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A methodology is developed for modeling entrainment in two-layer shallow water flows
using non-standard conserved quantities, replacing layer-wise mass conservation by global
energy conservation. Thus the energy that the standard model would regularly dissipate
at internal shocks is instead available to exchange fluid between the layers. Two models
are considered for the upper boundary of the flow: a rigid lid and a free surface. The latter
provides a selection principle for choosing physically relevant conservation laws among
the infinitely many that the former possesses, when the ratio between the baroclinic and
barotropic speeds tends to zero. Solutions of the equations are studied analytically and
numerically, applied to the lock-exchange problem, and compared to other closures.

1. Introduction

Most geophysical flows are density stratified: although the fluid can be modeled by in-
compressible equations, density differences due to concentration of salt, sediment, mois-
ture or temperature differences drive its motion. This motion may be calm enough that
the density remains constant along fluid particles in the timescales of gravity driven mo-
tions, but it may also become violent and turbulent, for example at breaking waves and
plumes. In this case, small scale chaotic motion ensues and mixing processes such as dif-
fusion or dispersion occur more rapidly. The aim of this paper is to propose a framework
to quantify this mizing over the large scales without resolving the small scale motion.

The hydrostatic balance applies when the horizontal length scales of motion are much
longer than the vertical scales. In this case, the vertical acceleration may be neglected
and the problems reduced to hyperbolic systems of equations in the horizontal plane.
Probably the simplest example is provided by the shallow water equations of water waves.
From smooth initial data, these systems typically develop breaking waves in finite time,
and one must then decide how to continue the dynamics to model the physics. In many
cases, a robust procedure is known: one allows discontinuities — shocks — and models
their evolution by choosing appropriate conserved quantities of the original system and
imposing that they must be conserved also in the presence of shocks. For the shallow
water equations Stoker (1958), choosing volume and momentum conservation yields a
physically and mathematically sound description of one-layer hydraulics, with energy
dissipated at shocks. It is important to note that the original system may have many
conserved quantities — even infinitely many — and that the appropriate choice may not
be obvious. In this paper, we discuss the various conservation laws and propose a choice
to model mizing shocks in multilayer shallow water equations.

The two layer shallow water model was proposed by Long (1956); together with ex-
tensions to multiple layers, this model is often used in ocean applications, for instance
with one layer representing either the mixed layer or the thermocline, and the other
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the deep waters below. The fluids are confined above and below by horizontal lids, and
there is only one interface between two layers of different density. The model has been
shown to be nonlinearly well posed and equivalent — in smooth parts and for interfaces
not crossing the midline of the channel — to the shallow water equations (Chumakova et
al (2009), Esler & Pearce (2011)). However, waves may break, and shock conditions to
model entrainment between the layers have not been derived from first principles. In fact,
infinitely many conservation laws are consistent with the equations describing the smooth
evolution. Even without mixing, the exchange of momentum among the two layers yields
a closure problem for shock waves, that was addressed in a number of works, including
Wood & Simpson (1984), Klemp et al (1994), Klemp et al (1997), where non-entraining
closures are proposed based on physical considerations regarding the layer in which en-
ergy is dissipated. In Li & Cummins (1998), a more inclusive scenario is considered where
energy may be dissipated in both layers, providing, in lieu of a fixed closure, a range of
allowable shocks speeds.

A more complex interfacial problem is the “two-and-a-half” layer problem, where the
upper wall is replaced by a free surface with an infinitely deep quiescent fluid above it.
This problem has two interfaces and four modes: two barotropic, with interfaces displac-
ing in unison, and two baroclinic, with opposite interfacial displacement. Remarkably, the
system has only six possible independent conservation laws Barros (2006). This suggests
adopting, as a selection principle for allowable conservation laws in the case with a rigid
lid, the limit of these six, restricted to the baroclinic dynamics, which uncouples from
barotropic dynamics when the internal stratification is weak. In particular, in order to
model entrainment, we propose substituting the conservation of volume for each layer by
the conservation of total energy. This is consistent with the energy conservation closure
developed for internal bores in Jacobsen et al (2008) in the context of one-and-a-half
layer flows. In contrast, internal hydraulic jumps are quite different in this respect: as
shown in Holland et al (2002), they necessarily dissipate energy; alternative closures for
internal hydraulic jumps include dissipating as much energy as the stratification allows
Holland et al (2002) and maximizing mixing through adopting the largest shock speed
consistent with the entropy conditions Jacobsen et al (2008). In this paper, we concen-
trate our attention on internal bores, such as those associated with gravity currents and
our results thus yield an upper bound for entrainment in this case.

One of the simplest unsteady problems involving two layer flows is the lock exchange
problem. This is the idealized situation where two fluids of different densities are initially
confined to the left and right of a barrier, which is removed at ¢ = 0. (The analogue
with just one layer and a free surface is the dam breaking problem.) We study the lock
exchange as an application of the closure proposed in this article.

The paper is organised as follows: in section 2 we derive the governing equations
for both the free-surface and the rigid-lid-bounded two-layer flows and their connec-
tion in the asymptotic limit of infinitely separated timescales. In section 3 we propose
conservation-law-based mixing closures for both cases, and compute free-surface lock ex-
change solutions. The consequences of using the energy closures in steady bores is also
discussed. In section 4 we study the lock-exchange rigid-lid problem analytically under
two extreme closures: volume conservation and energy conservation, corresponding to
null and maximal mixing respectively.
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FIGURE 1. Sketch of the physical problem. Shown are the free surfaces and a baroclinic
entraining shock. The horizontal bottom is at z = 0.

