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Abstract

The clustering problem, and more generally, latent factor discovery –or latent space inference– is for-
mulated in terms of the Wasserstein barycenter problem from optimal transport. The objective proposed
is the maximization of the variability attributable to class, further characterized as the minimization of
the variance of the Wasserstein barycenter. Existing theory, which constrains the transport maps to rigid
translations, is extended to affine transformations. The resulting non-parametric clustering algorithms
include k-means as a special case and exhibit more robust performance. A continuous version of these
algorithms discovers continuous latent variables and generalizes principal curves. The strength of these
algorithms is demonstrated by tests on both artificial and real-world data sets.

Keywords: Clustering, optimal transport, Wasserstein barycenter, factor discovery, explanation of vari-
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1 Introduction

Clustering a data set {xi} consists of assigning to each sample xi ∈ X a label zi ∈ {1, . . .K}, based on some
notion of similarity among data points. In the broader context of factor discovery, the label or latent variable
zi can be drawn from more general spaces, such as Rd or smooth manifolds. One way to conceptualize factor
discovery, alternative to the notion of similarity, is through the latent variable’s capability of explaining the
variability— or reducing the uncertainty— in the data.

Given raw data {xi} or the underlying probability ρ(x), a natural way to characterize its uncertainty is
through the variance

U− =

∫
‖x− x̄‖2dρ(x),

where x̄ is the mean. The class assignment can be characterized as a joint distribution ρ(x, z) between x and
z that decomposes ρ(x). Then, factor discovery can be posed as finding an assignment ρ(x, z) that minimizes
the amount of remaining uncertainty. This remaining uncertainty can be quantified, for instance, as the
expected value of the conditional variance

U+ =

∫
‖x− x̄(z)‖2dρ(x, z),

where each x̄(z) = Eρ(x|z)[x] is the conditional mean of the conditional distribution ρ(x|z).
An alternative is to remove from x the variability due to z through a map

y = T (x; z),

so that the resulting y is independent of z, and characterize the remaining variability as the variance of the
distribution µ of y:

U+ =

∫
‖y − ȳ‖2dµ(y).
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Clustering via optimal transport

Such transformations of the data are customarily performed to eliminate the effect of confounding factors,
such as batch effects in biostatistics. Then the resulting variable y can be thought of as the original x cleaned
of the effect of z. Following the preceding work [30], we propose to seek latent factors z such that their
removal minimizes the uncertainty left in the data. Such twist in the objective function of factor discovery
has a number of conceptual and practical advantages:

1. Existing factors. Often the data includes, in addition to xi, known factors zi, such as a patient’s
age, that explain part of the variability in x. Including these known factors in the proposed removal
of variability allows one to determine hidden factors that do not overlap with them, as explaining
variability already accounted for by known factors would serve little purpose.

2. Robust treatment of the remaining variability. One can further analyze the filtered data {yi},
which contains the variability in x not explained by the z. In particular, one can perform density
estimation, a further clustering or factor discovery, all of which become easier because the data has
been cleaned of the variability due to z. This is similar to the search for further, more biologically
meaningful patterns in medical data, after having eliminated the batch effects.

3. More general notion of uncertainty. In the considerations above, variability was quantified in
terms of the variance (more precisely, in terms of the trace of the covariance matrix.) Yet this is not
always the most natural way to measure variability. By pushing the measurement of variability to the
representative distribution µ, one can adopt much more general characterizations. As shown in [37],
the measurement of variability and the characterization of the “optimal” maps y = T (x; z) are closely
linked.

The problem of removing from data the variability associated with class assignment adopts a natural
formulation in terms of optimal transport. Suppose we are given a joint distribution ρ(x, z) that decomposes
the data ρ(x), or equivalently, a labeled sample set {xi, zi}. Removing the variability attributable to factor
z amounts to mapping the clusters or conditional distributions ρ(x|z) ≈ {xi|zi = z} through class-dependent
maps y = T (x; z) onto a common distribution

µ ≈ {yi = T (xi; zi)}

which can be seen as a common representative of all ρ(x|z). The variable y must be independent of z, for
otherwise the variability explainable by class would not have been completely removed. Moreover, one should
seek maps T (·; z) that, while satisfying the aforementioned condition, deform the data minimally, so that
only the variability due to class is removed. Quantifying the deformation due to T with the expected value
of a pointwise “transportation” cost c

(
x, T (x, z)

)
, one arrives at the Wasserstein barycenter problem [37]:

min
µ,T

∫∫
c
(
x, T (x; z)

)
dρ(x, z)

where T (x; z) ranges over all maps such that each T (·; z) transports the conditional distribution ρ(x|z) to
some µ. Specifically, for clustering, the assignment ρ(x, z) reduces to a collection of clusters ρk(x) with
weights Pk (that is, the proportion of samples contained in class k), and the Wasserstein barycenter problem
becomes:

min
µ,Tk

K∑
k=1

Pk

∫
c
(
x, Tk(x)

)
dρk(x),

where Tk ranges over all maps that transports ρk to µ.
As described, this procedure comes after clustering, as it assumes that each sample xi has already been

assigned to a class ki. However, it can also be invoked to define an objective function for the clustering
process itself: one should assign the samples to classes so as to minimize the unexplained variability, i.e. the
variability left in µ.

When posed in this framework, the clustering problem contains two levels of optimization. The lower
level seeks a barycenter µ for the clusters ρk or equivalently the conditional distributions ρ(x|z), when a
class assignment ρ(x, z) is given. Transporting the clusters onto a barycenter corresponds to filtering out
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class distinctions, and minimizing the transportation cost corresponds to avoiding data deformation. So
this level corresponds to the real-world problems of “removing batch effects”, “pooling data’ or “supervised
unlearning” [30].

The higher level of optimization determines the class assignment ρ(z|x), an unsupervised learning problem.
The effectiveness of learning is measured by the amount of uncertainty removed, calculated as the difference
between the variance before and after the “supervised unlearning” of the inner level. This approach can be
compared to the task of data compression.

