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�� Introduction

The change of sign of the Coriolis force in the Equator produces an e�ective

waveguide for a large class of long atmospheric waves� Among these waves�

the longest and slowest are the nondispersive Kelvin and the dispersive Rossby

and Yanai �or mixed Rossby�gravity� waves� These waves� which have been

observed in the troposphere and lower stratosphere� are believed to play a sig�

ni�cant role in the dynamics of the tropical atmosphere�

The most prominent waves observed are very long Kelvin waves ���� with

wavenumbers l 	 
 and l 	 � �i�e� inverse wavelength equal to the whole and

a half of the circumference of the Earth� and Yanai waves ��� with l 	 �� It

has been proposed in �
� that these waves force the stratosphere from below�

contributing to generate the quasi�biennial oscillation of the mean wind in the

tropical middle atmosphere� The occurrence and persistence of these waves

raise a number of important questions�

a� Why are these particular waves selected�

b� Why do they not dissipate away� The Kelvin wave� in particular� should

rapidly generate shocks� which dissipate energy very e�ciently ���� In addition�

one would expect a signi�cant amount of energy transfer to shorter waves� par�

ticularly to other Kelvin� Yanai and Rossby modes� and to the faster Poincar�e

waves�
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c� Do these various waves interact nonlinearly� And do they feel the equatorial

topography and the distribution of land and sea�

In this work� we present a reduced model which sheds light on these ques�

tions� A more thorough description of this model together with various geophys�

ical applications can be found in ���� In its simplest version� the model has only

two waves� an l 	 
 Kelvin and an l 	 � Yanai� interacting through the l 	 �

mode of the topography� which roughly corresponds to the distribution of the

continents� However� the model can be straightforwardly extended to include

a larger set of very long waves� which realistically should probably include at

least two Kelvin modes �l 	 
 and �� and about four Yanai and Rossby modes�

For clarity� we present the model in the simplest possible scenario of the

��plane one�layer shallow�water equations with topography and no mean �ow�

where the dependent variables are required to be bounded as y � ��� All

these simplifying hypothesis can be relaxed� however� in order to build a more

realistic model� We are presently extending the model to deal with more general

vertically strati�ed �ows� with a mean zonal wind component� with full plane�

tary scales� and with waves interacting through a more general �topography��

such as the one provided by convection� In addition� various applications of

the model are being pursued� particularly to the Madden�Julian oscillation of

tropical cloud clusters and to El Ni�no Southern Oscillation of the surface sea t

emperature�

In our reduced model� the non linear interaction between Kelvin and Yanai

waves through the topography is described by two coupled di�erential equations�

The equation describing the evolution of the Kelvin wave is an inviscid Burgers

equation forced by the Yanai wave� and the evolution of the latter is described

by an ordinary di�erential equation forced by just one Fourier mode of the

Kelvin wave� After scaling� the equations take the canonical form

K� �
�



�
K�

�
�

	 Y �� �ei� � �Y �� �e�i�

Y� 	 � �K�
� �
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where K��� � � and Y �� � are the amplitudes of the Kelvin and the l 	 � Yanai

wave respectively� The independent variables are � 	 �x�ct�� where xmeasures

length in the zonal direction� t is time and c is the speed of a linear Kelvin wave�

and � 	 �t� a slow time variable scaled by �� a measure of the strength of the

nonlinearity� The reason why only the l 	 
 mode of K appears in the second

equation� is that this is the only mode which interacts with the topography to

generate a Yanai wave� the l 	 � Yanai mode represented by Y �

This reduced model has a conserved energy� and a shock�free traveling wave

solution forK with a corner� dominated by the l 	 
 mode� Moreover� numerical

experiments show that most big enough initial data converge to a shock�free

wave close to this traveling solution� Thus the reduced model provides a simple

explanation for questions a� b and c above� the l 	 
 Kelvin and the l 	 � Yanai

wave are observed because� interacting nonlinearly through the topography�

they avoid shock formation� the main dissipative mechanism for Kelvin waves�

A Kelvin wave with any initial shape generates the l 	 � Yanai� and this in turn

feeds the l 	 
 mode of the Kelvin� For a range of vertical scales comparable

to the observations� no other Yanai or Rossby modes are generated nonlinearly�

Fast Poincar�e waves may be generated initially by large gradients in the Kelvin

wave but� once this reaches its shock�free �nal state� such generation of fast

waves is highly reduced�

Phenomena very similar to those described in this report have been found

in purely hyperbolic systems� particularly in gas dynamics ��� �
� ��� �
��� In

this latter context� the role of the topography is played by a variable entropy�

which acts as a bridge for energy exchange between right and left�going sound

waves�

�� The Reduced Model

We start with the non�dimensionalized equations for long waves in a single layer

of �uid of constant density in the equatorial waveguide�



��� C� V� TURNER E� G� TABAK R� R� ROSALES A� J� MAJDA

�t � ��
 � � � h�u�x � ��
 � � � h�v�y 	 � �
�

ut � uux � vuy � �x � yv 	 � ���

vt � uvx � vvy � �y � yu 	 �� ���

where the total depth of the �uid is given by

c�

g
�
 � � � h��

Here c is the characteristic speed of the linear waves� g is the acceleration of

gravity� � is the non�dimensional perturbation of the free surface� and h the

non�dimensional bottom topography� The x and y velocities u and v are non�

dimensionalized by the characteristic speed c� and the spatial variables by the

scale

L 	

s
c

�
�

where � is the linear variation of the Coriolis parameter with latitude� given by