2. Formulation and Governing Equations
2.1. Two interfaces
Consider the configuration shown in Figure 1, sometimes called the the “two and a
half” layer problem. We denote the height of the lower and upper active layers h(z,t)
and H(x,t) respectively, and their densities p; and p,,. The semi-infinite “passive” layer
above has reference density pg. The pressure is assumed to be in hydrostatic balance,
and also to be uniform in x for large enough values of z; it is therefore given by:

) pg(h = 2) + pugH + pog(Ho — H —h) 0<z<h
pug(h+ H — 2z) + pog(Hy — h — H) h<z<h+H.

The vertically integrated pressures in each layer yield the hydrostatic forces

/ pdz = Pl = 3(pi = po)gh® + (pu — po)gHh + pog(Ho — 5h)h  lower layer
layer P = 1(pu — po)gH* + pog(Ho(H — h) + h?) upper layer

The form drag on each interface is

B - Fhv = (pugH + pog(Ho — H — h)) h,, lower interface
o FiH = pog(Hy —h — H)(h+ H),  upper interface

Thus, the resultant force in each layer F = —P; + F, is

p_ VPl H Fl == (o0 = po)ghha = (pu — po)ghHy lower layer
=P, + FéH_H - Fdh = —(pu — po)gHHy — (pu — po)gHh, upper layer

We can write the conservation of volume and momentum in each layer, introducing the
corresponding velocities u(z,t) and U(x,t). For simplicity, we make the Boussinesq ap-
proximation, which is a scaling limit of the dynamics valid for small density differences
between layers and used in many geophysical applications. The approximation entails
using the densities of each layer in the “buoyancy” terms derived above, but replacing
them by a reference density (such as pg) in the inertial terms. We consider an approxi-
mation where the density changes resulting from entrainment and mixing do not affect
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the conservation laws. The more general case for one-and-a-half layer models is discussed
in Jacobsen et al (2008).
Thus, defining;:

bEgL_pO, Bzgipu_po7
Po Po
the conservation laws for volume and the momentum equations read
1
(hu)e + (hu®), + b (2h2) + BhH, =0, (2.2)
H,+ (HU), =0, (2.3)
1
(HU); + (HU?), + B <2H2> + BHh, = 0. (2.4)

These equations, valid in smooth parts of the flow, can be manipulated in various con-
venient ways. For example, the two momentum equations may be replaced by

1
ug + <2u2 + bh + BH) =0, (2.5)

U + <;U2 + B(h + H)) =0. (2.6)

The system (2.1-2.4) has six physically motivated scalar conservation laws of the form

vt + [Q(U>]w =0,

where the conserved quantities forming the vector v are functions of the physical vari-
ables, and the @ are their fluxes: the two volume conservations (2.1) and (2.3), the two
conservation laws for circulation U and w = u — U around each interface, resulting in
equations (2.6) and the difference of (2.5) and (2.6)

1 1
w; + (2u2 — U+ (b B)h) =0, (2.7)

x

and laws for conservation of total momentum and total energy. These are, respectively,
the sum of (2.2) and (2.4),

1 1
P+ (hu2 + HU? + 5bh? + BhH + 2BH2> =0, (2.8)

where P = hu + HU, and
Ey + [hu® + HU? +2(b — B)h*u + 2B(hu+ HU)(h+ H)] =0, (2.9)

where E = hu?+ HU? + (b— B)h?+ B(h+ H)?. It was proved in Barros (2006) that these
are the only linearly independent conserved quantities. Whilst any set of four independent
combinations of the above six laws yields identical dynamics for smooth solutions, once
shocks form, the solutions differ considerably. In the remainder of the paper we discuss
various combinations of the above conservation laws that may be used to model problems
in which the two fluids mix.

The characteristic speeds A of the system (2.1-2.4) satisfy

[(A—w)®>=bh] [(A\=U)* - BH| — B°Hh =0, (2.10)

corresponding to two baroclinic and two barotropic modes. We will use this expression
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FIGURE 2. Schematic of the two-layer, one interface flow. A shock is shown entraining lighter
fluid into heavier fluid, a situation considered later in the paper.

later when we show that the rigid lid system results from an asymptotic decoupling of
these modes. Notice that the speeds are real when the heights h and H are positive
and b > B and the shear between the layers |u — U| is sufficiently small. At larger
values of the shear, the system is ill-posed in time, a reflection of the Kelvin-Helmholtz
instability criterion being achieved in the long-wave limit. In Chumakova et al (2009) it
was shown that this type of instability threshold may be naturally reached during the
smooth evolution of similar systems of 4x4 equations, whereas this is not the case under
th rigid-lid approximation.

2.2. One interface and rigid lid

The simplest set of evolution equations for interfacial waves arises in the situation
in which the flow is bounded by two horizontal rigid lids as shown in Figure 2. The
formulation then differs somewhat, since a reference pressure is unknown a priori: the
pressure at the top rigid lid follows not from the weight of fluid above it, but instead from
enforcing incompressibility below. In the Boussinesq limit, the non-dimensional equations
in smooth parts of the flow reduce to (see Long (1956), Milewski et al (2004))

he + (uh)y =0

1-3h 1,

Here the dynamics has been expressed in terms of the lower layer only, and upper layer
quantities can be recovered using the constraints

h+H=1  uh+UH=0.