This framework was first proposed in [30], which showed that, if one quantifies the variability in µ through
the trace of the covariance matrix, uses as cost c(x, y) the squared Euclidean distance, and restricts the maps
Tk to rigid displacements, this formulation becomes equivalent to k-means. Yet, this idea can be extended
much further, for instance by quantifying the variability in µ in alternative ways, using cost functions different
from the square distance, and allowing more general transport maps. This article develops in detail the next
natural step, which replaces the rigid translations of [30] by general affine maps.

The literature on clustering data sets is vast and rich, including a broad array of diverse methodologies,
which we cannot possibly summarize here. The purpose of this article is not so much to build one new method
for clustering, but rather to develop a conceptual paradigm that characterizes clustering as a procedure for
the reduction of variability in data, which can be formulated naturally in terms of the Wasserstein barycenter
problem with hidden class assignment. The main contribution is to extend the proposal in [30], which derives
k-means using rigid translation as transport maps, to incorporate the more general affine maps. As such, this
article opens the way to considering more general characterizations of variability, as well as to moving from
discrete to continuous class assignments. Along the way, it develops an optimal-transport-based numerical
procedure for clustering that is shown to compare favorably with more standard approaches.

The plan of this article is as follows. After this introduction, Section 2 summarizes the elements that
we need from the Wasserstein barycenter problem. Section 3 introduces the affine optimal transport maps.
Section 4 describes factor discovery (i.e. class assignment or clustering) with affine maps, its solution via
gradient descent, its relation to k-means and its reduction and simplification in various scenarios. Section 5
introduces its continuous extension and discuss its relation to PCA and principal surfaces. Section 6 compares
the performance of the various variants of the method, k-means and fuzzy k-means on synthetic and real
world data. Finally section 7 summarizes the work and sketches some directions of current research.

2 The Wasserstein Barycenter problem

Denote by P2(Rd) the space of Borel probability measures in Rd with finite second moments, and by P2,ac(Rd)
the subspace of absolutely continuous measures. Given any ρ ∈ P2(Rd), we say that {ρk, Pk}Kk=1 is a clustering

plan for ρ if ρk ∈ P2(Rd), the Pk are positive with
∑K
k=1 Pk = 1, and

ρ =

K∑
k=1

Pkρk. (1)

We seek to remove the variability in ρ attributable to the classes 1, . . .K by transporting these ρk to a
weighted barycenter µ.

The notion of transportation can be visualized as follows: given a random variable X and a map T :
Rd → Rd, the transport of X by T is simply T (X). If ρ is the distribution of X, then we say that T pushes
forward ρ to µ, and write µ = T#ρ, if µ is the distribution of T (X). Equivalently, for all measureable subset
A ⊆ Rd,

µ(A) = ρ(T−1(A)).

Monge [23] introduced the optimal transport problem

I(ρ, µ) := inf
T#ρ=µ

Eρ(x)

[
c(x, T (x))

]
,

where c(x, y) represented the cost of moving a moving a unit of mass from x to y, such as the Euclidean
distance between the two points.
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Kantorovich [17] generalized the transport maps to couplings, proposing the relaxation

I(ρ, µ) := inf
π∈P(Rd×Rd)

Eπ(x,y)

[
c(x, y)

]
, such that πX = ρ, πY = µ,

where πX , πY denote the two marginals of π. When the cost x(x, y) is given by the squared Euclidean distance
||x− y||2, the optimal transport cost I(ρ, µ), denoted W 2

2 (ρ, µ), defines the 2-Wasserstein metric on P2(Rd).

Given a clustering plan {ρk, Pk}Kk=1, its Wasserstein barycenter is the minimizer of the total transport
cost

µ = argminµ̃∈P2(Rd)

K∑
k=1

PkW
2
2 (ρk, µ̃). (2)

The barycenter always exists [2], and if at least one ρk belongs to P2,ac(Rd), then the barycenter is unique
and absolutely continuous [2, 18]. If all ρk ∈ P2,ac(Rd), then we have Monge solutions for the transport
Tk#ρk = µ, with transport maps of the form [32],

Tk = x−∇φk(x), (3)

where φk is a convex function.

In the context of factor discovery, the class labels k ∈ Z = {1, . . .K} are latent variables underlying ρ(x).
The clustering plan {ρk, Pk}Kk=1 can be seen as a joint distribution ρ(x, z) over Rd × Z, such that the ρk are
the conditional distributions ρ(x|z = k) and {Pk} becomes the marginal distribution over Z. It is natural to
extend the definition of Wasserstein barycenter to joint distributions ρ(x, z) = ρ(x|z)v(z) over more general
latent spaces Z [37]:

µ = argminµ̃∈P2(Rd)

∫
W 2

2 (ρ(x|z), µ̃)dv(z). (4)

(where the conditional measures ρ(x|z) are defined by disintegration [?]). Such generalized Wasserstein
barycenters were studied recently in [24, 18], which showed existence and regularity. A treatment of barycen-
ters with more general cost functions c, data spaces, and latent spaces Z can be found in [37].

3 Optimal affine transport

Linear problems are often amenable to closed-form solutions and efficient computations. In particular, the
Wasserstein barycenter problem would become much simpler if all the optimal transport maps Tk were affine.
Intuitively, a sufficient condition for this desirable property is that the clusters ρk have similar shapes (e.g.
they are all Gaussians), which implies that the barycenter µ as a representative of ρk should also have that
shape. Consequently, the map Tk only needs to translate and dilate the ρk to transform them into µ. This
reasoning can be formalized using location-scale families [4] that generalize the Gaussian family:

Definition 3.1. Fix some arbitrary distribution P0 ∈ P2,ac(Rd). The location-scale family F(P0) induced by
P0 is defined as

F(P0) :=
{
L#P0 | L(x) = Σx+ x, Σ ∈ S+

d , x ∈ Rd
}

(5)

where S+
d is the space of symmetric positive-definite matrices. For convenience, we can set P0 to have zero

mean and identity covariance. Then, x,Σ become the mean and covariance of L#P0, and we denote each
element of F(P0) by PΣ,x.