� 	
��

R
�

Here � 	 ��
��hs

is the angular velocity of the Earth� and R 	 �� � km its radius�

The time�scale T is given by

T 	
L

c
�

We shall propose an ansatz for the solution to �
����� in which the dependent

variables �� u and v and the topography h are all small and of the same order

of magnitude ��

There are two classes of solutions to the linearization of the equations above�

a nondispersive Kelvin wave and an in�nite set of dispersive waves� the Rossby�

Yanai and Poincar�e waves� The Kelvin wave is given by

� 	 K�x� t�e�
y�

� ���

u 	 K�x� t�e�
y�

� ���

v 	 �� ���
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where K is an arbitrary function� The dispersive waves have the general form

� 	
�

y

k � �
Hn�y� �

�

�� � k�
H �

n�y�
�
ei�kx��t�e�

y�

� � �

u 	

�
y

k � �
Hn�y� �

k

�� � k�
H �

n�y�

�
ei�kx��t�e�

y�

� ���

v 	 iHn�y�e
i�kx��t�e�

y�

� � �
�

where Hn�y� is the Hermite polynomial of order n� and � 	 W �k� satis�es the

dispersion relation

��n �
�� � k� ��� � k� � 
�

�
	 �� �
��

The solutions with positive � to this cubic equation are displayed in �gure


� The case with n 	 � has only two solutions� corresponding to the Yanai

�or mixed Rossby�gravity� wave� The third solution �� 	 �k� to the cubic is

spurious! it corresponds to a solution that grows exponentially away from the

Equator� For n � 
� the solutions are one Rossby and two Poincar�e waves�

characterized respectively by the inequalities

�� �

 � �n

�
�
q
n�n� 
�

and

�� �

 � �n

�
�
q
n�n � 
��

Notice that there is a wide scale separation between the Rossby and the Poincar�e

waves�

We shall concentrate on very long waves� with inverse wavelength compara�

ble to the circumference of the Earth P 	 ����� km� In order to see what this

means for the wavenumbers k� we need to express P in the spatial unit of our

nondimensionalization� i�e� L� which depends on the characteristic speed c�

A Kelvin wave K�x� t�� for instance� can be written as a Fourier series

K�x� t� 	
�X
l��

�K�l�ei�l�x�t��
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where � 	 ��L
P

� A wave with l 	 
� i�e�� with period equal to the circumference

of the Earth� has a wavenumber k 	 �� and all other wavenumbers are integer

multiples of this� Similarly� each mode Dj of the dispersive waves has the form

D�x� t� 	 Dj e
i�j��x��jt �

where j is an integer and �j 	 W �j��� The actual value of � depends on the

vertical structure of the waves under consideration� Throughout this communi�

cation� we shall choose a value of c 	 
� m"s� with corresponding L 	 ���� km�

T 	 � h 
� min and � 	 ����� Other realistic values for c can be found in Ta�

ble 
 of ���� The main e�ect of c on this model is to select sets of resonant waves�

In ��� � we show how di�erent choices a�ect this selection� without changing�

however� the qualitative properties of the resulting model� Notice that the grid

underlying the dispersion relation in �gure 
 has been drawn using this value

of � 	 ���� as a grid�size�

As a Kelvin wave interacts with the topography� it can generate other waves

through three�mode resonance� If we denote by kK � kT and k� the wavenumbers

of the Kelvin wave� the topography and the dispersive wave� the conditions for

resonance are

kK � kT 	 k� �

�

kK 	 �� 	 W �k��� �
��

where we have used the facts that for the Kelvin wave � 	 k� and that the

topography is time�independent� Since all the wavenumbers have to be multiples

of � 	 ����� only a discrete set of resonances can take place� In particular� since

the Kelvin wave cannot have a positive wavenumber kK smaller than � 	 �����

we conclude from inspection of the dispersion relation in �gure 
 that no Rossby

waves can result from the interaction of a Kelvin wave with topography� and

the only wave that can be generated by the �rst two modes of a Kelvin wave

is the k 	 �
�� �l 	 ��� Yanai mode� generated by the l 	 
 Kelvin wave and

the l 	 � mode of the topography�
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Based on the argument above� we shall propose an ansatz with only two

waves� a Kelvin wave and a Yanai mode with l 	 ��� The corresponding

asymptotic expansion is carried out in ���� The resulting equations are

K� �
�



�
K�

�
�

	 Y �� �ei� � �Y �� �e�i� �
��

Y� 	 � �K�
� � � �
��

where K��� � � and Y �� � stand for the Kelvin wave and the l 	 �� mode of

Yanai respectively� � 	 �x � ct�	P represents the linear phase of the Kelvin

wave� normalized so that it has period �
� and � 	 �t represents the slow

nonlinear time� The dependent variables K and Y and the slow time � have

been further rescaled so as to normalize to one the coe�cients of the nonlinear

interaction on the right�hand side� which depend on the projection of the �zonal�

mode l 	 � of the topography on the �longitudinal� �rst Hermite polynomial�

Equation �
�� for the evolution of the Kelvin wave is a Hopf #or inviscid

Burgers# equation� forced on the right�hand side by the interaction of the Yanai

wave with the topography� Equation �
��� on the other hand� is an ordinary

di�erential equation for the evolution of the Yanai wave� forced by the inter�

action of the Kelvin wave with the topography� This system of equations has

very distinctive properties� some of which are treated below�

�� Properties of the Model

The equations �
�� 
�� have two main conserved quantities� the mean of K and

the total energy� which take the form

d

dt

Z ��

�
K��� � � d� 	 � �
��

and
d

dt

�
�
jY j� �

Z ��

�

K�

�
d�

�
	 � �
��

respectively� The energy� however� is only conserved while the solution remains

smooth! when there are shocks� it decays at a rate proportional to the cube of

the shock strength�



�
� C� V� TURNER E� G� TABAK R� R� ROSALES A� J� MAJDA

Equations �
�� and �
�� have a family of exact solutions where K is a trav�

eling wave of the form

K��� � � 	 F ��� s� �

where

F �z� 	 s� �

s
�

�F�

s

q
C � cos�z�� �
 �

Here C is a constant of integration� and s� the nonlinear correction to the Kelvin

wave speed� is a function of C� Notice that� if C is strictly larger than one� the

solution is smooth but� when C 	 
� it develops a corner� In the latter case�

the solution is

F �z� 	 s� �

s
�
� �F�

s
j cos�z	��� �
��

with

s 	 �
�




s
�

�
� 
��� �

Thus the wave with a downward peak moves more slowly than a linear Kelvin

wave� and the one with the upward peak moves faster� The total energy corre�

sponding to this exact solution is readily computed! its value is

E 	

�




�

��

�

� 
�� �

We may wonder about the signi�cance of these traveling wave solutions�

do they act as attractors for a large enough set of initial data� Next we shall

address this question through a numerical experiment! more experiments can

be found in ����

Solving numerically equations �
��
�� is a relatively straightforward task�

We have used a fractional step procedure� solving in one step the Hopf equation

K� �

�
K�

�

�
�

	 �

and in the other the system of integro#di�erential equations

K� 	 Y �� �ei� � �Y �� �e�i�

Y� 	 �K�
� � � �
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For the Hopf equation� we use a second order Godunov method �we need a

conservative algorithm� since there is an initial development of shocks�� and we

solve the system of integro#di�erential equations with a second order Runge�

Kutta method coupled with a Fast Fourier Transform� Finally� we put the two

fractional steps together using the second order procedure due to Strang � ��

We would like to point out that the reduction of complexity in going from

the full system �
����� to the reduced model �
��
�� is so big� that we were

able to program the model in the interpreter language Matlab� with a typical

run taking only a few minutes �such runs represent� though in a very idealized

sense� a few years of long wave propagation in the equatorial waveguide�� Next

we present the results of a typical experiment�

This experiment illustrates quite dramatically the �attractive� nature of the

traveling wave solution �
��� Figure � shows the initial value of K� given by a

randomly chosen periodic function! in this case�

K��� �� 	 ��� �� cos��� � sin���� � sin����� !

the initial value assigned to Y ��� is

Y ��� 	 ����
 � i� �

The total energy of this solution is E 	  ��� larger than the threshold value


��� so we should expect fast initial decay �the solution with a corner has the

largest energy among traveling waves� and probably among all unsteady but

energy#preserving solutions too�� In �gure �� we see the solution K at � 	 ����

with a freshly created strong shock� By the time � 	 �� displayed in �gure ��

most of the extra energy of the initial data has dissipated at this shock� which

has also eliminated all but the longest modes of the solution� Finally� by the

time � � �� of �gure �� we have reached a steady state� Surprisingly� this state

agrees nearly exactly with the exact traveling wave with a corner �
��� which

is also displayed� Figure � shows the time evolution of the real and imaginary

part of Y �� �� the amplitude of the Yanai wave� Notice that� since the speed s

of the traveling Kelvin wave is close to one� and this equals the frequency of the
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Yanai wave� the period of oscillation of the latter is close to �
� Finally� �gure

 has the total energy as a function of time� showing the fast initial dissipation�

followed by stabilization at nearly the exact critical energy corresponding to the

wave with a sharp corner�

This numerical experiment thus illustrates what we have found to be a gen�

eral fact� nearly all initial data with large enough energy converge very rapidly

to the traveling wave solution with a corner �
��� through the dissipation of

their extra energy at shocks �the exceptions are highly symmetric initial data�

with a symmetry that inhibits any preference for left or right�going waves�� A

mathematical description of this observed behavior� and the only slightly more

complicated one for initial data which are not su�ciently energetic �here the

�nal solution is quasi�periodic�� is a challenging problem in the theory of par�

tial di�erential equations and dynamical systems� Similar behavior for waves

in gases has been reported in ������

Fig� �
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