The second constraint above corresponds to conservation of total momentum in the
Boussinesq approximation and is used throughout this paper. For non-mixing layers (i.e.
when each layer’s volume is conserved), this conservation of momentum is a consequence
of volume conservation, the rigid lid assumption and either the Boussinesq approximation
or appropriate boundary conditions Boonkasame & Milewski (2011). The equations above
have been nondimensionalized as follows: layer depths with the total depth Dg, velocities

with C =, /gplglp“ Dy and lengths and time with Dy and Dy /C respectively.

These equations are similar to their one-layer shallow water counterparts, but with an
apparently more complex nonlinearity. However, it was shown in Chumakova et al (2009)
that, using the system’s Riemann invariants, one can build a nonlinear map between the
smooth solutions of the two- layer flow system and those of one-layer shallow waters,
providing a surprising connection between one and two-layer flows. This connection was
further explored in Esler & Pearce (2011) in the study of non-mixing internal dam-break
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and lock-exchange flows where it was found that due to the nature of the map not all
two-layer solutions can be uniquely mapped to one-layer flows. Whilst the system has
similarities with one-layer shallow water, there are many differences: for example, the
momentum in individual layers is not conserved, and at shocks, the possibility of mixing
must be considered.

Introducing the interfacial displacement and shear variables

d=h—H=2h—-1, w=u—U=

1—-h’

one can symmetrize the system with volume and circulation conservation laws Chu-
makova et al (2009):

dy + (;w(l - d2))$ =0, (2.11)
wy + (;d(l - wQ))I =0. (2.12)

This system has characteristic speeds

M = dw + %\/(1 —d?) (1 —w?),
and can be written in the characteristic form as:
R+ Ry =0,
where
R* =sin™!(d) F sin™(w),

are the system’s Riemann invariants. The solutions were proved in Milewski et al (2004)
to remain in the hyperbolic region |d| < 1,|w| < 1 for all time. This is a sharp “nonlinear
stability” criterion for the equations, as it guarantees solutions to exist up to breaking
providing the initial shear is everywhere within the stability threshold |w| < 1 (w plays
the role of a local Richardson number in this problem).

2.3. Decoupling of the Baroclinic modes

Whilst the rigid lid equations can be derived by assuming a priori the rigid lid con-
figuration in Figure 2, they can also be found in the limit of the two-interface equations
through the decoupling of the barotropic and baroclinic modes when their timescales are
well separated. The separation of timescales occurs when the density difference at the
lower interface is much smaller than that at the upper one:

b:B+guzB+e.
Po

Introducing the variables

d=h—-H, w=u—"U, D=h+H, P =hu+ HU,
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the shallow water equations (2.1-2.4) become

D+ P, =0, (2.13)

P+ <];2 +%( 2—d2)+;BD2+eé(D+d)2>w_O, (2.14)
dt+( d+2D( 2—d2)w)z:O, (2.15)
wt—i—(gw+2§)(6D—w2)d+6;D>z:0. (2.16)

These equations can be linearized about a quiescent state, resulting in characteristic
speeds satisfying
M — (BDg — €hg) \* + eBhoHy = 0.

Thus the speeds separate into two pairs:

M =BDy+0(e) and N\ = + O(€).

hoHy
€ Do

In order to consider the limiting case e — 0 and retain only the slow baroclinic modes,
we rescale the fully nonlinear equations with

t= t, w = e W, Dzl—i—eﬁ, pP=¢&/?Pp.

Sl-

Dropping the tildes, the leading order terms in the equations now read
dt+(2 (1—-d?) )ZZO’ (2.17)
1 2
wy + 5(1—w)d =0, (2.18)

(“f (1-d*)+BD+ é(1 + d)2) =0, (2.19)

x

D, + P, =0. (2.20)

The first two equations are the ones presented in the previous section for the baroclinic
modes. Equation (2.19) defines an induced instantaneous barotropic height adjustment D,
whilst the last equation (2.20) defines an induced barotropic mean flow P. The instan-
taneous nature of the adjustment of the barotropic variables D and P to the baroclinic
ones d and w is a consequence of the scale separation between the two: in terms of the
baroclinic time-scale, the barotropic wave-speed is effectively infinite.

The inverse of the transformation, under the scalings assumed, yields

d+D d+1 D—-d 1-d
= — Hzizi
h 5 5 + O(e), 3 5 + O(e),
P D- d 3/2 P D+d 1+d 32
““pTap v (€5, U=p=5p w= Veg wroer)
Substituting these values in E gives
E:B+§(2—(1—w2)(1—d2)+2d)—|—2eBD+o(e).

In the entrainment and mixing problem, we shall use the order € correction to the energy
2 — (1 —w?)(1 — d?) + 2d in the rigid lid approximation to mimic the two-interface flow.
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Note that BD, the last term of order e, is omitted from this energy because it enforces
volume conservation in the two lower layers, which is the only choice consistent with a
rigid lid limit.

3. Entrainment and Mixing

In order to address flows with mixing and entrainment at shocks one has to replace
the volume conservation law by other choices. In this section, this issue is discussed both
for the two interface problem and the rigid lid, one interface problem.