Theorem 3.1. Given any location-scale family F(P0), any measureable space Z, and any joint distribution

ρ(x, z) = ρ(x|z)v(z) ∈ P(Rd × Z)

such that each conditional distribution belongs to the family

ρ(x|z) = PΣ(z),x(z) ∈ F(P0),
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and the marginal ρ(x) has finite second moment,

Eρ(x)

[
||x||2

]
≤ ∞,

then there exists a unique barycenter µ, it belongs to the family: µ = PΣy,y ∈ F(P0), and it satisfies

y =

∫
x(z)dv(z) = Eρ(x)[x] (6)

Σy =

∫ (
Σ

1
2
y · Σ(z) · Σ

1
2
y

) 1
2 dv(z) (7)

where Σ
1
2 is the principal matrix square root.

Proof. See Appendix A.

Remark 3.1. If we are only concerned with the traditional setting of clustering (1) when the latent space
Z = {1, . . .K} is finite, then the above result has been given by Corollary 4.5 of [4]. Nevertheless, in Section
5, our clustering algorithms will be extended to the continuous case with Z = R, and we need the full strength
of Theorem 3.1.

Corollary 3.1.1. If we further assume that each ρ(x|z) is isotropic: Σ(z) = σ2(z) · Id, then the unique
barycenter is also isotropic, with standard deviation

σ =

∫
σ(z)dv(z). (8)

Next, we verify that the optimal transport maps Tk are affine. Denote the means and covariances of ρk
by xk,Σk, so that ρk = Pxk,Σk

∈ F(P0). Theorem 2.1 of [9] shows that the Tk are given by

Tk(x) = αk · x+ βk

αk = Σ
− 1

2

k (Σ
1
2

k ΣyΣ
1
2

k )
1
2 Σ
− 1

2

k

βk = y − αkxk.

(9)

Remark 3.2. We offer an alternative, short derivation of (9) based on preconditioning arguments [20], which
essentially follow from the convexity in (3). With a suitable preconditioning ρ∗k = F#ρk and µ∗ = G#µ, the
composite map

Tk = G−1 ◦ T ∗k ◦ F

will be optimal if T ∗k is the optimal transport map from ρ∗k to µ∗. By [20], the following is an admissible pair

F (x) = Λ1/4QTΣ
− 1

2

k (x− xk), G(y) = Λ−1/4QTΣ
1
2

k (y − y)

where QΛQT is an eigendecomposition of Σ
1
2

k ΣyΣ
1
2

k . Then, ρ∗k and µ∗ have the same mean and covariance.
Since they belong to a location-scale family, T ∗k must be the identity. It follows that

Tk(x) = G−1 ◦ F = Σ
− 1

2

k (Σ
1
2

k ΣyΣ
1
2

k )
1
2 Σ
− 1

2

k (x− xk) + y

From now on, we will always model the clusters ρk (or the conditional distributions ρ(x|z)) as members
of a location-scale family F(P0). Besides the benefit that the optimal transport maps Tk are simplified into
affine maps, the unique barycenter µ also belongs to F(P0), with mean and covariance determined by (6) and
(7). The restriction to location-scale families is not a stringent requirement in practice. Common clustering
methods such as EM algorithm [25, 3] often model the clusters as Gaussian, while the “standard data” for
k-means consists of spherical clusters with equal radii [28].
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4 Factor discovery with affine maps

In the introduction, we have characterized clustering as a latent factor discovery problem that seeks to
maximize the information gained after class assignment. If information gain is measured by the reduction
in uncertainty, then clustering maximizes V ar(ρ(x)) − V ar(µ), where ρ(x) is the unlabeled data and the
barycenter µ represents the labeled data ρ(x, z) produced by class assignment. Equivalently, clustering
becomes

min
ρ(x,z)∈P(Rd×Z)

V ar
(
µ
)

= Tr[Σy] (10)

with the constraint that the x-margin of ρ(x, z) must be the unlabeled data ρ(x). This minimization effectively
searches through all (pointwise) class assignments ρ(z|x) over the class labels Z = {1, . . .K}.

In practice, we are given a sample {xi}Ni=1 from ρ(x), and any joint distribution ρ(x, z) in (10) becomes
an N ×K matrix. Since the x-margin of ρ(xi, z) is uniformly N−1, we define the matrix

P = [P ik] = N · [ρ(x, k)]

Then, each entry P ik = ρ(k|xi) is the membership probability for xi to belong to cluster ρk, and the probability
vector P i is the “soft” class assignment ρ(z|xi). The z-margin of P/N yields the weights {Pk}.

Denote the K-dimensional simplex by ∆K . Then, P i lives on ∆K , so the stochastic matrix P ∈
∏
i ∆K .

A hard assignment ki implies that P i is the unit vector ~eki , and the domain of hard assignments is the set
of extremal points of

∏
i ∆K [5].

Once a tentative class assignment P = Nρ(x, z) is given, the clusters ρk(x) can be estimated using Bayes’
formula,

ρk(xi) =
ρ(k|xi)ρ(xi)

ρ(k)
=
P ikN

−1

Pk
=

P ik∑N
j=1 P

j
k

Then, the cluster means xk and covariances Σk can be estimated by

xk =

∑
i P

i
kxi∑

i P
i
k

, Σk =

∑
i P

i
k(xi − xk) · (xi − xk)T∑

i P
i
k

. (11)

By Theorem 3.1, the covariance of the barycenter µ is given by the discrete version of (7):

Σy =

K∑
k=1

Pk
(
Σ

1
2
y ΣkΣ

1
2
y

) 1
2 (12)

This is a non-linear matrix equation that admits a unique positive-definite solution Σy if all conditional
covariances Σk are positive-definite [4]. Then Σy can be calculated through the following iteration scheme
[4]:

Σ(n+ 1)← Σ(n)−
1
2

( K∑
k=1

PkΣ(n)
1
2 ΣkΣ(n)

1
2

)2

Σ(n)−
1
2 (13)

where the initialization Σ(0) is an arbitrary positive-definite matrix.

Since the objective function of clustering in (10) is Tr[Σy], which from (11) and (12) is a function of the
class assignment matrix P , we will derive below the gradient

∇PTr[Σy]

and use it to build clustering algorithms.

