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Abstract

A new method is proposed for the solution of the data-driven optimal transport

barycenter problem and of the more general distributional barycenter problem

that the article introduces. The method improves on previous approaches based

on adversarial games, by slaving the discriminator to the generator, minimizing

the need for parameterizations and by allowing the adoption of general cost

functions. It is applied to numerical examples, which include analyzing the

MNIST data set with a new cost function that penalizes non-isometric maps.
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1. Introduction

Optimal transport and the related Wasserstein barycenter problem have un-

dergone rapid development during the last ten years, with a particular focus

on applications to the analysis of data and machine learning [13], ranging from

gene expression [14] to economics [15]. Procedures based on optimal transport

have been used for density and conditional density estimation [1, 2], data aug-

mentation [3], image classification [4, 5, 6], computer vision [7, 8, 9, 10], factor

discovery [12] and data imputation [11].

Given two probability distributions ρ and µ, the optimal transport problem

([16, 17, 18]) seeks the map T with minimal cost among those satisfying the push

forward condition µ = T#ρ, with a cost function determined by the application
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at hand. In the barycenter problem, a conditional distribution ρ(x|z) is mapped

to a single, unknown distribution µ(y), which minimizes the sum over z of the

transportation cost from ρ to µ.

Some recent methodologies for the numerical solution of the data-based

barycenter problem apply only to a canonical cost function, the squared Eu-

clidean distance between points. The advantage of restricting attention to this

or similar cost functions is that one can fully characterize the solution in terms

of a convex potential, thus bypassing the need to actually perform a total cost

minimization. However, a number of applications call for more general, field-

specific cost functions. Consider for illustration the following instances:

1. The distributions ρ(x|z) underlying real world data are often defined on

high dimensional spaces, yet they concentrate near a manifold M of di-

mension m smaller than the dimension d of the ambient space. Exploiting

this geometric property of the data reduces the complexity of the map,

which should be a function of m rather than d. The geometry underly-

ing the data encodes the nature of a system, so models consistent with it

have a more meaningful data correlation structure. One way to carry out

this program is to use a cost function that penalizes maps T moving data

outside the manifoldM. Even in low dimensions, data often concentrates

on or near a non-Euclidean sub-manifold, such as the Earth’s surface for

climate-related data.

2. The introduction of a new cost function is often dictated purely by proper-

ties that one wishes to impose on the barycenter. We introduce in section

6, in the context of an application to the MNIST data set, a cost function

favoring isometric maps. This results in a smoother, more interpretable

barycenter of hand-written digits, modeled as distributions in pixel space.

This last example goes beyond the realm of optimal transport, as the cost

function does not adopt the form of the expect value of a pairwise cost c(x, y).

We call such extensions of the Wasserstein barycenter problem, distributional

barycenter problems. They can be used to enforce problem-dependent desirable
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conditions on the conditional maps, such as proximity to prescribed priors.

The methodology for the solution of the data-driven distributional barycen-

ter problem proposed in this article can be used with general cost functions.

It improves significantly over previous approaches to the barycenter problem

based on adversarial games ([19, 2, 12]). The latter have two players: one that

proposes cost-minimizing maps through time-evolving flows, and another that

builds test functions to enforce the push-forward condition. The new approach

slaves the test-functions to the flows, thus making the latter self-driven. More-

over, these flows are essentially non parametric, with a kernel’s bandwidth as

their single parameter.

1.1. Prior work

While optimal transport on Riemannian manifolds has been broadly studied

from an analytical perspective ([20, 18]), few algorithms have been proposed for

its numerical solution. Most are based on a regularization of optimal transport

[7, 21] or are specific to particular manifolds [22]. The work in [23] finds a smooth

interpolation of densities on discrete surfaces using the dynamical approach of

Benamou and Brenier [24]. This approach, though grounded as ours on gradient

flows, uses a different flow and requires the knowledge of the densities to be

transported rather than samples thereof.

The optimal transport barycenter problem and its dual formulation were

introduced in [25]. One of the first proposed methodologies for the numerical

solution of the dual problem, a saddle point optimization problem, appeared

in [26], where a modification of linear programming was adopted to compute

the potentials associated to the optimal maps. Here we propose an alternative

derivation of the formulation in [26], better suited for the discussion leading to

the algorithm proposed in section 3.

1.2. Original contribution

The main contribution of this paper is an original methodology for the so-

lution of the barycenter problem under general cost functions, through a time-

dependent flow that pushes the marginal distributions ρ(x|z) to their barycenter
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µ(y). Its main novel aspects are that the maps require no parameterization and

that the test function enforcing that all conditional distributions be mapped to

the same barycenter is slaved to the maps. This yields a minimization problem

with one constraint rather than a saddle point problem, equivalent to a mini-

mization problem with infinitely many constraints. This reduction is achieved

by proposing a specific –but sufficient– form for the test function F , therefore

bypassing the adversarial formulation in which a Lagrangian is minimized over

maps and maximized over test functions.

A numerical implementation based on a variation of the penalty method

([27]) results in a method that builds arbitrarily complex maps through flows

and permits the adoption of very general cost functions. In particular, a new cost

function is proposed that penalizes non-isometric conditional maps, a natural

way to minimize data distortion.

1.3. Organization of the article

Section 2 reviews the barycenter problem and its dual. Section 3 proposes

two specific test functions, yielding two alternative formulations, section 4 de-

velops their data driven version and section 5 introduces a penalty method for

their numerical solution. Section 6 contains numerical experiments on both

synthetic data and the MNIST data set, using various test and cost functions.

In particular, subsection 6.2 introduces a new cost penalizing maps far from

isometric, and subsection 6.4 uses the barycenter problem to recover a hidden

signal behind a time series defined on a sphere.