The general approach here extends and complements ideas presented in Jacobsen et al
(2008), where we considered the “one-and-a-half” layer model (one shallow water layer
with an infinite layer of passive lighter fluid above). Within that context we presented two
main results: (i) that for sufficiently supercritical flows the maximum amount of mixing
allowed at a shock is given explicitly by assuming that the shock has maximum speed,
subject to the constraints provided by the conservation laws and the Lax condition. This
result provides a strict upper bound for mixing. (ii) that for subcritical flows, maximal
mixing is attained by assuming that conservation of energy replaces conservation of
volume. This provides an elegant and simple way to evolve mixing flows, an approach
that we follow here. However, the problem here is more subtle since the choice of conserved
quantities (from an infinite set) is not obvious.

3.1. Mizing in the two-interface configuration

In general, mixing may occur at both interfaces. The simplest situation would arise
when both layers’ volume conservation equations are discarded in favor of the remaining
four conservation equations: the two circulations, total momentum and total energy. This
is problematic though, since the four variables u, U, hu + HU, E do not carry sufficient
information to uniquely define the layer heights: if w = U = 0, the transformation
(u,h,U, H) <+ (u, P,U, E) is not invertible since P = 0 and E = (b— B)h?>+ B(h+ H)?,
providing one equation for the two heights.

Thus, one must instead make a priori assumptions relating the entrainment at both
interfaces by using a linear combination of the two volume conservations as one of the
laws. As an example, throughout this paper we consider the case in which entrainment
occurs only at the lower interface, a physically reasonable scenario for baroclinic flows.
This can be accomplished by the following system of conservation laws:

D+ [hu+ HU], =0, (3.1)
1 1
wy + {2u2 - 5U2 + (b — B)h] =0, (3.2)
1 1
P+ {huQ + HU? + 5bh? + BhH + 2BH2] =0, (3.3)
By + [hu® + HU? + 2(b — B)h*u + 2B(hu+ HU)(h+ H)] =0, (3.4)

corresponding to conservation of total volume, circulation around the interface, total
momentum and total energy. The entrainment is defined as rate of increase of volume in
the lower layer at a shock. (In smooth parts the entrainment is zero.) This is given by

Q = —c[hT + [T, (3.5)

where ¢ is the shock’s speed and []T indicates the jump in the enclosed quantity from
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FIGURE 3. Lock-exchange in the two-interface flow with entrainment in the lower interface. The
bold curves show the initial data and the final time. For this plot b = 1.1, B = 1.0 and the initial
data is h = 0.95 for x < 0 and h = 0.05 for z > 0, with h + H = 1. At the lateral boundaries
we have imposed conditions modelling a vertical wall. The solution is shown at times: t; = jA¢,

with 7 =0,...,5 and At = 0.5/1/0.1.

left to right. The total rate of change of volume in the lower layer is then given by

d
a/hdgcz > o

shocks

The change of density in the lower layer in response to this entrainment is given by

prutu (o), = 3 QN - (1),

shocks

where s(t) is the position of the shock and Q7 is the positive part of Q. Notice though
that this is a diagnostic, a posteriori, calculation of p; that does not affect the dynamics:
in models of the kind developed here the densities are assumed constant throughout
each layer. This can be thought of as a first-order approximation, quantitatively valid in
situations where the density variations brought about by entrainment are not very big.
It is possible to build models that include the density variation in the dynamics (see for
instance Jacobsen et al (2008) for one such model in a one-and-a-half layer setting.) These
model are more complex and since each layer may have a horizontal density gradient,
only valid on timescales shorter than the resulting overturning circulations within each
layer.

A general finite volume methodology for the numerical solution of general systems
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FIGURE 4. Lock-exchange in the two-interface flow. Comparison of entraining and non-entraining
cases. In all panels the dashed line is the non-entraining case and the solid line is the entraining
case of Figure 3. The upper panel shows the final interfacial shapes. The middle and lower panels
show the resulting total volume of the lower layer and total energy of the system, respectively.

of hyperbolic equations with arbitrary conserved quantities is discussed in Kurganov et
al (2001). This methodology is particularly appropriate for general conservation laws
because it does not require the solution of Riemann problems. In addition to being
conservative, this method automatically generated entropic solutions, with shocks that
satisfy the Lax conditions.

We show in Figure 3 a typical solution arising from a form of the lock exchange prob-
lem in the case of (3.1-3.4). The figure shows the surface displacements, and velocities in
each layer. This is a case where the density difference between the two layers is smaller
than with the ambient by a factor ¢ = 0.1. Thus one sees a fast barotropic adjustment
(see the middle panel where it is clear that at the first shown time a velocity disturbance
is reaching the boundary) and the slow baroclinic flow which consists of a buoyant grav-
ity current propagating to the left and a heavy current propagating to the right. The
upper interface deforms only slightly, rising on the side of the heavy current. Despite
symmetric initial data, the asymmetry between the light and heavy currents is clear.
This is mainly due to the asymmetry of entrainment: there is also a small contribution
from the barotropic modes, but this source of asymmetry disappears as the difference in
buoyancy between the two layers is made arbitrarily small.

By comparing the results of Figure 3 to the more classical model where conservation
of volume is retained, the consequence of our model for entrainment is shown in Figure
4. For this figure we show the profiles from the entraining model and those resulting
from solving the conservation laws for layer volumes and circulations: (2.1, 2.3, 2.5, 2.6)
with the same initial data. The results are shown in dashed lines in the figure. In the
top panel, the interfacial positions at the final time are shown. Had the initial data been
smooth, the evolution of the two solutions would have been identical up to breaking; with
discontinuous initial data, however, they differ from ¢ = 0. Clearly the solution of Figure
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3 has entrained fluid into the lower layer; the middle panel shows that the total volume of
the lower layer is an increasing function of time. The bottom panel shows the evolution
of the total energy that, in the volume conservation case, is dissipated at shocks.

