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a b s t r a c t

An explanation is proposed for the meridional extent of the Hadley cells: the diurnal waves forced by
solar heating trapped between −30° and 30°. These baroclinic waves, we propose, give rise to the daily
nature of tropical meteorology, and ultimately to the intensified mixing and circulation associated with
the Hadley cells and the shape of the tropopause. This conceptual explanation is validated with basic
scaling arguments and with two diurnally forced one-layer models: One linear and the other nonlinear,
the latter with a simple closure for mixing and entrainment by breaking waves.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Hadley cells are arguably the most prominent feature of
the troposphere, and define the extent of the tropics. They are two
large mean circulation cells, driven by the differential insolation
between the tropics and the mid-latitudes. Moist air rises in a
relatively thin strip, the Intertropical Convergence Zone (ITCZ),
through deep convective storms, losing most of its water content
through precipitation. In the upper troposphere, the air travels
toward higher latitudes, north and south. By conservation of
angularmomentum, it thus generates increasingly strongwesterly
winds, which peak as high-altitude subtropical jets. Then the air
subsides in an area confined around the 30° parallels, the Horse
latitudes; these descending dry air masses are responsible for the
majority of the deserts on Earth. Finally, the air travels back toward
the ITCZ near the Earth’s surface, producing in the process, again
by conservation of angular momentum, the easterly trade winds.
The tropics, equatorwards of 30°, display a strong diurnal signal in
thewind, pressure and temperature, oftenmarked by regular daily
storms. Polewards of 30°, the weather systems have longer spatio-
temporal scales.

The location of the ITCZ travels seasonally, northward during
the northern summer, and southward during the northern winter.
The Hadley cell is stronger in the winter hemisphere, since the
imbalance of solar radiation there between the ITCZ and thewinter
30th parallel is much more accentuated [1]. Yet the outer edges of
the cells are invariably at a latitude close to 30°, north and south.
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It is the cells that give the tropopause, the boundary between the
stratosphere and the troposphere, its characteristic ‘‘hat-shaped’’
profile, with a height of about 16 km in the tropics, descending
sharply to about 9 km in the extratropical zone. This paper provides
a simple conceptual explanation for such permanent and sharply-
defined meridional extent of the tropical troposphere.

In what is currently one of the most widely accepted explana-
tion, due to Held and Hou [2,3], the location of the outer edges of
the cells depends on the intensity and meridional distribution of
the atmospheric heating. Thus, if the heating parameters should
change, as they would in a global warming scenario, the location
of the edges could change as well, as has been argued in recent lit-
erature [4–7]. In our explanation, however, the edge’s location at
30° follows from first principles, so it would not be affected signifi-
cantly by climate change. It is the height and stratification profile of
the tropical troposphere that can evolve, not its meridional extent.

Our explanation starts with the forcing that drives the cells.
The reason that there are Hadley cells – and, in fact, that there
is a troposphere at all – is that the sun heats the atmosphere
from below. The atmosphere is, to leading order, transparent to
direct solar radiation, yet the ground and sea water are not: they
absorb a significant fraction, and re-emit it in the form of infrared
radiation and advection of air parcels carrying sensible and latent
heat. Heating a fluid from below gives rise to instability; in the
atmospheric scenario, to convective cells, tropical storms and,
more generally, to the stirring and mixing of air masses that yields
the tropical troposphere.

Solar heating has a period of one day, an elementary fact that is
forgotten nonetheless in most theories of atmospheric circulation.
This diurnal heating acts as a periodic forcing on a stratified fluid
medium, and therefore yields disturbances – gravity waves – with
the same period of one day. In a rotating environment, gravity
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waves have aminimal frequency given by the absolute value of the
Coriolis parameter f , which, on a rotating spherical planet, adopts
the form

f = 2Ω sin(α),

where α is the latitude and

Ω =
2π
1day

is the frequency of the planet’s rotation. Then diurnally forced
waves produced by solar heating must satisfy

Ω ≥ 2Ω | sin(α)|,

which implies that

|α| ≤ 30°.

