y(T)e_M

Y, = K(L,7).
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For the Hopf equation, we use a second order Godunov method (we need a
conservative algorithm, since there is an initial development of shocks), and we
solve the system of integro—differential equations with a second order Runge-
Kutta method coupled with a Fast Fourier Transform. Finally, we put the two
fractional steps together using the second order procedure due to Strang [7].

We would like to point out that the reduction of complexity in going from
the full system (1,2,3) to the reduced model (13,14) is so big, that we were
able to program the model in the interpreter language Matlab, with a typical
run taking only a few minutes (such runs represent, though in a very idealized
sense, a few years of long wave propagation in the equatorial waveguide.) Next
we present the results of a typical experiment.

This experiment illustrates quite dramatically the “attractive” nature of the
traveling wave solution (18). Figure 2 shows the initial value of K, given by a

randomly chosen periodic function; in this case,
K(0,0) = 0.5(3cos(f) + sin(20) — sin(40)) ;
the initial value assigned to Y'(0) is
Y(0) =0.5(141).

The total energy of this solution is £ = 7.5, larger than the threshold value
1.5, so we should expect fast initial decay (the solution with a corner has the
largest energy among traveling waves, and probably among all unsteady but
energy—preserving solutions too.) In figure 3, we see the solution K at 7 = 0.5,
with a freshly created strong shock. By the time 7 = 5, displayed in figure 4,
most of the extra energy of the initial data has dissipated at this shock, which
has also eliminated all but the longest modes of the solution. Finally, by the
time 7 ~ 50 of figure 5, we have reached a steady state. Surprisingly, this state
agrees nearly exactly with the exact traveling wave with a corner (18), which
is also displayed. Figure 6 shows the time evolution of the real and imaginary
part of Y(7), the amplitude of the Yanai wave. Notice that, since the speed s

of the traveling Kelvin wave is close to one, and this equals the frequency of the
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Yanai wave, the period of oscillation of the latter is close to 27. Finally, figure
7 has the total energy as a function of time, showing the fast initial dissipation,
followed by stabilization at nearly the exact critical energy corresponding to the
wave with a sharp corner.

This numerical experiment thus illustrates what we have found to be a gen-
eral fact: nearly all initial data with large enough energy converge very rapidly
to the traveling wave solution with a corner (18), through the dissipation of
their extra energy at shocks (the exceptions are highly symmetric initial data,
with a symmetry that inhibits any preference for left or right-going waves.) A
mathematical description of this observed behavior, and the only slightly more
complicated one for initial data which are not sufficiently energetic (here the
final solution is quasi-periodic), is a challenging problem in the theory of par-
tial differential equations and dynamical systems. Similar behavior for waves

in gases has been reported in ([6]).

Fig. 1
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Fig. 2

Fig. 3
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Fig. 4

Fig. 5
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Fig. 6

Fig. 7



296 C. V. TURNER E. G. TABAK R. R. ROSALES A.J MAJDA

References

[1] Celentano, C.,Finite Amplitude Resonant Acoustic Waves Without Shocks,
Ph. D. Thesis, M.L.T., (1995).

[2] Kousky, W., Observational evidence of Kelvin waves in the tropical strato-

sphere, J. Atmos. Sci. 25, (1968), 900-907.

[3] Majda, A. J., Rosales, R. R. and Schonbek, M., A canonical system of inte-
grodifferential equations arising in resonant nonlinear acoustics, Studies

Appl. Math. 79 (1988), 205-262.

[4] Majda, A. J., Rosales, R. R., Tabak, E. G., Turner, C. V., Interaction
of large scale Fquatorial waves and dispersion of Kelvin waves through

topographic resonances, Submitted to J. Atmos. Sci.

[5] Ripa, P., On the theory of non linear wave-wave interactions among geo-

physical waves, J. Fluid Mech. 103 (1981), 87-115.

[6] Shefter, M., Never Breaking Quasi-Periodic Solutions of Weakly Nonlinear
Gas Dynamics, Ph. D. Thesis, M.L.T., (1997).

[7] Strang, G., On the Construction and Comparison of Difference Schemes,
SIAM J. Num. Anal., 5 (1968), 506-517.

[8] Maruyama, Y., Stratospheric wave disturbances propagating over the equa-

torial Pacific, J. Meteorol. Soc. Jpn. 44 (1966), 291-294.

[9] Yoden, S. and Holton, J. R., A new look at Fquatorial Quasi-Biennial Os-
cillation Models, J. Atmos. Sci. 45 (1988), 2703-2717.

[10] Vaynblat, D., The Strongly Attracting Character of Large Amplitude Non-
linear Resonant Acoustic Waves Without Shocks. A Numerical Study, Ph.
D. Thesis, M.I.T., (1996).



NON LINEAR INTERACTION BETWEEN LONG WAVES 297

Andrew Majda
Courant Institute of Mathematical Sciences

New York, USA

Esteban Tabak
Courant Institute of Mathematical Sciences

New York, USA

Cristina Turner
FAMA - UNC
Cordoba, Argentina

Ruben Rosales
MIT
Cambridge, USA