2. Data-driven distributional barycenter problem

Given a conditional probability distribution ρ(x|z), the optimal transport

barycenter problem seeks a target µ(y) and z-dependent maps T (x, z) from ρ

to µ with minimal total transportation cost:

min
T

∫ ∫
c(x, T (x, z))ρ(x, z)dxdz, s.t. ∀z T#ρ(·|z) := ρT (·|z) = µ. (1)
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Examples of cost functions are p-norms, as in the canonical cost c(x, y) = 1
2 ||x−

y||22, and the squared geodesic distance on a manifold.

We will consider the more general distributional barycenter problem

min
T
C (T (x, z), ρ) , s.t. ∀z T#ρ(·|z) := ρT (·|z) = µ, (2)

where C can adopt forms different from the expected value of a pairwise cost

function c(x, T (x, z)) of optimal transport. Examples of such more general costs

include the Fermat distance introduced in [28] and a cost function introduced

below to penalize deviations from isometry. For concreteness and to enable

comparison with prior work, we describe below our methodology in the context

of regular pairwise costs c(x, y), explaining afterwards how it extends, quite

straightforwardly, to the general case. The only constraint on C(T, ρ) is that

it must admit a data-based formulation, i.e. its dependence on ρ must be

translatable into an expression involving only samples thereof. For the regular

pairwise cost, such formulation simply replaces expected values by empirical

means over the data points.

As the pushforward condition expresses the requirement that the random

variable y = T (x, z) be independent of z, it can be rewritten without explicit

reference to the unknown barycenter µ. If z and y = T (x, z) are independent,

then ρT (y, z) = µ(y)ν(z), so∫
F (y, z)ρT (y, z)dydz =

∫
F (T (x, z), z)ρ(x, z)dxdz = 0

for every test function F satisfying
∫
F (y, z)ν(z)dz = 0. The converse is also

true, leading to the minimax formulation of the barycenter problem:
min
T

max
F

∫
c(x, T (x, z))ρ(x, z)dxdz +

∫
F (T (x, z), z)ρ(x, z)dxdz

∀y
∫
F (y, z)ν(z)dz = Ez[F (y, ·)] = 0

(3)

A comparison between (3) and the formulation in [25] reveals that the test

function F is the Lagrange multiplier ψ(y, z) of the dual Kantorovich problem.

The constraint in (3) can be satisfied automatically by subtracting from F
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its expected value Ez[F ], which yields the unconstrained variational problem

min
T

max
F

L =

∫
c(x, T (x, z))ρ(x, z)dxdz+

∫
(F (y, z)−Ez[F ])ρT (y, z) dydz. (4)

The first integral in (4) corresponds to the cost function of optimal transport, to

be extended below to far more general costs. For future reference, we will denote

this integral as LC , and the second integral, designed to test the fulfillment of

the pushforward condition, as LF :

LC =

∫
c(x, T (x, z))ρ(x, z)dxdz, LF =

∫
(F (y, z)− Ez[F ])ρT (y, z) dydz.

As noted in [1], the dual Kantorovich problem is a natural starting point for

a data driven formulation of optimal transport. In particular, (4) has two main

advantages over (1): the unknown barycenter µ does not appear explicitly, and

the objective function is a sum of expected values, which can be replaced by

their empirical counterpart

min
T

max
F

1

N

∑
i

c(xi, T (xi, zi)) + F (T (xi, zi), zi)−
1

N

∑
j

F (T (xi, zi), zj)


(5)

when only samples (xi, zi) of ρ(x, z) are available.

3. Two choices for the test function F (y, z)

This section introduces a new algorithm for the numerical solution of the

optimization problem in (5). We first define an the evolution equation for T

through the gradient descent of L:

Ṫ = − δL

δT

∣∣∣∣
x,z

= − [∇yc(x, y) +∇yF (y, z)] ρ(x, z), y = T (x, z). (6)

Notice that, for the canonical squared-distance cost, the first order optimality

condition Ṫ = 0 recovers the well-known relationship between the optimal map

T ∗ and the optimal potential F ∗, i.e. x = T ∗(x, z)−∇yF ∗(y, z).

Thus the evolution of the map T is defined in terms of the test function F .

Since the role of F is to penalize any dependence of ρT (y|z) on z, it is natural to
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think that it should be able to resolve the family of distributions ρT (y|z). The

following two propositions clarify this point. We will use them to reformulate

the problem in (5) so that the adversarial game played by F and T is reduced

to a pure minimization algorithm over T .

Proposition 1. If F (y, z) = ρT (y|z) then the second term (LF ) in (4) is always

strictly positive unless ρT (y|z) is independent of z.

Proof. We can rewrite LF as

LF =

∫ [
F (y, z)ρT (y|z)ν(z)dz −

∫
F (y, z)ρ̄T (y)ν(z)dz

]
dy, (7)

where ρ̄T (y) =
∫
ρT (y|w)ν(w)dw. Substituting F (y, z) = ρT (y|z) yields

LF =

∫ (
Ez[ρ

2
T (y|·)]− Ez[ρT (y|·)]2

)
dy. (8)

By Jensen’s inequality, the integrand is strictly positive for all values of y unless

ρT (y|z) does not depend on z.

This result suggests adopting F (y, z) = λρT (y|z), a test function that evolves

as the conditional distributions ρ(x|z) are pushed forward toward their barycen-

ter µ. With this choice, the infinite dimensional maximization of (4) over F

reduces to the maximization over the scalar λ:

Problem 1.

min
T

max
λ

∫
c(x, T (x, z))ρ(x, z)dxdz+

+ λ

∫ [
ρT (x|z)−

∫
ρT (x|w)ν(w)dw

]
ρT (x, z)dxdz.

Section 5 discusses in detail how to solve numerically Problem 1. Here we

just point out that: 1) At all times, the information we have on ρT (x, z) consists

of samples thereof, i.e. the points yi = T (xi, zi) that have been transported by

T , and 2) Since LF is non-negative, the maximization over λ can be implemented

through a penalty method, reducing Problem 1 to a pure minimization problem.