Hence diurnal gravity waves are trapped in the tropics, in a band
between the latitudes of 30° north and south, precisely the band
occupied by the Hadley cells.

This simple fact already explains why there is such a clear daily
cycle in the wind field in the tropics, absent in the middle and
high latitudes. The winds over Africa, for instance, a continent
situated almost sharply between −30° and 30°, change direction
and intensity with a daily pattern, unlike the winds over North
America, Europe and northern and Central Asia, organized in
weather systems with a timescale of roughly five days and a
dominant, typically eastward, direction. The observational record
over the oceans is less direct – there are fewer weather stations –
and the diurnal cycle is thought to be less pronounced. However,
recent analysis of data [8,9] indicates the clear presence of a daily
cycle in the precipitation over the tropical seas.

To check that interpreting these daily patterns in the tropics
in terms of diurnal waves is consistent with observations, we can
compute some of the fundamental scales involved. The dominant
manifestation of thermal forcing in the tropics is through storms,
which are typically associated with the effective moist baroclinic
mode of the atmosphere. The corresponding value c of the wave
speed [10] is of the order of 15 m/s. For diurnal waves, this yields
a length-scale

L = c ∗ 1 day ≈ 1000 km,

a typical meridional distance among tropical storm systems.
This suggests the following rationale for the meridional extent

of the tropical troposphere and the Hadley cells. For the air parcels
that make up the cells to propagate vertically, they need the at-
mosphere to be at most weakly stratified, or else the stratifica-
tion would act as a barrier to vertical motion. This homogenization
of the troposphere is achieved by mixing both by the air parcels
themselves, with their accompanying turbulent entrainment, and
by other processes, such as breaking internal waves and shear in-
stability, all of which require the active participation of waves. The
rising parcels, in particular, are not a straightforward response to
solar heat: a warm, moist environment at ground level creates the
pre-conditions for convection, yet this requires, in order to ma-
terialize, the development of areas of low pressure, so that Ek-
man pumping in the boundary layer can bring about convergence
and upwelling. Similarly, areas of high pressure cause air to de-
scend. This alternating pattern of regions of low and high pressure
is brought about by waves. Those waves that are diurnal, as ar-
gued above, can only propagate in the band between the parallels
at −30° and 30°.

By contrast, the theory in [2] for the extent of the cells can be
summarized as follows. In the upper branch of the cells, the air
moving away from the equatormust preserve angularmomentum,
yielding the meridional dependence of the zonal wind along this
upper branch. If the height of the branch is known, then the

thermal wind relation yields, in an average sense, the meridional
dependence of the temperature. With this, one can estimate the
amount of thermal radiation out to space. Since the cells exchange
heat only weakly with the mid-latitudes, the meridional integral
of this outward radiation must match the external heating. This
equality sets the meridional extent of the cells. More recently,
Held [3] qualified his explanation – see also [11,12] –, adding the
constraint that the Hadley cells could not extend into regions with
active baroclinicity. However, since the onset of the baroclinic
instability depends on the stratification and shear profiles, and
these are determined to a large degree by the circulation itself, this
constraint alone is not a predictor of the actual meridional extent
of the cells.

These theories rely on a number of simplifications, yet we do
not argue with their general conclusions, but with the causality
that they imply. In the theories, the height of the outward branches
of the cells is given (as well as the stratification in the modified
theory) and their meridional extent is derived from the energy
balance or the onset of baroclinicity. If our theory is correct, it is
the meridional extent that is given by dynamical reasons – wave
trapping – and so it is the height of the outward branch that needs
to adjust accordingly to satisfy energy conservation.

In this paper, we validate our hypothesis through two simple
models. The first model is linear, simply intended to display the
robustness of the trapping of diurnal waves between −30° and
30°. The secondmodel – a nonlinear rotating shallowwater system
where the complex dynamics of mixing is represented through a
simple closure, with breaking waves entraining stratospheric air
– shows how this trapped wave action may translate into a hat-
shaped profile for the tropopause. Both of ourmodels have a single
layer representing the first baroclinic mode, and cannot therefore
account for the meridional Hadley circulation in the cells nor for a
direct description of the depth of the troposphere. It does, however
indicate the latitudinal dependence of the intensity of entrainment
and mixing. In a final section, we discuss what ingredients are
required of a model so that it can capture the mean circulation as
well.