Remark 4.1. To gain insight into the functioning of (10), we can analyze its behavior in a much simplified
setting. Since a location-scale family is an abstraction of probability distributions up to their second moment,
a simpler set-up has all clusters ρk belonging to a “location family”, i.e. differing only in their means xk.
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Then Theorem 2.1 of [9] implies that the optimal transport maps Tk are rigid translations that align xk to
y. In that case, [30] shows that the barycenter’s variance is reduced to the sum of within-class variances (or
equivalently, sum of squared errors, SSE)

V ar(µ) =

K∑
k=1

N∑
i=1

P ik||xi − xk||2 (14)

which is exactly the objective function of k-means. Hence, by upgrading to location-scale families and affine
transport maps, one can expect more robust algorithms that make use also of second moments.

4.1 Gradient descent solution

Our goal is to perform gradient descent on P ∈
∏
i ∆K to minimize Tr[Σy]. Even though the implicit

nonlinear matrix equation (12) determines Σy uniquely, it is not clear whether the solution Σy is differentiable.
Thus, we prove in Appendix B that the partial derivatives ∂Σy/∂P

i
k always exist. Then, in Appendix C,

we derive explicit formulae for these derivatives. We find that the gradient of Tr[Σy] with respect to each
sample point xi’s probability vector P i is given by

∇P iTr[Σy] =
K∑
k=1

vec(I)T ·Wk · vec
[
(xi − xk) · (xi − xk)T + Σk

]
~ek (15)

where vec is vectorization, and the Wk are the weight matrices

Wk :=
(
Σ

1
2
y ⊗ Σ

1
2
y

)[ K∑
h=1

Ph(Uh ⊗ Uh)(D
1
2

h ⊗ I + I ⊗D
1
2

h )−1(D
1
2

h ⊗D
1
2

h )(UTh ⊗ UTh )
]−1

[
(Uk ⊗ Uk)(D

1
2

k ⊗ I + I ⊗D
1
2

k )−1(UTk ⊗ UTk )
]
(Σ

1
2
y ⊗ Σ

1
2
y ).

(16)

Here ⊗ is the Kronecker product, and the U are the orthonormal and D the diagonal matrices in the
eigendecompositions

Σ
1
2
y ΣkΣ

1
2
y = UkDkU

T
k and Σy = UyDyU

T
y .

The update rule at each time of a gradient descent step t is given by

P (t+ 1) = Proj∏
i ∆K

(
P (t)− η · ∇PTr[Σy]

)
,

where η is the learning rate and Proj is the projection onto the closest stochastic matrix in
∏
i ∆K , which

can be computed efficiently as described in [34]. The step size η can be either fixed at a small value, or
determined at each step via backtracking line search [6], using a threshold α ∈ (0, 1/2) and a shortening rate
β ∈ (0, 1), and reducing η into βη if the amount of descent is not enough:

Tr[Σy]
(
P (t+ 1)

)
− Tr[Σy]

(
P (t)

)
> α vec(∇PTr[Σy])T · vec

[
P (t+ 1)− P (t)

]
.

This descent-based clustering algorithm is summarized below, with initialization based on that of k-means.
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Data: Sample {xi} and number of classes K
Initialize the means {xk} randomly
Initialize assignment matrix P either randomly or set each P i to be the one-hot vector corresponding
to the mean xk closest to xi

while not converging do
Compute the barycenter’s covariance Σy by iteration (13)
Compute weight matrices W1, . . .WK by (16)
Compute the gradient
∇PTr[Σy] = (∇P iTr[Σy])i =

∑
i,k vec(I)TWkvec

[
(xi − xk) · (xi − xk)T + Σk

]
~eik

(Optimize step size η by backtracking)
Update P ← Proj∏

i ∆K

(
P − η · ∇PTr[Σy]

)
Update cluster means {xk} and covariances {Σk} by (11)

end
return Assignment P

Algorithm 1: Barycentric clustering

Remark 4.2. It might appear at first sight that Algorithm 1 performs an alternating descent, similarly to
k-means, alternating between optimizing the assignment P and updating the means xk. Nevertheless, the
derivation of (15) in Appendix C does not treat xk as constants. Instead, it directly solves for the gradient
∇PTr[Σy], incorporating the derivatives ∇Pxk. Hence, Algorithm 1 is simply a gradient descent on the
objective (15), which with sufficiently small step size η necessarily converges to a local minimum.

Recall that k-means minimizes the sum of squared errors (14), whose partial derivatives are simply

∂P i
k
SSE = ||xi − xk||2 + 2

∑
j

P jk (xj − xk)
∂xk
∂P ik

= ||xi − xk||2

Instead of performing gradient descent, k-means directly assigns xi to the closest cluster ki, that is,

ki = argmink||xi − xk||2 = argmink∂P i
k
SSE

We can interpret this hard assignment as equivalent to a gradient descent on P i with arbitrarily large step
size, followed by the projection Proj∆K , so that P i arrives at an extremal point of ∆K , which is a one-hot
vector.

In exactly the same way, we can simplify Algorithm 1 into a hard assignment algorithm, such that each
xi is assigned to the cluster ki with the smallest gradient term in ∂P iTr[Σy].

Data: Sample {xi} and number of classes K
Initialize the means {xk} randomly and the labels ki by the closest mean
while not converging do

Compute the gradient ∇PTr[Σy]
for xi in sample do

ki ← argmink
(
∂P i

k
Tr[Σy]

)
end
Update cluster means {xk} and covariances {Σk}
(Possibly apply an update rate c to smooth the update: xk ← c new xk + (1− c) old xk)

end
return Labels {ki}

Algorithm 2: Hard barycentric clustering

4.2 Relation to k-means

We show next that the barycentric clustering algorithms reduce to k-means in the latter’s setting. The
“standard data” for k-mean consist of spherical clusters with identical radii and proportions [28], which
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implies that P1 = · · · = PK = 1/K and Σ1 = · · · = ΣK = σ2

d I for some common variance σ2. Then the
gradient (15) simplifies into

∂P i
k
Tr[Σy] =

σ2

d
Tr
[
(xi − xk) · (xi − xk)T + Σk

]
=
σ2

d
(||xi − xk||2 + σ2).