We show next that, alternatively, we can choose as test function F (y, z) the

product of two related functions, depending on y and z respectively:
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Proposition 2. If F (y, z) = f(y)g(z) where g(z) =
∫
f(y)ρT (y|z)dy, then

LF in (4) is strictly positive unless the expected value of f(y) under ρT (y|z) is

independent of z.

Proof. It is not difficult to see that, with F given as above, one has

LF =

∫
g(z)2ν(z)dz −

(∫
g(z)ν(z)dz

)2

. (9)

By Jensen’s inequality, (9) is always non-negative, vanishing only if g is inde-

pendent of z.

Under Proposition 2 we can relax (4) into

Problem 2.

min
T

max
f

∫
c(x, T (x, z))ρ(x, z)dxdz +

∫
g(z)2ν(z)dz −

(∫
g(z)ν(z)dz

)2

where g(z) =
∫
f(y)ρT (y|z)dy.

This formulation enforces the independence of ρT (y|z) from z in a weak sense,

with test function f(y). For instance, restricting f to linear functions f = λy

enforces that the conditional mean ȳ(z) of ρT (y|z) be independent of z. Notice

that, in this case and under the canonical cost, the descent equation (6) implies

that the map T is a z-dependent rigid translation, precisely the minimal family

of maps able to remove conditional means.

These considerations suggest a preconditioning procedure whereby, rather

than seeking the full barycenter from the start, one first limits the family of test

functions and maps, yielding a less detailed but faster procedure that brings the

ρ(x|z) closer to each other. In particular, one can perform a preconditioning

whereby only the conditional mean of ρ(x|z) is removed, through a z-dependent

rigid translation. Under the canonical cost, performing this preconditioning and

subsequently computing the barycenter of the resulting push-forward distribu-

tions, results in the same barycenter that one would have found directly from

the original ones. The proof, which extends arguments in [29] to the barycenter

problem, is the content of the following proposition.
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Proposition 3. Consider the following, two-stage procedure for finding the

barycenter of the conditional distributions ρ(x|z) under the canonical cost c(x, y) =

1
2‖x− y‖

2. First restrict the maps to the z-dependent rigid translations

w = T1(x, z) = x+ x̄− x̄(z),

which make the conditional means of the resulting random variable W match.

Then find the full barycenter of the resulting conditional distributions µ1(w|z)

through a map y = T2(w, z). Then the composition of the two maps,

y = T (x, z) = T2 (T1(x, z), z)

solves the original barycenter problem.

Proof. Clearly the distribution µ(y) is independent of z, since µ is the barycenter

of the µ1(w|z). To prove optimality, it is enough [25, 30] to show that

1. T is the gradient of a convex function:

T (x, z) = ∇xφ(x, z), φ(:, z) convex for all z,

2. every point y is the geometrical barycenter of its pre-images under T (x, z),

∀y Ez
[
T−1(y, z)

]
= y.

Since µ is the barycenter of the µ1(w|z), both properties hold for T2:

T2(w, z) = ∇wψ(w, z), ψ(:, z) convex for all z, ∀y Ez
[
T−12 (y, z)

]
= y.

Then T (x, z) = T2 (x+ x̄− x̄(z), z) = ∇xφ(x, z), where φ(x, z) = ψ (x+ x̄− x̄(z), z)

is convex in x for all values of z. Also T−1(y, z) = T−12 (y, z) + x̄(z)− x̄, so

Ez
[
T−1(y, z)

]
= Ez

[
T−12 (y, z)

]
+ x̄− x̄ = y,

concluding the proof.
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Two natural questions arise from proposition 3: can one perform pre-conditioning

under more general cost functions, and can one implement richer pre-conditioners

that bring the ρ(x|z) closer to each other than merely translating them so that

their conditional means match. To answer these questions, notice that propo-

sition 3 allows one to start the follow-up barycenter problem directly from the

µ1(w|z) resulting from the pre-conditioning map, without any reference to the

original random variable X. However, one does know the conditional pairing of

X and W , i.e. the map w = T1(x, z) or, in the data-driven case, the point xi

that each wi originated from. It follows that one can perform pre-conditioning

under any cost function C(T, ρ) and with any family of test functions F , pro-

vided that, in the subsequent full barycenter problem, though starting from the

W = T1(X, z), one computes the cost C in terms of the original X:

C2 (T, µ1) = C
(
T ∗ T1, T−11 #µ1

)
.

In the data-driven setting developed below, this formula simply translates into

using xi in lieu of wi in C.

4. Data-driven formulations

This section discusses the numerical representation of ρ(y|z) and its use for

implementing data-driven versions of Problems 1 and 2.

4.1. Data driven Problem 1

The map y = T (x, z) is built from the composition of near-identity maps

which yield, at each time-step of the algorithm, a current state of the map and

a corresponding current conditional density ρT (y|z). This conditional density,

which evolves from ρ(y|z) to µ(y), is known at all times through the points

yi = T (xi, zi). A natural way to estimate F (y, z) = ρT (y|z) from these samples

is through a conditional kernel density estimation (CKDE) in the Nadaraya-

Watson form ([31, 32]):

F (y, zk) = ρT (y|zk) ≈
∑
iKa(y, yi)Kb(zk, zi)∑

j Kb(zk, zj)
=

N∑
i=1

Ka(y, yi)Zik. (10)
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The kernel functions Ka(y, yi), nonnegative and normalized so as to integrate

to one, have centers yi and bandwidth a –the algorithm’s only free parameter,

other than the choice of the kernels themselves, for which isotropic Gaussians

were adopted in all the numerical examples below. The matrix Z ∈ RN×N is a

normalized version of similar kernels in z-space:

Zik =
Kb(zk, zi)∑N
j=1Kb(zk, zj)

. (11)