2. A model for trapped tropospheric waves

We propose to validate the hypothesis outlined above through
a simple dynamical model with the following ingredients and
modeling reductions: 1

• A meridionally dependent Coriolis parameter

f = 2Ω sin(α).

• No zonal dependence. Note that this is not the same as taking
zonal means, in that the sun still displays its diurnal cycle.
One can think of a fixed meridian, with the sun appearing
and disappearing daily from the sky, creating a meridional
pattern. Clearly real waves span all directions, yet since the
baroclinic waves that we study are not fast enough to follow
the sun in its path around the Earth – these would be
thermal tides, a barotropic phenomenon – their zonal and
meridional components are not fundamentally different. Since
the waves are trapped meridionally, we use a ‘‘one-and-
a-half dimensional’’ modeling reduction, which keeps both
meridional and zonal components of the wind field, but
represents only their meridional dependence.

• Hydrostatically balanced dynamics.

1 The non-specialist reader can find an up-to-date general reference on the
fundamental concepts of geophysical fluid dynamics, such as the distinction
between barotropic and baroclinic waves, in [13].
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• Simplified stratification. We represent the troposphere as a
shallow water layer of vertically uniform density bounded
below by an the Earth’s surface – free of any topography – and
above by an infinite passive layer of constant density modeling
the stratosphere. In order to capture the meridional circulation
in the cells, we would need to include a frictional boundary
layer. In this paper, however, we adopt themost distilledmodel
designed only to prove the concept that trapped waves may
lead to a discontinuous mean profile.

• An external, meridionally dependent, time periodic forcing of
the buoyancy field, mimicking the thermal forcing by the sun.

• A simplified description of mixing and entrainment. We use
a closure for stratospheric air entrainment through breaking
waves that we developed in [14], valid for subcritical flows.
The basic idea is to replace mass by energy conservation.
Both are equivalent in smooth parts of the flow but, when
shocks develop, energy conservation implies mass growth. This
observation is reciprocal to the more conventional one for non-
entraining hydraulic jumps and bores, wheremass is conserved
and energy is dissipated.

• A Boussinesq treatment of density variations. In particular, the
effect of heating is modeled as affecting the fluid’s density, but
not its volume. Hence volume, not mass, is conserved in the
presence of heating. This is customarily done in geophysical
models. Our motivation here arises from the need to decouple
baroclinic and barotropic dynamics. To see this, consider the
real effect of heating on the troposphere: it changes the air’s
density and, if the vertical mean of the heating is nonzero,
it consistently raises or lowers the fluid column’s height to
preserve mass. Yet the latter is a barotropic effect, to which the
atmosphere would adjust very rapidly through waves an order
of magnitude faster than their baroclinic counterpart; in fact
through the barotropic waves responsible for the thermal tides.
The Boussinesq model of heating is a simple way of replacing
this barotropic component of the dynamics – the global tides
– with an effectively infinitely fast mode that re-equilibrates
the volume over the spatial scales we consider. Once this
modeling hypothesis on heating is used, it is most consistent to
combine it with the other reduction bearing Boussinesq’s name,
which simplifies inertia by definingmomentum as consisting of
volume – rather than mass – times velocity.

We would like to highlight an important note in the interpreta-
tion of the results of our model, resulting from the single layer ap-
proximation: that h should be viewedboth at the effective height of
the first baroclinic mode and, in long-time averages, as a proxy for
the height of the troposphere. Clearly hwill oscillate with the diur-
nal frequency and therefore it does not represent the depth of the
troposphere at each instant in time, but rather the pressure vari-
ations associated with tropical storms. However, the accumulated
effect of the associated mixing yields, through the long-time aver-
age of h, a reasonable estimate for the profile of the tropopause.