Since each P i lies in the simplex ∆K , the direction of gradient descent must be parallel to ∆K . Hence the
term σ2, shared by all entries of ∇P iTr[Σy], is eliminated by the projection map Proj∏

i ∆K of Algorithm 1,
while for Algorithm 2, it is eliminated by the argmink step. The resulting gradient

∇P iTr[Σy] =

K∑
k=1

||xi − xk||2 ~ek

is precisely the gradient of the sum of squared errors (14), the objective function of k-means. It is straight-
forward to check that Algorithm 2 reduces to k-means, and thus k-means can be seen as a special case of
barycentric clustering.

4.3 Isotropic solution

Section 6 will demonstrate that the barycentric clustering algorithms can recognize clusters that deviate
from the “standard data”, for which k-means and fuzzy k-means would fail, but this robustness comes at
the expense of the complexity of gradients in (15) and (16). Here we explore a situation in between, making
hypotheses weaker than the “standard data”, yet strong enough to yield solutions that, while more robust
than k-means, are at the same time simpler than (15) and easier to interpret.

Since the complexity of (15) results mostly from the non-commutativity of the matrix product, we can
impose the assumption that all covariances are of the form

Σk =
σ2
k

d
I

where σ2
k is the variance of cluster ρk. This assumption can be seen as a generalization of the “standard

data”’s requirement that all clusters be radial with equal variances.
From Corollary 3.1.1, the barycenter’s covariance becomes

Σy =
σ2
y

d
I, σy =

K∑
k=1

Pkσk (17)

and the gradient (15) reduces to

∂P i
k
Tr[Σy] =

σ3
y

d

( ||xi − xk||2
σk

+ σk

)
.

Since the algorithms are only concerned with the gradient’s direction, the gradient is effectively

∇P iTr[Σy] =
∑
k

( ||xi − xk||2
σk

+ σk

)
~ek. (18)

Remark 4.3. Alternatively, we can obtain the gradient (18) directly differentiating the weighted sum of
standard deviations (17). Note that the standard deviation can also be calculated via

σk =
√
V ar(ρk) =

(1

2

∫∫
||x− y||2dρk(x)dρk(y)

) 1
2

=

(∑N
i,j=1 P

k
i P

k
j ||xi − xj ||2

) 1
2

√
2
∑N
i=1 P

k
i

.

9
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Then the computation of the gradient

∂σy
∂P ki

=

∑N
j=1 P

k
j ||xi − xj ||2(

2
∑N
i,j=1 P

j
kP

l
k||xj − xl||2

) 1
2

(19)

involves the samples only through the pairwise distances ||xi − xj ||2, which can be computed at the onset
of the algorithm. This is helpful when the data space Rd has very large dimension, so that computing the
means xk and distances ‖xi − xk‖2 of (18) at each iteration becomes prohibitive. Moreover, we can replace
‖xi−xj‖2 with any “dissimilarity measure” such as Riemannian distance, graph distance or kernel functions
(even though naive substitution might not be justified by our barycenter model). Nevertheless, computing
(19) takes O(N2) time, while (18) takes O(N · d), so the latter is more efficient for large sample sets of
low-dimensional data.

In the isotropic scenario, barycentric clustering (Algorithms 1 and 2) can be modified via (18) into the
following:

Initialize the means {xk} randomly and the stochastic matrix P (by the closest xk);
while not converging do

Compute and normalize the gradient ∇PTr[Σy] =
∑
i,k

(
σk + ||xi−xk||2

σk

)
~eik

Optimal step size η by backtracking
Update P ← Proj∏

i ∆K
i

(
P − η · ∇PTr[Σy]

)
Update the cluster means xk and standard deviations σk

end
return Assignment P

Algorithm 3: Isotropic barycentric clustering

Initialize the means {xk} (randomly) and labels ki (by the closest xk);
while not converging do

Update cluster means xk and standard deviations σk
for xi in sample do

ki ← argmink
( ||xi−xk||2

σk
+ σk

)
;

end

end
return Labels {ki}

Algorithm 4: Barycentric k-means

(We name Algorithm 4 “Barycentric k-means”, as it closely resembles k-means.) Section 6 will confirm the
expectation that these algorithms are more robust than k-means under varying proportions and radii (Pk
and σ2

k), but are more vulnerable to non-isotropy (Σk not of the form σ2
kI) than Algorithms 1 and 2.

4.4 Relation to Mahalanobis distance

Barycentric clustering is not the first clustering algorithm that deals with non-isotropic clusters using second
moment information. A series of clustering methods [8, 12, 19] based on k-means, measure the distance
between sample points and clusters by the Mahalanobis distance:

d2(xi, xk) = (xi − xk)TΣ−1
k (xi − xk), (20)

which reduces the distance along the directions corresponding to the large eigenvalues of the covariance Σk.
However, as pointed out in [19], applying (20) to k-means has the problem that the objective function (14)
becomes trivial:

SSE =
∑
i,k

P ik(xi − xk)TΣ−1
k (xi − xk) =

∑
k

PkTr[ΣkΣ−1
k ] ≡ Tr[I].

The Gustafson–Kessel algorithm [12, 19] remedies this problem by modifying (20) into

d2(xi, xk) = det(Σk)
1
d (xi − xk)TΣ−1

k (xi − xk). (21)

10
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To compare barycentric clustering and the Mahalanobis distance-based algorithms, note that (20) is
dimensionless, in the sense that any shrinkage or dilation of cluster ρk (with respect to the mean xk) would
be completely cancelled out in (20), which explains how its objective function becomes trivial. Meanwhile,
both the squared Euclidean distance and the modified Mahalanobis distance (21) have dimension [l]2. For
our algorithms, if we assume that the weight Pk is small so that the influence of Σk on Σy is small, then it
is routine to check that the gradient (15, 16) has dimension [l].