With this choice for F , the empirical version of the term in square brackets in

Problem 1 adopts the form

ρT (yl|zl)− EzρT (yl|z) ≈
∑
i

Ka(yl, yi)

[
Zil −

1

N

∑
k

Zik

]
=
∑
i

Ka(yl, yi)Cil,

(12)

where the N by N matrix

Cil = Zil −
1

N

∑
k

Zik (13)

can be precomputed at the onset of the procedure, since the values of zi remain

unchanged throughout. Then the complete data driven formulation of Problem

1 adopts the simple form

min
y

max
λ

∑
i

c(xi, yi) + λ
∑
i,l

Ka(yl, yi)Cil. (14)

4.2. Data driven Problem 2

In order to evaluate (9) from sample points, we rewrite g(z) in the form

g(z) =

∫
f(y)ρT (y|z)dy =

∫
f(y)

ρT (y, z)

ν(z)
dy =

∫
f(y)

ρT (y, w)

ν(w)
δ(w − z)dydw,

(15)

and propose the mollification

δ(w − z) ≈ Kb(w, z), ν(w) =
1

n

∑
j

Kb (w, zj) , (16)

with a positive kernel Kb with bandwidth b that integrates to one. Then

g(z) ≈
∑
k

f (yk)
Kb(z, zk)∑
lKb (zl, zk)

, (17)
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which we can substitute in the test function F (y, z) according to the proposal

in Proposition 2, i.e. F (y, z) = λf(y)g(z). The resulting test component LF of

the Lagrangian is

LF =
∑
i

F (T (xi, zi), zi)−
1

N

∑
j

F (T (xi, zi), zj)

 =

λ
∑
i

f(yi)
∑
k

f(yk)

Zki − 1

N

∑
j

Zkj

 = λ
∑
i,k

f(yi)f(yk)Cki, (18)

where yi = T (xi, zi) and the matrices Zik and Cil are those defined in (11) and

(13). The overall data-driven version of Problem 2 with fixed test function f

then becomes

min
y

max
λ

∑
i

c(xi, yi) + λ
∑
i,k

f(yi)f(yk)Cki. (19)

The choice of the function f specifies a relaxation of the pushforward condition,

with f(y) = yl (yl here stands for the lth component of y) corresponding to

moving each conditional mean x̄l(z) to the mean ȳl of the barycenter. To match

the conditional means of all components yl, as well as to enforce other moments,

we can choose f to be a vectorial function whose entries can be chosen, for

instance, as a polynomial basis: f(y) = [f1(y), f2(y), .., fm(y)], corresponding

to the solution of

min
y

max
λ

∑
i

c(xi, yi) + λ
∑
i,k,l

fl(yi)fl(yk)Cki. (20)

Notice that we do not need an independent factor λl for each fl, as each term∑
i,k fl(yi)fl(yk)Cki is independently non-negative, vanishing only when the ex-

pected value of fl agrees for all values of z (We have proved this in proposition

2 for the problem posed in terms in distributions, and we will prove it below

for the sample-based problem.) We may, however, weight each fl differently if

desired. For instance, we might want to start with most of the weight on the

linear components of f , so as to enforce the agreement of the conditional means,

then slowly increase the weight of the quadratic components, to match all con-

ditional covariances, and add more terms, either higher order polynomials or
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localized features, for a more detailed fulfillment of the pushforward condition.

However, we have found empirically that simply pre-conditioning first with a

linear f is enough to speed up the subsequent convergence of problem 1 in all

of its generality, bypassing the need for the “continuous preconditioning” that

the procedure just described would entail.

4.3. An alternative conditional density estimator

Formula (11) for the matrix Zik is not the only choice that makes (10) a

robust conditional density estimator. The core requirements for Z are:

1. The entries Zik must be nonnegative and add up to zero row-wise:

Zik ≥ 0,
∑
i

Zik = 1,

to guarantee that the estimated ρT (y|zk) is positive and integrates to one.

2. Zik must be large when zi and zk are close to each other, and small when

they are far away. This follows from conceptualizing (10) as a regular

kernel density estimation which has the various centers yi weighted by Zik.

Then Zik must provide a measure of how relevant yi is for an estimation

of ρT (y|zk), i.e. how close the zi associated with yi is to zk. The notion

of closeness is, of course, problem dependent. For instance, for categorical

factors z, a choice for Zik vanishes whenever zi 6= zk.

The particular form (11) for Zik satisfies these properties, and it leads to

robust and accurate numerical results in all examples that we have tried. Yet

the resulting matrix Zik is asymmetric, as only its rows, not its columns, are

normalized. For reason that the following subsection will clarify, we prefer a

matrix Z that is symmetric and positive definite. Since a symmetric matrix Z

with nonnegative entries whose rows add up to one is necessarily bi-stochastic,

a natural candidate is the unique bi-stochastic matrix Z̃ that derives from the

symmetric and positive Kernel matrix Kik = Kb(zk, zi) through Sinkhorn’s

factorization: Z̃ = DKD, where D is a diagonal matrix with positive diagonal

entries. Since K is positive definite, so is Z̃, which also satisfies the required
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properties for (10) to provide a consistent conditional density estimator, and is

in fact better balanced than Z, in the sense that all points yi have the same

total weight (For points whose zi is an outlier, this weight concentrates mostly

in self-estimation, while for points with zi in the core of the z-distribution, the

weights are distributed among neighboring points in z, not necessarily y.)

We have found the numerical results with Z̃ and Z to be nearly indistin-

guishable. Since Z̃ comes with better theoretical guarantees, we use Z̃ in the

remaining of the article and in the numerical examples, renaming it Z to avoid

notational clumsiness.

The kernel-based matrix Zji is suitable for continuous factors z with a notion

of distance among points. Clearly, for categorical factors z, it should be replaced

by the simpler

Zji =


1
Ni

for zi = zj

0 otherwise,

Ni = |{z : z = zi}|,

also bi-stochastic, which simply discriminates among classes. To avoid repeating

proofs and arguments, this can be considered as a particular case of the kernel-

based Z with vanishing small bandwidth, so that different zi do dot interact.