Even though the frequency Ω of the Coriolis parameter and
that of the thermal forcing agree on Earth – up to the third of a
percent difference between the sidereal and the solar days – the
model should allow them to differ, to validate the claim that it is
the relation between these two frequencies that determines the
extent of the tropics. As a matter of curiosity, the value of one
frequency is twice the other’s on Venus where, because of the slow
and retrograde nature of the planet’s rotation, there are two solar
days per revolution.

3. Models and results

In our model, the effective moist baroclinic mode of the
troposphere has an equivalent height h(y, t) and a density

ρ = ρs


1 +

1
g
g ′(y, t)


, (1)

uniform in the vertical. Here ρs is the stratosphere’s uniform
density, and

g ′
= g

ρ − ρs

ρs
> 0,

the reduced gravity, is a function of space and time, given by the
heating. The pressure above the tropopause is a [linear] function
of the height. We often use the terms ‘‘reduced gravity’’ and
‘‘buoyancy’’ interchangeably in this paper.

We write the rotating shallow water system in spherical
coordinates, with a variable buoyancy g ′, in the Boussinesq
approximation:

ht +
1

cos(y)
[cos(y)hv]y = 0 (2)

(hv)t +
1

cos(y)


cos(y)hv2

y +

[
1
2
g ′h2

]
y
+ f (y)hu

+
h
R
u2 tan(y) = 0 (3)

(hu)t + [hvu]y − f (y)hv = 0, (4)

where h represents the height, v and u the meridional and zonal
velocities, R is the radius of the Earth, and all functions depend only
on the longitude y and the time t . The buoyancy g ′ is forced through
an equation of the form

dg ′

dt
= g ′

t + vg ′

y = λ(H(y, t) − g ′), (5)

where H is the external forcing – the time-dependent radiative
equilibrium profile – and λ a relaxation parameter.

Wewrite the heating functionH as amean buoyancyminus the
product of a meridional and a temporally dependent factor,

H = 1 − B(y)T (t). (6)

The actual temporal dependence of the diurnal forcing is well
approximated by a truncated cosine function,

T (t) = (max(cos(2π t), 0))2 , (7)

where t is measured in days. The origin of this asymmetric form
of the temporal dependence is two-fold: the switching off of solar
radiation during the night, and the asymmetry of convection, that
acts only when the ground is warmer than the air. Simple Fourier
analysis yields the spectral decomposition

T (t) =

∞−
n=1

Tn cos(2πnt), (8)

with

Tn =



1
4

for n = 0

1
8

for n = 2

0 for n even, n > 2

2
π

(−1)
n+1
2

n(n2 − 4)
for n odd.

(9)

Except for the steadymode n = 0,with no dynamics, the dominant
mode isn = 1. Thus onemay consider a simplestmodelwhere only
this mode is acting. In nonlinear scenarios, we will need to add the
mean, n = 0, because of its nontrivial meridional dependence.



Author's personal copy

236 P.A. Milewski, E.G. Tabak / Physica D 240 (2011) 233–240

(a) Buoyancy and tropopause displacement N . (b) Meridional and zonal velocities and phases.

Fig. 1. Linear model at the equinox.

(a) Buoyancy and tropopause displacement N . (b) Meridional and zonal velocities and phases.

Fig. 2. Linear model at the northern summer solstice.

We adopt a simplified representation of the meridional depen-
dence of the forcing, that captures its main qualitative features
without going into unnecessary detail:

B(y) =

[
max


cos


π

2
y − y0

π/2 − |y0|


, 0
]2

. (10)

This function is centered at y0, a rough representative of seasonal
effects: y0 is zero during the equinoxes, and reaches±23.5° during
the solstices. This function, depicted for y0 = 0 and y0 = 23.5° in
Figs. 1(a) and 2(a), is intended to representmostly the diurnal com-
ponent of the forcing, hence its zero values at both the summer and
the winter poles. Two scenarios will be considered: a frozen sce-
nario where the meridional structure is fixed throughout the year,
and another where it changes seasonally—that is, y0 is a (slow)
function of t .

The function B(y) mimics the solar radiation impinging on
Earth. One might consider adding the convective response,
including for instance an intensification of the forcing at the ITCZ.
Yet we prefer to pose a model that does not pre-assume any
dynamical response of the atmosphere to the external radiation:
it is too tempting, in climate studies, to use observed features of
the system to build theories that end up ‘‘explaining’’ these very
features! Ideally, amodel compatiblewith ameridional circulation
would yield an ITCZ without the need to parameterize it ab initio.