The simulation just described is clearly dominated by the baroclinic modes, with the
upper free surface barely deforming and slaved to the dynamics of the interface between
the two active layers. Thus it is unnecessary to model it with two-and-a-half layers, whose
computation is more expensive, principally because the fast modes pose time-stepping
constraints. In addition, the rigid lid assumption corresponds to the setting of many
laboratory experiments. In section 4 we study lock exchange problem in the rigid lid
case, where the simplified equations allow us to write down the exact solution.

3.2. Conservation laws for the rigid lid system

For 2 x 2 systems, there are in general infinitely many choices for conservation laws,
where the conserved quantities can be seen to obey themselves a partial differential
equation in the state space d,w (see appendix). From physical principles one can verify
that

1 1
= —Z(l—d2)(1—w2)+ Fa(d+1) (3.6)

is the expression for the energy conserved by the system (2.11-2.12), where « is related to
the reference height level at which potential energy is being measured. If one is intent on
modeling mixing, the equations for volume conservation in each layer must be discarded.
Instead, we replace it with energy conservation where a can be used to control the relative
strengths of entrainment into the layers.

This choice, for a # 0, breaks the symmetry imposed by the Boussinesq approximation.
From the sign of % at constant circulation, one can show that for o > 1, the lower layer
entrains fluid at shocks while the upper layer detrains it, and vice versa for a < —1.
Note that for |a| < 1, e does not depend monotonically on d and therefore the system is
ambiguous as all dynamical variables cannot be recovered uniquely from the conserved
quantities. In our entrainment simulations, we will make the choice @ = 1, corresponding
to maximum entrainment into the lower layer. Note that conservation of mass instead of
energy corresponds to the limit o — oo.

The fact that % > 0 provides a simple proof that energy preserving shocks maxi-
mize entrainment. Since energy cannot be created at the shock, the only alternative to
energy conservation is energy dissipation. This would lead to a smaller volume in the
lower layer due to the positive sign of %. Hence energy-preserving shocks are maximally
entraining among entropic solutions. Amongst eralergy preserving shocks the choice oo =1

e

is maximally entraining into the lower layer as 37 is a minimum.

3.3. Steady Bores
The simplest setting for the theory is that of an idealized bore, displayed in figure
5. A fluid with lower layer of height h flows into a quiescent configuration with height
ho < h (equivalently dy < d) and ug = wg = 0. The two unknowns are the speed ¢ of the
shock and the velocity u of the lower layer behind it (or the corresponding circulation
w). We shall now choose to conserve total energy and circulation (since total momentum
is conserved automatically). This gives rise to the jump conditions

—cle]+[ge) =0 (3.7)
—c[w] + [qw] =0, (3.8)

where we choose a = 1 in (3.6) and thus e = —% (1 —d?) (1 —w?) + 3(d + 1), g =
twd (1 —d?) (1 —w?)+w (1 —d?), ¢q» = 3d (1 — w?) and the brackets denote the jumps
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FIGURE 5. Schematic of steady shock travelling at speed c¢ into a quiescent fluid of density pl*.
The shock entrains fluid of density p, at rate @ which is assumed to mix behind the shock.

between the states ahead and behind the shocks. Eliminating ¢ between the two jump
conditions yields

= lauw] [e] + [w] [ge] = 0,
which after some algebra becomes

{d(1-d*)}uw'+ {—(1 +d)? = (1—d?) (do + 1) +d(do + 1)2}w2 +
+{(do— &) (do +d+2)} =0,

a bi-quadratic equation for w with only one real positive root. Figure 6 displays the Froude
numbers u/vh and ¢/v/h as functions of dy and d. Also displayed is the curve marking
the boundary of the domain of entropic shocks satisfying the Lax condition whereby the
characteristic speed A4 behind the shock is greater or equal than the speed of the shock.
Beyond this boundary, energy cannot be conserved without violating causality. This
corresponds to the conceptual distinction between internal bores and hydraulic jumps
proposed in Jacobsen et al (2008) in the context of a one-and-a-half-layer model: for
maximal mixing, the active constraint for bores is energy conservation, while maximally
mixing hydraulic jumps are constrained by the Lax entropy conditions. Here, we shall
not consider entraining and energy dissipating hydraulic jumps.

The uniform shock wave solution is well-suited to study the consequences of entrain-
ment. The calculations so far assumed that the lower layer has the same density ahead
and behind the shock. However, there is upper—layer fluid entrainment Q at the shock
as given by (3.5), making the lower layer lighter behind the shock. Thus, the lower layer
density p; takes on two values pl+ ahead and p; behind the shock. To first order, one can
use, for the jumps conditions, an intermediate lower layer density p, and then diagnose
the actual densities before and after the shock in the presence of entrainment, introducing
a density variation Ap such that

pr=p+2p, pp =p—Ap.