This comparison becomes explicit in the isotropic setting:

||xi − xk||2

σ2
k

, ||xi − xk||2,
||xi − xk||2

σk
+ σk

The first term is the Mahalanobis distance (20), the second term is squared Euclidean distance or equivalently
the modified Mahalanobis (21), and the third term is the gradient (18), the isotropic version of (15). Hence,
our algorithms can be seen as a balanced solution between the Euclidean case that completely ignores second
moment information and the Mahalanobis case where too much normalization nullifies the problem.

As a side remark, the EM algorithm [25, 3] is also a clustering method that can recognize non-isotropic
clusters, typically modeling ρk as Gaussian distributions. The Gaussians are essentially an exponential family
built from the Mahalanobis distance (20), indicating a possible connection between EM and our gradients
(18, 15), and thus a connection between maximum-likelihood-based method and the Wasserstein barycenter
framework.

4.5 An alternative approach

We describe briefly here a different approach to solving the clustering problem (10), which avoids dealing
directly with the barycenter µ. By the Variance Decomposition Theorem of [37], we have the identity

V ar
(
ρ(x)

)
− V ar(µ) =

∫
W 2

2

(
ρ(x|z), µ

)
dv(z),

i.e. the decrease in variance after clustering matches exactly the total transport cost from ρ(x|z) to the
barycenter. It follows that the clustering problem (10) is equivalent to

max
ρ(z|x)

∫
W 2

2

(
ρ(x|z), µ

)
dv(z) =

K∑
k=1

PkW
2
2 (ρk, µ). (22)

By Theorem 2.1 of [9], if ρk belong to a location-scale family, then the cost W 2
2 can be computed via

W 2
2 (ρk, µ) = ||xk − y||2 + Tr[Σk] + Tr[Σy]− 2Tr

[
(Σ

1
2
y ΣkΣ

1
2
y )

1
2

]
, (23)

and Lemma 2.4 of [26] provides a formula for the partial derivatives of (23) with respect to xk,Σk. Hence
one could optimize the alternative formulation (22) using gradient descent. A drawback, however, is that
the gradient terms ∇PW 2

2 (ρk, µ) involve the gradient of the barycenter’s covariance Σy, suggesting that this
approach would take at least as much effort as computing (13) and (15).

To circumvent the computation of Σy, we look for inspiration in the Euclidean space, as often geometric
identities in Rd can be lifted to the Wasserstein space

(
P2(Rd),W2

)
(This is not surprising, since Rd can be

isometrically embedded in
(
P2(Rd),W2

)
via x 7→ δx, and P2(Rd) is exactly the closed convex hull of δx [33].)

Specifically, we consider the following identity

∀ρ ∈ P2(Rd),
∫
||x− x||2dρ(x) =

1

2

∫∫
||x− y||2dρ(x)dρ(y),

which computes the variance without involving the mean x. Similarly, the objective (22) can be seen as a
“variance”, though not in Rd but in P2(Rd), so omitting the mean x corresponds to omitting the barycenter
µ. The following theorem verifies this intuition.
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Theorem 4.1. For any measureable space Z and joint distribution ρ(x, z) = ρ(x|z)v(z) ∈ P(Rd × Z), let µ
be any Wasserstein barycenter of ρ(x, z). Then, the total transport cost can be written as∫

W 2
2

(
ρ(x|z), µ

)
dv(z) =

1

2

∫∫
W 2

2

(
ρ(x1|z1), ρ(x2|z2)

)
dv(z1)dv(z2). (24)

Proof. See Appendix D.

It follows that the clustering problem (10, 22), is equivalent to

max
ρ(z|x)

1

2

K∑
k,h=1

PkPhW
2
2 (ρk, ρh).

The gradient ∇PW 2
2 (ρk, ρh) only involves the terms ∇Pxk and ∇PΣk, so we can apply the formulas of [26]

avoiding the complexity of Σy. Although this approach avoids computing the iteration (13), a drawback is
that its objective function contains O(K2) terms.

5 Continuous extension

This section shows how formulation (10) for clustering and the algorithms of Section 4 can be extended to
latent spaces Z more general than the discrete class labels {1, . . .K}. For brevity, we focus on the simple
case when Z = R and all clusters ρ(x|z) are isotropic, as it is straightforward to extend the discussion to
more general cases. Hence, given a joint distribution ρ(x, z), we assume that the conditional distributions
ρ(x|z) belong to some location-scale family and are isotropic, and denote their means and variances by x(z)
and σ2(z).

In practice, we are only given a finite sample set {xi}Ni=1 ⊆ Rd. If one would use hard assignment
ρ(z|xi) = δzi and model each label zi ∈ R as an independent variable to be optimized, it would be impossible
to evaluate the integral (8): since the sample set is finite whereas there are infinitely many z ∈ R, almost all
conditional distributions ρ(x|z) will be represented by zero or at most one sample point.

Our solution is inspired by human vision. For the image below, it is evident that ρ(x|z1) has greater
variance than ρ(x|z0), even though there is no sample point whose assignment is exactly z0 or z1. The key
is that we can estimate ρ(x|z1) using the points nearby, {xi|zi ≈ z1}.

Figure 1: A two-dimensional sample set. Left: assignment of z by orthogonal projection onto the red curve.
Right: soft assignment ρ(z|xi).

Hence, it is natural to use a soft assignment ρ(z|xi), which is concentrated around some zi and decays for z
far away from zi. Effectively, the latent distribution {zi} is smoothed into

v(z) =
1

N

N∑
i=1

ρ(z|xi)

12



Clustering via optimal transport

Given any z, the conditional density ρ(x|z) can be estimated using Bayes’ formula,

ρ(xi|z) =
ρ(z|xi)ρ(xi)

v(z)
=

ρ(z|xi)∑N
j=1 ρ(z|xj)

, (25)

and Corollary 3.1.1 implies that the barycenter’s standard deviation σ is given by

σ =

∫
σ(z)dv(z) =

∫ [∑N
i=1 ||xi − x||2ρ(z|xi)∑N

i=1 ρ(z|xi)

] 1
2

dv(z). (26)

The objective of clustering (10) is equivalent to

min
ρ(z|x)

σ. (27)

For simplicity, we parameterize the soft assignment by a Gaussian, ρ(z|xi) = N (z|θi, ε2), where θi are
the means and ε2 is the common variance (Notice that this does not impose any particular form on the
conditional distributions ρ(x|z).) The means θi are parameters by which we minimize (26), and we define
the vector θ = [θi]. When the sample set {xi} is large, rather than having an independent variable θi for
each xi, one can replace θi by a parameterized function θ(xi), for instance through a neural network.