We will adopt two complementary approaches to the Eqs. (2)–
(4): in one, we linearize the equations while preserving all the
spherical geometric terms. In the other, we keep the nonlinearity
but, for simplicity, remove all those factors, except for the merid-
ional variation of the Coriolis parameter. In this second approach,
we also replace volume by energy conservation, so as to permit en-
trainment at breaking waves (no such replacement is necessary in
the linear problem, since it has no wave breaking).

3.1. Linear regime

In the linear regime, we adopt h = h0 + η, g ′
= g0′(1 − b) (the

negative sign is to account that an increased buoyancy corresponds
to a decrease in reduced gravity), and obtain

ηt +
h0

cos y
(v cos y)y = 0 (11)

vt + f (y)u + g ′

0ηy =
1
2
g ′

0h0by (12)

ut − f (y)v = 0. (13)

The equations are nondimensionalized using c =

g ′

0h0 as the
scaling for the velocities, h0 as the scaling for the vertical
displacement, the inverse of the Earth’s rotation rate Ω−1 as a
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(a) Buoyancy and tropopause displacement N . (b) Meridional and zonal velocities and phases.

Fig. 3. Linear model for barotropic parameters.

timescale, and the Earth’s radius R as the horizontal length-scale.
The dimensionless linear equations are then

ηt + ϵ
1

cos y
(v cos y)y = 0 (14)

vt + f (y)u + ϵηy =
1
2
ϵby (15)

ut − f (y)v = 0, (16)

where f stands for f
Ω
, and

ϵ =
c

RΩ
.

Typical atmospheric values for c are of the order of 15 m/s
for the effective moist baroclinic mode. This corresponds to ϵ
approximately equal to 0.03, small enough to give rise to multiple-
scale phenomena: ϵ can be seen as the quotient between the
length-scale of the diurnal waves, roughly 1000 km, and the
circumference of the Earth. (An upper bound for baroclinic speeds
is approximately 45 m/s, corresponding to the first dry mode and
below for higher modes. The corresponding value of ϵ is 0.1, still
resulting in wave trapping between −30° and 30°.)

Next we eliminate the explicit appearance of ϵ in the equations,
by rescaling the meridional variable: y → ϵy. Yet ϵ still appears
in the meridional dependence of the Coriolis parameter f , in the
geometrical factor cos(ϵy), and in the location of the boundaries,
at ±

π
2ϵ .

Since the forced equation for the buoyancy b(y, t) decouples
from the flow at the linear level, we can bypass the external
heating and consider instead b(y, t) as a given periodic function
of frequency ω : b = B(y)eiωt , where the diurnal case has ω = 1.
The solutions to the linear problem have the same frequency, so
the transformation ∂t → iω yields

iωu − f v = 0 (17)
iω +

f 2

iω


v + ηy =

1
2
by (18)

iω η +
1

cos(ϵy)
[v cos(ϵy)]y = 0. (19)

These imply a second order forced equation for v alone:[
1

cos(ϵy)
[v cos(ϵy)]y

]
y
+

ω2

− f 2

v = −

i
2
ωby. (20)

This equation has a turning point when ω = f , i.e. at 30° when
ω = 1. Equatorwards of this location the solutions are oscillatory,
while they decay exponentially poleward. For the meridional
dependence B(y), we use (10), with y0 at either a solstice or an
equinox. Most of the examples below have ω = 1, corresponding
to the diurnal cycle. For the inverse length-scale, we choose ϵ

= 0.0324, corresponding to a typical first baroclinic speed c =

15 m/s.
Fig. 1 depict the results when y0 = 0, i.e. with the sun at the

equinox. Fig. 1(a) shows the imposed buoyancy B(y), as well as the
resulting amplitude for the perturbation height of the troposphere,
η(y), a wave response trapped between −30° and 30°. Fig. 1 (b)
shows the amplitudes of the meridional and zonal velocities, also
trapped in the tropics. The phases of these are also displayed: the
zonal velocity is in phase with the buoyancy, and 90° away from
the meridional velocity, as is characteristic of frictionless rotating
flows. The resulting mean values of the winds and height are not
captured by the linear dynamics, where all variables oscillate back
and forth. Notice the intensification of the winds and decay of the
perturbation height as one approaches 30°, consistent with the
extreme non-equipartition of wave energy for gravity waves when
ω = f [15].