From mass conservation in a control volume in the lower layer, the density change can

be calculated, yielding
Ap  c(h—hgy)) — hu
p—pu  c(h+hg))—hu
The entrainment Q and the relative density change Ap/(p — p,,) is displayed in figure 7.
(Note that the relative density change is also equal to the relative change of correspond-
ingly defined buoyancies.) An extreme situation arises when hy = 0, corresponding to a
gravity current intruding into a fluid of uniform density pg. Here one obtains Ap = g—py:

(3.9)
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FIGURE 6. Properties of an energy conserving shock of amplitude d moving into a quiescent
state of amplitude do Left: Contours of the downstream (oncoming flow) Froude number u/+/h.
Right: Contours of the shock Froude number ¢/ Vvh. The upper bold curve corresponds to the
limiting shock satisfying the Lax condition. Thus allowable shocks are inside the region bounded
by the bold curves.
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FIGURE 7. Properties of an energy conserving shock of amplitude d moving into a quiescent state
of amplitude dp Left: Contours of the entrainment of upper fluid into the lower layer. Right:
Contours of the the density change across the shock in units of the mean density difference
between the layers. The region bounded by the bold curves are allowable shocks.

behind the shock, the density is that of the upper layer. Clearly for such dramatic den-
sity variation, the first-order approximation of computing the jump conditions as if there
were no density change is not valid. The other limiting situation is the weak shock limit
h ~ hg, with little entrainment. In this case the first-order approximation of uniform
densities valid.

We note also that, in weakly non hydrostatic long wave models (such as Choi & Ca-
massa (1999)), there are smooth, non-entraining, energy conserving solutions called “soli-
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state 0

FI1GURE 8. Two-layer lock exchange schematic. Top: physical configuration showing right- and
left-going shocks trailed by expansions. The dotted line indicates the initial configuration. Bot-
tom: Corresponding characteristic lines in z — ¢t plane The + states are immediately behind the
shocks.

bores” (Esler & Pearce (2011)), linking particular pairs of upstream and downstream
depths.

4. Lock exchange for the rigid lid system

In the previous section we considered the consequences of entraining conservation laws
on a steady bore. Here we turn our attention to an initial value problem. We consider the
consequences of two different choices of conservation laws in the lock exchange problem.
In both cases we use conservation of circulation. This law relates the rate of change of
circulation around the interface - the lower plume moving rightwards and the upper one
moving leftwards - arising from the torque due to the pressure difference between the
heavy and light fluid sides. The second conservation law is either layer volume (i.e. no
entrainment) or energy as used in the previous section (i.e. maximally efficient entrain-
ment into the lower layer). It turns out that both scenarios can be solved in closed form,
thus providing also a check for the numerical procedures used throughout this article.

The initial condition for a lock exchange has w = 0 throughout and

de 1, z <0
-1, x>0

(In a more general case, the heavier fluid is only partially filling the left of the domain
(see Ungarish (2010)), i.e. d < 1 for z < 0; it can be treated similarly.)
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4.1. Volume conservation

When equations (2.11-2.12) are adopted as the ruling conservation laws, the following
jump conditions hold at shocks:

—cld] + Bw(l - dQ)]i =0 (4.1)

—clw] + Bd(l - wQ)]i =0, (4.2)

where c is the shock’s speed and [-] indicates the jump in the enclosed quantity from left
to right. For the right going shock, with state d = —1,w = 0 ahead and d, w4 behind,
the equation for conservation of volume gives

1
c= 7w+(1 - d+)7
2
which, inserted into the conservation of circulation, yields

We can now close the problem for the front by computing the characteristic speeds for
the system (2.11-2.12):

A= —wdi% 11— )1 — w?)

The speed ¢ of the shock, given by (4.7) must agree with the right going characteristic
speed immediately behind it. Thus,

1 1
c=Swi(l—dy) = —widy + 5\/(1 — @)1 —w?) = Ay

This results in the full solution of the shock state with

1 3
1 2\ 2 2\ 2
d+ = —g, w4 = (3) =~ 0817, Cy = (3) ~ 0.544.

This corresponds to a lower layer depth of h = 1/3 at the shock.

In order to proceed further and complete the solution for all x ant ¢, we use the
fact that, because of the invariance under stretching of the equations and the initial
conditions, the solution depends only on the similarity variable £ = z/t. Substituting
this into the governing equations yields

—&d' + <;w(1 - d2))/ =0 (4.3)

—&w' + (;d(l — wQ))/ =0. (4.4)

The equations can be simplified by writing w = w(d), with
dw dd

=+
V1-—w? V1—d2

resulting in
sin™!(w) = 4 sin " (d) + sin ™! (wo),

where wy = w|4=0, and the sign corresponds to the Riemann invariant that is preserved
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FIGURE 9. Lock-exchange in the one-interface rigid-lid flow with volume and circulation conser-
vation. The bold curves show the initial data and the final time. For this plot the initial data is
d=1for x <0and d =—1 for x > 0, and w = 0. At the lateral boundaries we have imposed
conditions modelling a vertical wall. The solution is shown at times: t; = jA¢, with j =0,...,5
and At = 0.5.

across the rarefaction fan. Substituting the values we found previously behind the shock
we obtain that, when d = 0 at the centre,

5 1 /2
wy = 3\/§NO.962, )\:i:)\ozl:6\/;~:t0.136.
Note that Ag = ¢4 /4. The full solution for > 0 consists of the shock at x = cyt, an
expansion fan for # € (Aot,c4t), and a constant state d = 0,w = wy for = € [0, Aot]
(refer to Figure 8 for a schematic). The solution can be completed for < 0 by an odd
extension of d and an even extension of w. Similar calculations of this type were shown
in Rotunno et al (2011) for the non-Boussinesq, volume conservation case and using the
Benjamin (1968) gravity current closure.