4.4. Positivity of LF in the data-driven problem

We saw in section 3 that, for the two particular choices of the test function

F corresponding to problems 1 and 2, the LF in (4) is strictly positive unless

all the marginals ρT (y|z) agree. The positivity of LF allows us to pre-multiply

it by a positive scalar λ, replacing the minimax formulation by a penalized

minimization. We show here that the positivity of LF also holds in its data-

driven version.

Proposition 4. If the kernel matrices Ka and Kb, with entries Ka(yk, yi) and

Kb(zk, zi) respectively, are non-negative definite, then the test component LF of

both (14) and (19) is non negative.
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Proof. Notice that it is enough to show that the matrix C given by (13) is

non-negative definite, i.e. that

∀x, xTCx ≥ 0. (21)

This sufficiency of (21) for (19) is obvious, as its test component is precisely

a sum of terms of this form, but (21) is also sufficient for (14), since its test

component is the inner product of C and Ka, and the inner product of two

non-negative definite matrices is a non-negative number, even when only one of

them is symmetric (C, in general, is not.) To prove (21), write∑
i,j

xiCijxj =
∑
i,j

xiZijxj −
1

N

∑
k,i,j

xiZik (xj − xk + xk)

= − 1

N

∑
k,i,j

xiZik (xj − xk)

=
∑
k,i

xiZik (xk − x̄)

=
∑
k,i

(xi − x̄)Zik (xk − x̄) ≥ 0,

as the matrix Z (i.e. Z̃) is non-negative definite by construction.

4.5. Extension to general cost functions

We have so far restricted the cost component LC of the objective function to

the expected value of a pairwise cost c(x, T (x, z)), as pertains optimal transport.

However, it is clear from the data-based formulations derived that the only

requirement one must impose on LC = C(T, ρ) is that ρ should only appear

through the expected value of functions, which can be replaced by their empirical

counterpart when only samples (xi, zi) of ρ are known. Thus, for instance, in

lieu of the pairwise cost LC =
∫
c(x, T (x, z))ρ(x, z)dxdz, one may propose cost

functions involving two points and their images under a common factor z,

LC =

∫
c (x1, T (x1, z) , x2, T (x2, z)) ρ(x1|z)ρ(x2|z)ν(z)dx1dx2dz.
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We will propose one such cost in an example below on hand-written digits, a

cost that penalizes deviations of T (:, z) from an isometry. A data-driven version

of a cost of this form is

LC =
1

N2

∑
i,j

c (xi, T (xi, zi) , xj , T (xj , zj))Z(zi, zj),

involving the bi-stochastic matrix Zji = Z(zi, zj) introduced above.

Most formulas in this article are written, for concreteness, in terms of pair-

wise cost functions. In order to apply them to more general costs, it is enough

to insert the corresponding expression for LC and its derivatives, while all the

formulas concerning LF remain unaltered.

5. A penalty method

Both (14) and (19) are minimax problems of a special kind, where the max-

imization is carried out over a single positive scalar quantity λ whose optimal

value is unbounded (as perteins the Lagrange multiplier of a single constraint

requiring a non-negative quantity, LF , to vanish). More effective than maxi-

mizing L over λ is to use a penalty method, whereby λ is externally increased

at each iteration step to as to progressively enforce the constraint.

Among the possible strategies for controlling λ, we propose one guaranteeing

that LF decreases at every step, while not making λ grow so fast as to effectively

make the minimization of LC a secondary goal. The procedure applies to both

(14) and (19), for concreteness we describe it here for (14):

1. Initialize yi = xi, λ = λ0 > 0, and a maximum number of iteration niter.

The iteration count starts from n = 0, and the learning rate from η = η0.

Precompute the matrix C as defined in (13).

If λ is sufficiently small, LC dominates the objective function, making

the minimization problem convex (LC is typically convex, at least near

the identity map.) Therefore, we set λ0 = 1/max(abs(eigs[−Fxx(x)]))

resulting in a semi positive definite Hessian.
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2. While n < niter and y has not yet converged, tentatively evolve the

learning rate through the formula ηn+1 = min{2.01ηn, η0}.

(a) Calculate the derivatives of the objective function (Appendix A.)

(b) Compute λn+1 according the criteria below, whith α > 0:〈
∇yc(x, y) + λ∇y

∑
l

Ka(yl, y)C:l,∇y
∑
l

Ka(yl, y)C:l

〉
≥

≥ α

〈
∇y
∑
l

Ka(yl, y)Cil,∇y
∑
l

Ka(yl, y)Cil

〉
, (22)

which implies the lower bound for λ:

λ ≥ α−
〈∇yc(x, y),∇y

∑
lKa(yl, y)C:l〉

〈∇y
∑
lKa(yl, y)Cil,∇y

∑
lKa(yl, y)C:l〉

= λmin. (23)

Here the inner product 〈〉 between two functions f(x, y, :) and g(x, y, :

) is defined as 〈f, g〉 =
∑
i f(xi, yi, i)g(xi, yi, i). If λmin is larger than

λn and smaller than a threshold λmax, set λn+1 = λmin. Otherwise, if

λmin > λmax, set λn+1 = λmax, else set λn+1 = λn. This guarantees

that λn+1 is not smaller than λn, so L(y, λn+1) ≥ L(y, λn) is satisfied

for any y.

(c) Update y using either gradient descent:

yn+1 = yn − η∇yL(y, λn+1)|y=yn , (24)

or implicit gradient descent [33]:

yn+1 = yn − η
(
I + η∇yyL(y, λn+1)|y=yn

)−1∇yL(y, λn)|y=yn . (25)

These update rules couple the points yi ∈ Rd in different ways, as

discussed in the appendix.