Fig. 2 have y0 = 23.5°, with the sun at the northern summer
solstice. Even though this makes the forcing highly asymmetric, it
has little effect on thewaves, which are still trapped between±30°
and, if anything, show more activity in the winter hemisphere.

It is still the northern summer in Fig. 3, but this time we are
looking at the dynamics of the barotropic mode, with c = 300m/s
and ϵ ≈ 0.6, no longer small. As a consequence, there is no longer
a clear-cut distinction between awave and a direct response to the
forcing, nor are the waves trapped in the tropics: they give rise to
global modes instead. In essence, we are looking at a meridional
cross-section of the thermal tide.

In Fig. 4, we return to the baroclinic mode and the solstice,
but perform a ‘‘pre-Copernican’’ experiment, where the frequency
of the Earth’s rotation and the diurnal cycle of the sun decouple.
This allows us to pick ω =

√
3, yielding a band of trapped waves

between −60° and 60°, confirmed in the numerical results. Notice
that any ω ≥ 2 yields global modes that extend throughout the
sphere; hencenoharmonic of the diurnal cycle gives rise to trapped
waves. One might speculate that such higher harmonics may be
components of the ‘‘teleconnections’’ between the tropics and the
middle and high latitudes [16].
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(a) Buoyancy and tropopause displacement N . (b) Meridional and zonal velocities and phases.

Fig. 4. Linear model for non-synchronous forcing.

3.2. A nonlinear model

We return now to the nonlinear system (2)–(4), and rectify the
spherical geometry, writing instead the more standard rotating
shallow water equations
ht + [hv]y = 0 (21)

(hv)t +

hv2

y +

[
1
2
g ′h2

]
y
+ f (y)hu = 0 (22)

(hu)t + [hvu]y − f (y)hv = 0, (23)
or, in smooth parts of the flow,
ht + vhy + hvy = 0 (24)

vt + vvy + g ′hy = −f (y)u −
1
2
g ′

yh (25)

ut + vuy = f (y)v, (26)
with
dg ′

dt
= g ′

t + vg ′

y = λ(H(y, t) − g ′). (27)

Waves in the nonlinearmodelwill break, and thuswemust impose
a physically appropriate conservation law form. The nonlinear
model should not really conserve volume: we expect the tropo-
sphere to adjust to violent motions by entraining and mixing
stratospheric air, thus adopting its distinct, hat-shaped profile. To
permit this, we replace volume by energy conservation:[
h
v2

+ u2
+ g ′h

2

]
t
+

[
v


h
v2

+ u2
+ g ′h

2
+

1
2
g ′h2

]
y

=
h2

2
dg ′

dt
. (28)

In smooth parts of the flow, both conservation forms are
equivalent. When waves break, however, we have shown in [14]
that energy conservation yields volume growth, in factmaximizing
entrainment among all subcritical flows that do not generate
energy spontaneously at shocks. In our model, this entrainment
should not be interpreted literally as the overturning of a baroclinic
wave with a direct effect on the height of the troposphere, but
rather as an energetically consistent approach stating that violent
wave action in the troposphere eventually results in mixing and
entrainment.

We solve this system numerically using a second order
Godunov method [17]. Quite a few details are specific to our
system, so we briefly summarize the methodology below:

• We have a vector of conserved quantities, one of the corre-
sponding fluxes and one of the forcing terms,

U =

 E
Mv

Mu


, Q =

Qe
Qv

Qu


and F =

Fe
Fv

Fu


,

satisfying

Ut + Qy = F .