Figure 9 shows the lock exchange solution to (2.11-2.12) computed numerically together
with the exact solution derived above. In order to plot the lower layer velocity we rescaled
u with /e where ¢ = 0.1 to match the calculations of the full two-and-a-half layer free
surface flow shown previously. Notice the very good agreement between the numerical
and exact solution shown at the last time in the top-right panel of Figure 9 , as well as the
good agreement with the numerical results in Figure 3 which include a small barotropic
fast mode.

4.2. Energy conservation and entrainment

We now consider an entraining case by replacing (4.1) with conservation of energy
resulting in the system

wy + (;d(l - w2)> =0 (4.5)

x

( S (1—d)(1—w?) + 2d>t + (wd(l — &) (1 - w?) + w(l - d2)) -0 (46

x

The corresponding energy conservation jump condition is

—c[-(1=d*) (1 —w?) +2(d+1)]" + [wd(1 —d*)(1 —w?) +w(l—d*)]" =0,
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Eliminating ¢ between this equation and (4.2) gives

dy +1 1
1+_ d+7 Cc = 5’(U+(1—2d+)

2 _
wy =

Substituting these relations into the expression for the characteristic speeds, we ob-
tain a smaller amplitude, entraining hydraulic jump traveling faster than in the volume
conservation case:

1-V3 3-V3 3 [3-V3
dy = 2\[A\:—0.366, wy = H_gzo.&%l, c_,_:g 1+£%0.590.

This corresponds to a lower layer depth h = (3 —+/3)/4 ~ 0.317 and an entrainment rate
into the lower layer of

c 1 7 1 33
—clh)t + ()t = S [t + [4w<1 4 ﬂ -

Unlike the non-entraining case there is no right-left symmetry, and, in order to complete
the solution, we need to solve also for the left-moving shock, with values ahead d = 1
and w = 0. We obtain the equations

(2v/3 — 3) ~ 0.0395

d_(1+d)w* —B+d)w? +(B3+d_)(1—-d_)=0,

1
= —(d-(1-w?)-1
e= g (- u?) 1)
replacing (4.2) where d_ and w_ are the values behind the left-going shock. Solving for
the full shock conditions using the characteristic speeds must be done numerically and
results in

d_ ~0.337, w_ ~ 0.858, c— ~ —0.531,
with an upper layer height H & 0.332. This buoyant flow is mildly detraining, with

—c[H|* - [HU]T = %[d]i — Bw(l — d2)]+ ~ —0.014

Next we to compute the interior structure between the two shocks: behind each shock
there is a rarefaction and between the two rarefactions, a constant state in the middle (see
Figure 8). Since these structures are continuous, the Riemann invariants are preserved
along their corresponding characteristics, thus the state in the middle has one Riemann
invariant in common with each of the two states behind the shocks. Combining the +
Riemann invariant from behind the left-moving shock to the — Riemann invariant from
behind the right-moving shock, we find the state (dg, wp) in between the two rarefaction
fans:

Ry (do,wo) = Ry (d_,w_) =sin"*(d_) +sin™* (w_)
R_(do,wo) = R— (dy,wy) =sin™" (dy) —sin™" (wy)

It follows that

R.+R_ R, —R_
dy = sin (*‘;) ~0.1253, ho ~ 0.5626, wp = sin (*2) ~ 0.9488.
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FIGURE 10. Lock-exchange in the one-interface rigid-lid flow with entrainment. Circulation and
energy conservation were chosen in order to attempt to mimic the two-interface model. The bold
curves show the initial data and the final time. For this plot the initial data is d = 1 for z < 0 and
d = —1 for z > 0, and w = 0. At the lateral boundaries we have imposed conditions modelling

a vertical wall. The solution is shown at times: t; = jA¢, with j =0,...,5 and At = 0.5.

The back edges of the two expansion fans are given by

0.0378

1
A=A=—d + =4 /(1 —=d?) (1 —w?) =~
oWo 5 \/( 0) ( wo) {—0.2756

Figure 10 shows the result of both the numerical solution of the entraining system and
(in the top right panel) the comparison with the exact solution derived above. The profile
of the interface can also be compared to the entrainment profile of the full two-and-a-half
layer system shown in Figure 4. In Figure 11 the total energy and layer volume of the
entraining and non-entraining cases are shown as a function of time. The linear growth
of the lower layer volume in the energy conserving case and the linear decrease in energy
in the volume conserving case are a consequence of the self similar nature of the solution.

Our solution to the lock-exchange problem gives rise to non-uniform gravity currents
entering a fluid of uniform density. In our model these have maximal entrainment but
no mixing: the head of the wave is composed exclusively of entrained upper-layer fluid.
In the self-similar scenario of the lock-exchange, one can compute the width of this
head: it grows linearly in time at a rate equal to the difference between the shock speed
¢ = 0.59 and the fluid velocity behind the shock, u = 3(1—d)w = 0.47. Even though this
scenario (corresponding, locally to dg = —1 in Figures 6 and 7) is beyond the range of
validity of the first-order closure which we use and which calculates speeds by keeping the
density in the lower layer unaltered, it provides speeds and solutions in good agreement
with experimental observations. For example, simulations (Rotunno et al (2011)) and
experiments (Lowe et al (2005), Shin et al (2004)) show that in the Boussinesq limit, the
dimensionless right going current speed is ¢ ~ 0.5. One further interesting consequence
is the broken symmetry between left and right currents. The right-moving current has a
speed about 10% larger than the left-going one (which does not entrain). Such differences
are observable in non-Bousinesq computations of the full Navier-Stokes equations and in
experiments (see references above and figure 2(a) in Shin et al (2004)).