(d) Check that the objective function decreases after the step,

L(yn+1, λn+1) ≤ L(yn, λn+1), (26)

where the kernel centers are evaluated at yn+1 on both sides of the

inequality (see the appendix). Otherwise decrease η to η/2 and repeat

(c) and (d) until it does.
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The intuition behind the criteria for updating λ is the following. The two

components of the objective function push the map T (x, z) in opposite direc-

tions: while LF decreases as ρT approaches the barycenter µ, LC decreases

as ρT returns to ρ, as the cost is typically minimal at T (x, z) = x. The two

components are also different in nature: LF represents the hard constraint that

y = T (x, z) be independent of z, while the minimization of LC establishes a se-

lection criterion among all maps satisfying LF = 0. Because of this, one should

always pick λ large enough that the direction of gradient descent of the full

Lagrangian L is also a direction of descent for LF . This condition reads〈
δ

δT
[LC + λLF ] ,

δ

δT
LF

〉
≥ 0,

a requirement that we make more precise by establishing a threshold α > 0:〈
δ

δT
[LC + λLF ] ,

δ

δT
LF

〉
≥ α

〈
δ

δT
LF ,

δ

δT
LF

〉
,

which is the content of (23). Notice that, if the optimum is reached for the prior

λn, then the first order condition yields:

∇yc(x, y)+λn∇y
∑
l

Ka(yl, y)Cil = 0 =⇒ ∇yc(x, y) = −λn∇y
∑
l

Ka(yl, y)Cil,

so (23) yields λmin = α − (−λn) = α + λn. This suggests setting adaptively

α = ωλn, whith ω ∈ (0, 1).

6. Numerical examples

This section presents four representative numerical examples in different

dimensions and with different types of covariates, to: (1) demonstrate the ability

to work with cost functions different from the canonical L2 and the effect that

different choices for the cost have, and (2) show applicability to times series

analysis with data distributed on a Riemannian manifold.

6.1. Barycenter of three ellipses under different costs

A toy example shows how the choice of a cost function affects the properties

of the barycenter. The data points xi ∈ R2 are sampled from 3 uniform densities
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supported on 3 ellipses with different centers and shapes, and labelled by the

discrete cofactor zi ∈ {0, 1, 2}. The major axes of the ellipses are horizontal for

z = 1, 2 (in green and yellow) and vertical for z = 0 (in blue). All ellipses have

eccentricity e = 2
√
2

3 , with 100 points sampled from each.

We apply our algorithm with cost function induced by the p-norm:

c(x, y) =

2∑
i=1

|xi − yi|p, x, y ∈ R2, p ∈ R, p ≥ 1.

The test functions in x space are constructed by solving Problem 2, using as

features fj polynomials up to the second degree, i.e. y1, y2, y21 , y1y2 and y22 . To

address the issue that, for p < 2, the Hessian of the cost function is degenerate

at the origin, we utilize the approximation |x| ≈
√
x2 + ε −

√
ε ,with ε = 0.01.

The data xi and barycenter yi (in purple), with p ∈ {1.2, 1.5, 2, 2.5, 3} are shown

in Figure 1.
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Figure 1: Barycenters with p-norm-based costs with different values of p. The color in the

source data refers to the index z of the cluster, while the barycenter is displayed in purple.

Large values of p penalize outliers, i.e. distributions that are far from the

barycenter. Thus the barycenter for p large must be such that no distribution

is far from it. On the other hand, for p close to 1, majority rules: the average

distance to the barycenter must be minimal. In our case, the “outlier” , both

in shape and position, is the cluster z = 0 in blue. Thus in Figure 1, when p

is small, the barycenter (in deep purple) is closer in shape and position to the

ellipses with z = 1, 2, while, as p increases, the barycenter shifts gradually from

the bottom to the middle of the figure and becomes nearly isotropic, so as not

to be far from any cluster, including the outlier.
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6.2. Handwritten digits

We use the MNIST dataset [34] to display the effect of the test functions

chosen for Problem 2, contrast this with the non-parametric Problem 1, and

illustrate how a non-pairwise cost function can help impose desired features on

the barycenter. The MNIST dataset contains handwritten digits from 0 to 9.

For each digit, we randomly select 6 images, which we randomly displace, and

then compute their barycenter under various test functions and costs.

6.2.1. Effect of test function

We first demonstrate the effect of the richness of the test functions adopted,

keeping as cost function the standard squared Euclidean distance. Two differ-

ent sets of test functions are used: first order polynomials, which only detect

the discrepancy in the conditional means, and polynomials up to 2nd order,

testing both conditional mean and covariance. We then compare these results

to the nonparametric algorithm (14), after preconditioning by subtracting the

conditional mean. The results are displayed in Table 1. Qualitative improve-

ments can be observed when the test function becomes richer. For example,

the barycentric images are noisy when only the conditional mean is aligned, the

edges are clearer when second order polynomials are adopted, and the nonpara-

metric approach outperforms both choices.

6.2.2. Effect of the cost function

Looking at Table 1, one may think at first that the barycenter has not been

fully resolved, as its contours are not well defined. Figure 2, displaying the

push forward of each of the six marginals to the barycenter, shows that this

is not quite the case, as all push forward measures agree, except when only

the preconditioner is used, forcing each of the six marginals to keep its original

shape. Small differences are due to the fact that each marginal contains a

different number of sample points.

The fact that the digit six in Figure 2 (b) looks somewhat cloudy should not

come as a surprize, since nothing in the objective function enforces the notion
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0 1 2 3 4 5 6 7 8 9

Table 1: Barycenters of 6 randomly chosen handwritten digits from MNIST dataset, solved

numerically with different sets of test functions. The barycenter y is displayed in deep purple

in the center, surrounded by the source data x in different colors indicating the index z ∈

{1, 2, 3, 4, 5, 6}. The first row contains the solution to Problem 2 using as test functions only

polynomial of first degree, the second row uses polynomials of second degree, and the third

row has the solution to Problem 1, where the test function, slaved to the map, evolves through

the kernel density estimator in (10).

that the maps to the barycenter should not smear the original digits. A way to

address this is to adopt a distortion-sensitive cost function in (2), namely

C(y(x, k), ρ) =
1

N2

∑
1≤i 6=j≤N

( ||yki − ykj ||2

||xki − xkj ||2 + ε2
− 1

)2
+ ω

1

N

N∑
i=1

||yki − xki ||2.