Here

U =

h
v2

+ u2
+ g ′h

2
hv
hu

 ,

Q =


v


h
v2

+ u2
+ g ′h

2
+

1
2
g ′h2


hv2

+
1
2
g ′h2

hvu


and

F =


h2

2
dg ′

dt
−f (y)hu
f (y)hv

 .

In order to compute the fluxes Q from the conserved quantities
U , one needs to find h, which is given by the largest (i.e., positive
and subcritical) solution of the cubic equation

E =
M2

v + M2
u

2h
+ g ′

h2

2
.

• We also have four generalized Riemann invariants: the shallow
water Riemann invariants

R±
= v ± 2


g ′h,

the zonal speed u, and the reduced gravity g ′. In smooth parts
of the flow, they satisfy the following forced characteristic
equations:

R±

t +


v ±


g ′h

R±

y = −f u +
1
2
hg ′

y ±


h
g ′

Hg (29)

ut + v uy = f v (30)

g ′

t + v g ′

y = Hg , (31)
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Fig. 5. Seasonal snapshots of meridional forcing of the reduced gravity field (top-left), height of the tropopause (top-right), meridional momentum (bottom-left) and zonal
momentum (bottom-right). The four curves in each panel correspond to 2 solstices and 2 equinoxes of a given year.

where

Hg = λ (H(y, t) − g ′)

is the external heating source.
• We set a regularly spaced spatial grid with cells centered at

y = yj and interfaces between cells at y = yj+ 1
2
. Each time

step t = tn starts with knowledge of the current mean values
(Un

j , g
′n
j ) of the conserved quantities U and of the reduced

gravity g ′ over the cells, and computes these average values at
time t = tn+1. For the U ’s, this is done enforcing conservation
and second order accuracy, in the form

Un+1
j = Un

j +
1t
1y


Q

n+ 1
2

j− 1
2

− Q
n+ 1

2
j+ 1

2


+

1t
2


F n
j + F n+1

j


, (32)

and, for g ′, through

g ′n+1
j = g ′n

j +
1t
2


Fg nj + Fg n+1

j


,

where Fg = Hg − v g ′
y.

In order to compute all the elements required for these updates,
we start by computing the four Riemann invariants at the cell’s
centers from the conserved quantities at time tn, and building
a piecewise linear approximation to them using centered
differences with van Leer slope limiters [18]. Then, tracing back
the characteristics to time tn andusing the forced Eqs. (29)–(31),
we solve the generalized Riemann problems (to second order in
1t), seeking the solution at each interface at t = tn+ 1

2
, halfway

through the time step [19]. With these solutions, we compute

the fluxes Q
n+ 1

2
j± 1

2
.

Knowing the fluxes at time tn+ 1
2
and forces at time tn, we can

compute a first order approximation to Un+1
j using (32) with

both forces at time tn (the predictor step of a predictor–corrector

approach).With theseU ′s, we compute a first order approxima-
tion to the forces at time tn+1, and are ready to apply formula
(32) to update the U ’s with second order accuracy.

3.3. Nonlinear results

In the experiments below, we have adopted the thermal forc-
ing profile (6), but with the two dominating temporal compo-
nents: one daily and one steady, of comparable amplitude, as in the
Fourier expansion (9). (Including the steady mode was not neces-
sary in the linear scenario, where the various modes decouple.) It
turns out, however, that the existence of free daily modes in the
tropics amplifies the effect of the diurnal component enormously
– in a standard resonant effect –, making by comparison the ef-
fects of the steady component almost negligible, and so effectively
suppressing any significant nonlinear interaction between the two
modes. (In fact, it is this resonance that explains why it is not cor-
rect to neglect the daily component of the heating. The justification
typically invoked for this neglect is that the radiative relaxation
time of the atmosphere is significantly longer than a day. Yet it is
a well known fact that, in the presence of resonance, small forcing
effects are greatly magnified.)