4.3. Comparison to non-mizxing theory of Benjamin

There are several proposed closures in the literature for the speed of a gravity current
Benjamin (1968), Shin et al (2004), Huppert & Simpson (1980). These have been applied
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FIGURE 11. Comparison of volume and energy conservation in the two-layer flows shown in
Figures 9 and 10.

to the lock exchange problems Rotunno et al (2011), Ungarish (2010), by modelling the
flow as two gravity currents. Here, we compare and contrast Benjamin’s original theory
to ours. One may summarise Benjamin’s closure for the speed of a steadily travelling
front as a function of the front height h, through the formula:

c _ja-nE-hn
v~ e = (1+h)

This formula is obtained, under the Boussinesq approximation, by assuming: (i) a steady
profile; (ii) conservation of volume; (iii) conservation of momentum under the hydrostatic
approximation.

Instead, our closure for general unsteady hydrostatic flows, yields, by combining con-
servation of volume and circulation, (i.e. equations (4.1) and (4.1))

Fy(h) = V2(1 —h). (4.7)

By contrast, for the entrainment model with @ = 1, the combination of conservation of
energy and circulation yields

_1(3—4h)

2Vi—h'

Both of these closures also have the assumption of conservation of momentum built in,
as this is an intrinsic feature of the Boussinesq approximation (Boonkasame & Milewski
(2011), Camassa et al (2012)), where total mass flux and total momentum are equivalent.
The comparison of these three closures is shown in Figure 12.

Either of the three closures must be complemented by additional information to deter-
mine the speed and height of the front. In our case we use causality: the fact that the front
cannot move faster than the speed of characteristics behind it. In the case of Benjamin’s
closure it has been complemented in various ways, for example, using conservation of
energy in Benjamin’s original paper, leading to h = %, or also using causality in Rotunno
et al (2011), yielding h = 0.3473. The circles in Figure 12 mark the location of the front
speeds and heights in our solutions above, and the star marks the corresponding values
in Rotunno et al (2011).

Fg(h)
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FIGURE 12. Front speeds in gravity flows. The dotted line is Benjamin’s model, the solid line
the non-entraining case and the dashed line is the entraining case. The front height obtained
using the characterstic speed condition (causality) is shown with circles.

5. Conclusions

This article studies conservations laws for two-layer flows in hydrostatic balance and
their implications for modeling entrainment. The simplest model for two-layer baroclinic
flows has upper and lower rigid lids. The resulting system can be reduced to two equations
in two unknowns with appealing symmetries. A tradeoff of this reduction is that the
system admits infinitely many conservation laws, making the choice of two for a closed
model somewhat arbitrary. By contrast, the more complete system with two layers and a
free surface above has four degrees of freedom - two baroclinic and two barotropic modes
- and only six independent conservation laws. Taking the limit of infinitely separated
timescales between the barotropic and baroclinic modes in the free-surface model leads
to a mapping to the conservation laws of physical relevance under the rigid-lid modeling
assumption, which only captures the latter modes.

The systems are studied analytically and numerically for steady bores and for the
unsteady lock-exchange problem, which has, as initial condition, fluids with different
densities at rest to the left and right of a vertical wall that is instantly removed at time
zero. In addition to this problem’s practical relevance, its extra symmetry under spatial
and temporal stretching allows us to solve it exactly under the rigid lid approximation,
providing a benchmark for the theory as well as for the numerical methodology.

The article introduced a framework to study fluid entrainment in hydrostatic layered
models. In order to do this in a conservation law setting, we replace the equation for
volume conservation in each individual layer with conservation of energy. This conser-
vation form, in fact, allows for the full range of dynamics: from mass conservation in
each layer to maximum entrainment. The lock-exchange problem is solved in both limits.
Intermediate cases could be chosen to model a mixing efficiency in flows that both mix
and dissipate energy. In the particular setting the lock exchange problem, we compare
our results to other (non-entraining) models in the literature.
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Appendix - Conservation laws in 2 x 2 systems

A general 2 x 2 system of equations of the form

Uy + aug + bv, =0
vy + cug + dv, = 0.

permits conservation laws for ¢ satisfying [q(u, v)];+[Q(u, v)], = 0 if and only if ¢ satisfies
the constraint in the form of a semilinear partial differential equation

(CLQU + qu)v - (bqu + dqv)u =0.

Applying this to the system (2.11-2.12) results in
(w® = 1)guw — (4% = 1)gga = 0. (5.1)

The conservations of volume and vorticity ¢ = d and ¢ = w are immediate, as is the
conservation of ¢ = wd. One can easily check that the energy e as defined previously also
satisfies this equation. In fact, denoting ¢ = wd, the system (2.11-2.12) can be rewritten

e: + (¢e)z =0,

1
a + <2q2 +e) = 0.
xT

These equations are identical to those of standard shallow waters. Thus, this is another
route for the explicit determination of the map between the rigid lid system and the
St. Venant shallow water system, first obtained in Chumakova et al (2009) through the
system’s Riemann invariants. Incidentally, one may now “bootstrap” to more conserved
quantities such as eq (“momentum”) and Leq® + Le? (“energy”).
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