(27)

The first term penalizes the deviation of the map from a conditional isometry,

which would have equal pairwise distances in x and y = T (x, z) space for each

value of z (k in our discrete setting), with a small parameter ε to prevent

division by zero. The second term is a remnant of a regular optimal transport

cost, intended to anchor the barycenter in space, with small weight ω = 0.01

in our numerical example. We compare the results obtained with the new cost

and with the L2 distance. The barycenters are displayed in Table 2, and the

mapped samples from the digit six with different z values are shown in Figure 2.

Clearly the adoption of the cost in (27) results in a barycenter with more defined

contours, as the need to preserve pairwise distances prevents the points in the

upper branch of the digit six to broaden up when mapped to the barycenter.
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0 1 2 3 4 5 6 7 8 9

Table 2: Barycenters of digits solved non-parametrically, the first row under a squared distance

cost and the second under the distortion-sensitive cost (27).
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(a) Preconditioned
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(b) With L2 cost
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(c) With cost in (27)

Figure 2: Samples of the digit 6 push-forwarded to the barycenter for each value of z.

6.3. Two patches on the unit sphere

This section performs a numerical experiment on the barycenter of two dis-

tributions, with samples shown in Figure 3, defined on the unit sphere S2 =

{x ∈ R3 : ||x|| = 1}. Because the sample points are defined on the sphere, we

can represent them in spherical coordinates,

x1 = cos θ cosφ, x2 = cos θ sinφ, x3 = sin θ,

where θ ∈ [0, 2π) and φ ∈ [−π/2, π/2] represent longitude and latitude. Then

the natural cost is not the canonical Euclidean L2 distance c(x, y) = ||x− y||2,

but the geodesic distance between points:

c̃(x, y) = 2 arcsin

√
sin2

(
|θx − θy|

2

)
+ cos θx cos θy sin2

(
φx − φy|

2

)
.

The example illustrates how the barycenters capture essential features of

the manifold on which the data are defined. When the two distributions are
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supported on the same hemisphere (left two panels of Figure 3, in red and

black), the support of the barycenter (in blue) interpolates between them. By

contrast, when the two distributions lie around the north and the south pole

respectively, there is no preferred meridian on which the barycenter should lie,

resulting in it being supported along the entire equator.

Figure 3: Barycenter (blue) of two distributions with z = 0 (red) and z = 1 (black), with

250 points sampled from each. The thin black lines indicate the one-to-one correspondence

between the source data and its image under the map. Each distribution has θ ∼ U[0,2π),

φ ∼ U[ 3
8
π, 1

2
π] and φ ∼ U[− 1

2
π,− 3

8
π] respectively on the right two panels, while they are shifted

to the same hemisphere on the left two.

6.4. Hidden variability recovery on the unit sphere

Time series are often modeled through a Markov model of the form

xn+1 = F (xn, zn+1
known, w

n+1, tn+1), (28)

where {xn}Tn=0 is the time series, t is the time, zknown represents known factors

that influence x and w contains unknown sources of variability. In [35], the

authors proposed a method to uncover the hidden variability wn by removing

from xn+1 the variability due to zn+1, computing the barycenter of ρ(xn+1|zn+1)

thorough the family of maps

yn = T (xn, zn), zn = [xn−1, tn, znknown],

so that the “filtered” signal yn is a function of only wn. This section shows a

synthetic example combining this idea with the algorithm described in section

5 to study time series defined on Riemannian manifolds. In particular, we

consider the time series defined on the 3D unit sphere, generated as the sum of

a deterministic dynamics and random noise:
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• The deterministic dynamics in spherical coordinates is given by:φ̃n+1

θ̃n+1

 =

 φn

θn + sin(θn) + 1
2

 ,
where θn and φn are the longitude and latitude at xn respectively. In

Cartesian coordinates, this becomes x̃n+1 = Sph2Cart(R = 1, φ̃n+1, θ̃n+1)).

• The hidden factor wn+1 is generated by first sampling a 2-dimensional

uniform distribution in spherical coordinates, and then transforming the

sampled points into Cartesian coordinates on the unit sphere:

wn+1 = Sph2Cart(1, φn+1
w , θn+1

w ), (29)

where φn+1
w ∼ U[π2−0.45,

π
2 ] and θn+1

w ∼ U[0,2π]. This results in the round

patch centered at the north pole shown on the left panel of Figure 4. In or-

der to add wn+1 to the deterministic part x̃n+1, we define a one to one map

between the tangent planes at the north pole and at x̃n+1, through the re-

flection with respect to the axis x̃n+1
1/2 = Sph2Cart

(
1, 12 (φ̃n+1 + π

2 ), θ̃n+1
)

bisecting the angle between the north pole and x̃n+1. Using Rodrigues’

rotation formula, this yields

xn+1 =
(
I + 2K2(x̃n+1

1/2 )
)
wn+1, (30)

where K ∈ R3×3 is the cross-product matrix:

K(x) =


0 −x3 x2

x3 0 −x1
−x2 x1 0

 .
Figure 4 shows a time series of 1000 steps, starting from the south pole, and the

hidden signal w. Figure 5 compares the barycenters obtained with two different

methods:

1. Filter xn+1 with zn+1 = xn in R3, using the Euclidean distance as cost.

2. Filter [φn+1, θn+1] with zn+1 = [φn, θn] and great-circle distance as the

cost.
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(a) Hidden signal w (b) Time series x

Figure 4: (a) Hidden signal generated using (29). (b) Complete time series generated using

(30).