Note that ε2 should adapt to the set {θi}. Otherwise, a fixed ε2 would lead to the trivial solution where
the θi are arbitrarily far apart, so that by (25) each conditional distribution ρ(x|z) would be concentrated
at some xi and σ(z) would go to zero. Hence, we choose ε2 so as to make the distributions ρ(z|xi) close to
each other for nearby xi. Intuitively, for some fixed 0 < α < 1 (e.g. α = 10%), we want that for each ρ(x|z),
roughly a fraction α of the {xi} participate in ρ(x|z). The trivial solution corresponds to α ≈ 0, and one
should not set α ≈ 1 either, for otherwise each xi would have significant presence in each ρ(x|z), contrary
to the goal of clustering as a partition of the {xi}. Hence we set the following objective for ε2, based on
maximum likelihood:

max
ε2

N∏
i,j=1

N (θj |θi, (ε/α)2),

with optimal solution given by

ε2 =
α2

2N2

N∑
i,j

||θi − θj ||2 =
α2

N

N∑
i=1

||θi − θ||2 = α2V ar({θi}), (28)

where θ is the sample mean. This choice of ε2 dilates ρ(z|xi) proportionally to the spread of the {θi}, thus
preventing the trivial solution.

To fix θi, we can further require that their mean should not drift away from 0. Adding for this an extra

term θ
2

to the penalty yields the simpler formula

ε2 = α2(V ar({θi}) + θ
2
) = α2 ||θ||2

N
, (29)

so we propose

ρ(z|xi) = N
(
θi,

α2||θ||2

N

)
. (30)

Next, we derive the gradient of the barycenter’s standard deviation σ. By Appendix E, we can differentiate
under the integral sign in (26) to obtain the following gradient:

∂σ

∂θi
= Ev(z)[Gi(z)] (31)

Gi(z) =
1

2N · v(z)

[
C(z)θi +

z − θi
ε2

ρi(z)
(
σ(z) +

||xi − x(z)||2

σ(z)

)]
(32)
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C(z) =
1

||θ||2
N∑
j=1

[
σ(z) +

||xj − x(z)||2

σ(z)

]
·
[ ||z − θj ||2

ε2
− 1

||θ||

]
ρj(z). (33)

The computation of the integrand Gi(z) for any z takes linear time O(N). Estimating the expectation (31)
by random sampling from the latent distribution v(z), we obtain the following stochastic gradient descent
algorithm, which will be tested in Section 6.4:

Input: Sample {xi}Ni=1, learning rate η, proportion constant α.
Initialize each θi either randomly in [−1, 1] or proportionally to the principal component of the sample.
while not converging do

Randomly sample a latent variable z from v(z) = 1
N

∑N
i=1 ρ(z|xi).

Compute the conditional mean x(z) and standard deviation σ(z)
Compute the constant C(z) by (33)
Update each θi by the gradient (32): θi ← θi − ηGi(z)

end
return θi

Algorithm 5: Affine Factor Discovery. It can be seen as a continuous version of Algorithm 3.

Remark 5.1. Whenever we obtain a joint distribution ρ(x, z), the conditional mean x(z) can be seen as a
curve, parameterized by z ∈ R, that summarizes the data ρ(x). If, as in Remark 4.1, we make the simplifying
assumption that all conditional distributions ρ(x|z) are equivalent up to translations, Corollary 3.1.1 implies
that the variance of the barycenter is given by

V ar(µ) =

∫
V ar(ρ(x|z))dv(z) ≈ 1

N

N∑
i=1

||xi − x(zi)||2

Or, in terms of soft assignments similar to (26),

V ar(µ) =

∫
1

N

N∑
i=1

||xi − x(zi)||2dρ(z|xi)

Since the objective of clustering, (10) and (27), is to minimize V ar(µ), an immediate corollary is that, given
any curve x(z), the sample xi should be assigned to the closest point on x(z):

zi = argminz||xi − x(z)||2

or the soft assignment ρ(z|xi) should be concentrated around this zi. It follows that our formulation of
clustering is reduced to an alternating descent algorithm that takes turns updating the conditional means
x(z) and reassigning zi. Yet, this procedure is exactly the principal curve algorithm [13, 14]. Hence, problem
(27) is a generalization of principal curves (and principal surfaces if we set Z = Rk).

6 Performance

Sections 6.1 and 6.2, compare k-means and the barycentric clustering algorithms on artificial data that deviate
from the “standard data” of k-means, and section 6.3 tests them on real-world classification data sets. Finally,
section 6.4, tests Affine factor discovery (Algorithm 5) on earthquake data to discover meaningful continuous
latent variables.

6.1 Comparison of soft assignments

We design two families of artificial data. The “expansion test” is a collection of three spherical Gaussian
distributions in R2:

100 samples from N
(
[0, 0]T , 1

10I
)
,

100(1 + t) samples from N
(
[0, 2 + t]T , (1+t)2

10 I
)
,
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100(1 + 2t) samples from N
([
t+1
t+2

√
12(2t+ 1), 2(1−t2)

t+2

]T
, (1+2t)2

10 I
)
.

The means and variances are designed so that, for all t ≥ 0, the three samples are roughly contained in three
pairwise adjacent balls of radii 1, 1 + t and 1 + 2t. As t increases, the sample sizes and radii grow in distinct
rates. The “dilation test” is given by

100 samples from N
([0

1

]
, 1

25

[
(1 + t)2 0

0 1

])
,

100 samples from N
([0

0

]
, 1

25

[
1 0
0 1

])
,

100 samples from N
([

0
−1

]
, 1

25

[
(1 + t)2 0

0 1

])
,

which are Gaussians stretched horizontally at different rates. The expansion test challenges the “standard
data” [28] in its first two assumptions: similar radii and similar proportions, while the dilation test challenges
the assumption of isotropy. In both cases, the amount of deviation from the standard data is parametrized
by t ≥ 0.