Since the model entrains air at breaking waves but has no
detrainment mechanism, the total volume of the model tropo-
sphere increases continuously. In order to reach equilibrium bal-
ance, one could add a relaxation term that pushes the height back
to its initial configuration. Such a relaxation term is added as a forc-
ing to the energy equation (since there is no independent equation
for the height) that would account for a ‘‘restratification’’ of the
top of the troposphere. Although we have implemented this, in or-
der not to complicate the discussionwith extra forcing parameters,
we report here on an experiment done without this relaxation.We
simply run our model for a finite amount of time, and stop before
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Fig. 6. Seasonal averaged tropopause height.

the tropospheric height reaches levels incompatible with themod-
eling assumptions.

The results of this numerical experiment are shown below. We
have used the thermal forcing in (6), (7) and (10), with F limited to
two frequencies: ω0 = 0, the averaged component of the forcing,
and ω1 = 1, the daily component, both with amplitude f0,1 = 0.3,
and a buoyancy relaxation constant λ = 1.

In Fig. 5 we see four snapshots, corresponding to the two
solstices and two equinoxes of the third year of the run which
started at t = 0 from a profile with uniform height h = 1 and
zero velocities. Shown are the buoyancy field g ′ – reflecting the
forcing – the height h, and the two components of the volume flow:
hv and hu. Fig. 6 shows the height averaged over each of the four
seasons of this third year. As in the linear case, the wave action
is clearly trapped between −30° and 30°, but this wave action
leads to breaking and entrainment, which in turn leads to a hat-
shaped profile for h. The thermal zonal winds – the subtropical jets
– prevent the tropics to spread beyond 30°, as theywould in a non-
rotating planet. As in the real Earth, the location of the outer edges
of the tropics, at the Horse latitudes, are season-independent.

4. Discussion

In this paper, we proposed an explanation for the meridional
extent of the tropics: baroclinic diurnal waves, forced by the sun,
are trapped between −30° and 30° of latitude. On the one hand,
this explains very simply why the wind field in the tropics has
such marked daily signal, all but absent in most of the middle
and high latitudes—when the signal is present at higher latitudes,
for instance as sea-breeze in coastal areas, it is clearly as a direct
local response to the forcing. In the tropics, the daily signal is
global, organized in cells of diameters around1000 km. By contrast,
daily barotropic waves, responsible for the thermal tides, are not
trapped: their length-scales are around 20,000 km.

We argue that this trapping of diurnal waves is also responsible
for the meridional extent of the Hadley cells, whose outer edges
are invariably at ±30°, the Horse latitudes, independently of the
season. The reason is that wave action is responsible for much of
the stirring of the tropical troposphere, not only through mixing
by breaking waves, but also through the organization of the
alternating areas of high and low pressure underlying large-scale
convection.

To validate these ideas, we have written a simple, one-layer
model of the troposphere, forced daily by the sun, which displays,
at the linear level, the phenomenon of wave trapping and,
nonlinearly, transforms this wave action into air entrainment,
thus giving rise to a hat-shaped profile comparable to the actual
tropopause. In the model, we can decouple the thermal from the
mechanical day (in Venus, one is twice as long as the other)

and show how, were these to differ, the tropics would extend to
latitudes other than 30°.

In a single layer model with no return flow, there is no place for
a mean meridional circulation. Thus we obtain the correct shape
of the troposphere, but with no Hadley circulation underlying it.
We discuss, in these last fewparagraphs, what ingredients it would
take to construct a simplemodel that could capture this circulation.
Clearly, one would need at least two fluid layers: one representing
the bulk of the troposphere, and the other the boundary flow. To
be realistic, the boundary layer should be thinner and controlled
by friction, a simple surrogate for Ekman dynamics. As in this
paper, one could exclude all zonal dependence from the model
(which is quite different from taking zonal means) so as to reduce
its dimensionality. Lastly, an extra requirement appears necessary
if one is to generate a realistic circulation: the flow should not
be arrested far from its minimal energy configuration by a zonal
thermal wind. For this, the model needs to include a surrogate of
the baroclinic instability. It appears that the simplest model with
these characteristics is that of a two-layer flow bounded above and
below by rigid lids. The remaining challenge then, of course, is to
develop a closure for volume exchange among the layers, possibly
similar in spirit to our closure for entrainment by breaking waves.

We are currently developing one suchmodel; we hope that, we
may have it ready for Lou Howard’s next birthday conference!
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