The first approach ignores the fact that the time series is supported on a

lower dimensional manifold of R3, resulting in a barycenter that is not on the

surface of the sphere. The second approach respects the distance metric of

the manifold, and the barycenter lays on the same lower dimensional manifold

where the marginals are supported. To show that the filtered signal yn is a

surrogate for wn, it is enough to establish a one to one map between yn and

wn, a map that depends on the specific form of F in (28). In order to visualize

this map, we align the (normalized) barycenter to the hidden noise by means

of linear regression. Figure 6 shows the resulting smooth dependence between

the hidden signal and the barycenter. Figure 7 dsiplayes a moving average of

the barycenter and the hidden signal as a functions of time, providing further

evidence that the two signal overlap.

7. Conclusions

This work introduces the distributional barycenter problem, an extension

of the optimal transport barycenter problem where the cost needs not be the

expected value of a pairwise function, allowing more general costs needed in

applications, such as a new cost penalizing non-isometric maps.

A novel numerical algorithm is introduced for the solution of the barycenter
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Figure 5: Barycenter solved by two different approaches, in 2D spherical coordinates (red)

and 3D Cartesian coordinates (blue)
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Figure 6: The spherical coordinates of the barycenter solved in 2D as functions of the hidden

signal (also in spherical coordinates). Polynomial surfaces of order 5 are fitted to the data

and visualized.

problem. The algorithm avoids the difficulties typical of adversarial approaches

by slaving the discriminator to the generator. This results in a simpler approach

that looks for a minimum rather than a saddle point of the objective function.
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Figure 7: First row: moving average with window size 3 of the time series of the hidden signal

ω and of the filtered signal y in spherical coordinates (left: longitude θ, right: lattitude φ).

Second row: zoom of the first row.

The approach is essentially non-parametric, as the only parameter of the test

functions and maps is the bandwidth of a kernel function.

Appendix A. Updating rules (24) and (25)

This appendix calculates the gradient and Hessian of the objective functions

L in (14) and (19), used to implement the explicit (25) and implicit (26) schemes

for updating the current position yni of the original sample points xi.

The update yni → yn+1
i is subtle, as both of the kernel Ka(y, w)’s arguments

are evaluated at the sample points yi, yet they play very different roles in the

Lagrangian L: while y = yi represents the map T (xi, zi) that L is to be mini-

mized over, the w = yi are the Kernels’ centers, characterizing the test function

F = ρ(y|z) over which L was originally to be maximized! Our methodology

replaced this maximization by a slaving of F to T , hence the appearance of the

yi in F , yet L must be minimized only over its first argument, not the second.

Thus, for gradient descent, one must use terms such as

∂Ka(y, ynk )

∂y

∣∣∣
y=yni
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and, for implicit gradient descent,

∂Ka(y, yn+1
k )

∂y

∣∣∣
y=yn+1

i

≈ ∂Ka(y, ynk )

∂y

∣∣∣
y=yni

+

∂2Ka(y, w)

∂y2

∣∣∣∣y=yni
w=ynk

(
yn+1
i − yni

)
+
∂2Ka(y, w)

∂y∂w

∣∣∣y=yni
w=ynk

(
yn+1
k − ynk

)
. (A.1)

Though formulas below are developed for regular pairwise cost functions,

their extension to the general case should be clear. The objective functions for

problems 1 and 2 are:

Kernel density estimation: L1 =
∑
i

c(xi, yi) + λ
∑
i,k

Ka(yi, yk)Cik.

Parametric: L2 =
∑
i

c(xi, yi) + λ
∑
i,k

f(yi)f(yk)Cki.

Explicit: Formula (25) is equivalent to forward Euler for ODEs. We can

update the position of each point yi ∈ Rd independently, through the update

rule yn+1
i = yni − η∇yL|y=yni , where

∇yL1|y=yni =

[
∂c(xi, y)

∂y
+ λ

∑
k

∂Ka(y, ynk )

∂y
Cik

]
y=yni

,

and

∇yL2|y=yni =

[
∂c(xi, y)

∂y
+ λ

∑
k

∂f(yi)

∂y
f(ynk )Cki

]
y=yni

.

Implicit: This scheme, when applied to minimize the generic function f(y, w)

is obtained by the following approximation:

yn+1 = yn − ηfy(yn+1, yn+1)

≈ yn − η{fy(yn, yn) + (yn+1 − yn) [fyy(yn, yn) + fyw(yn, yn)]} (A.2)

that, once rearranged, results in the scheme in (26) [33]:

yn+1 = yn − η
[
I + η(fnyy + fnyw)

]−1
fny (A.3)

The Hessian matrix ∇yyL1 in (26) is therefore given by

∇yyL1 = Lyy1 + Lyw1 .
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The matrix L1,yy is diagonal, and we have:

Lyy1,ii =

[
∂2c(xi, y)

∂y2
+ λ

∑
k

∂2Ka(y, ynk )

∂y2
Cik

]
y=yni

, Lyw1,ik = λ
∂2Ka(y, w)

∂y∂w

∣∣∣∣y=yni
w=ynk

Cik.

This calculation applies to pairwise cost functions, where the only non diagonal

Rd×d blocks arise from the LF in L1. One needs to adjust accordingly for more

general costs.

Similarly for L2 we have ∇yyL2 = Lyy2 + Lyw2 with

Lyy2,ii =

[
∂2c(xi, y)

∂y2
+ λ

∑
k

∂2f(y)

∂y2
f(yn)Cki

]
y=yni

, Lyw2,ik = λ
∂f(y)

∂y

∣∣∣∣
y=yni

∂f(y)

∂y

∣∣∣∣
y=ynk

Cki.

When f is a vector, the gradient and Hessian have an additional sum over its

components.
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