The performance of each algorithm is measured by its correctness rate, the percentage of overlap between
the true labeling and the labeling produced by the algorithm, maximized over all identifications between
the proposed clusters and the true clusters: given the true labeling {zi} and either the labeling {ki} or the
stochastic matrix P produced by algorithm, we define the correctness rate as

max
g∈SK

∑
i

1zi=g(ki) or max
g∈SK

∑
i

P ig(zi) (34)

where g ranges over the permutation group SK .

We first compare the soft assignment algorithms: Fuzzy k-means, barycentric clustering (Algorithm 1),
and isotropic barycentric clustering (Algorithm 3). Note that k-means’ objective (14) is approximately a
linear function in the assignment P = [P ki ], and thus the optimal solutions are the extremal points of
Dom(P ) =

∏
i ∆K , which are hard assignments. Hence, in order to obtain a valid comparison among soft

assignments, we use the the fuzzy k-means algorithm [5], which generalizes k-means, minimizing the following
objective function:

Jc(P, {xk}) =
∑
i

∑
k

(P ki )c||xi − xk||2.

This is a generalization of the sum of squared errors (14), with an exponent c > 1 that makes Jc strictly
convex in P ik, and therefore yields soft assignments. Here we adopt the common choice c = 2.

Data: Sample {xi}, exponent c = 2
Initialize the means xk and stochastic matrix P = (P ki ) randomly
while not converging do

for xi in sample and k = 1 to K do
P ki ← (||xi − xk||2)1−c/

∑
j(||xj − xk||2)1−c

end
for k = 1 to K do

xk ←
∑
k(P ik)cxi/

∑
k(P ik)c

end

end
Algorithm 6: Fuzzy k-means

Since each algorithm starts with a random initialization, we stabilize performance by running each algo-
rithm 100 times over the same sample set and selecting the result that minimizes the algorithm’s objective
function (Jc for fuzzy k-means, (10) for barycentric clustering, and (17) for isotropic barycentric clustering.)

The experimental results are plotted below. The first row corresponds to the expansion test with t = 2.2,
and the second row to the dilation test with t = 3.0. The class assignment displayed is given by the maximum
probability, ki ← argmaxkP

i
k.
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Figure 2: Clusters produced by fuzzy k-means (left), isotropic barycentric clustering (middle) and barycentric
clustering (right). The black arrows indicate the clusters’ means.

For the expansion test, fuzzy k-means merged the two smaller clusters and split the largest one, whereas
the barycentric clustering algorithms only made a few errors on the periphery. For dilation test, the cor-
rect clusters are produced only by Barycentric clustering, whereas fuzzy k-means and Isotropic barycentric
clustering split the clusters. These results are not surprising, since Section 4.2 shows that k-means is an
approximation to Barycentric clustering that assumes clusters with identical sizes and radii, while Isotropic
barycentric clustering, by design, assumes isotropic clusters.

Below are the plots of correct rates (34) for t ∈ [0, 4]. Fuzzy k-means, with a steady decline, is dominated
by the barycentric clustering algorithms, while the difference between the latter two is small. Eventually,
as t → ∞, all algorithms deviate from the true labeling, since for very large t the Gaussians become so
disparate that the true labeling no longer minimizes Tr[Σy] or yields reasonable clusters that agree with
human perception.

Figure 3: Correctness rates. Left: expansion test. Right: dilation test.

In fact, for the dilation test, the contrast can be seen well before t = 3.0. The following is the result for
t = 1.6, with the shaded regions representing the convex hulls containing the “core points” of each class,
defined as Ck = {xi, P ik > 1/3}. The soft clusters produced by fuzzy k-means exhibit significant overlap,
indicating that many sample points are assigned with highly ambiguous probability vectors P i.
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Figure 4: Convex hulls of core points. Only the barycentric clustering algorithms correctly cover each cluster.

6.2 Comparison of hard assignments

We compare next the hard assignment algorithms: k-means [3], Hard barycentric clustering (Algorithm 2),
and Barycentric k-means (Algorithm 4). The results on the expansion test and dilation test are plotted below.
Again, for each algorithm on each sample set, the objective-minimizing result over 100 trials is selected. The
performance comparison is analogous to that of soft assignment.

Figure 5: First row: Expansion test with t = 3.2. Second row: Dilation test with t = 2.0. Left: k-means.
Middle: Barycentric k-means. Right: Hard barycentric clustering.

Nevertheless, Hard barycentric clustering is a simplified version of Barycentric clustering, replacing the
latter’s gradient descent, which moves by small steps, by class reassignment, which hops among the extremal
points of

∏
i ∆K . The correctness rate curves of dilation test indicate that, whereas Barycentric k-means has

similar performance as Isotropic barycentric clustering, Hard barycentric clustering is more unstable than
Barycentric clustering.

17



Clustering via optimal transport

Figure 6: For the expansion test, we have the ranking: k-means < Hard barycentric clustering < Barycentric
k-means, and for the dilation test: k-means < Barycentric k-means < Algorithm Hard barycentric clustering.

6.3 Clustering on real-world data

To compare the performance of k-means and our algorithms on real-world problems, we use data sets from
the online UCI Machine Learning Repository [11]. These data sets, intended for classification, are provided
with labels, which we use to calculate the correctness rates (34). The “Wine” [1] data set classifies wines
based on chemical compositions, “Seeds” [7] classifies wheats by the shapes of wheat kernels, “Breast cancer
(original)” [36] classifies benign/malign cancers by the shapes of cell nuclei, while “Breast cancer (diagnostic)”
[29] classifies them by other cell statistics, “Parkison’s” [22] diagnoses the disease by the patients’ voice and
speech, and “E.coli” [16] classifies proteins by their sequences and structures.

Since the setting for our clustering problem is for data in Rd, the data’s categorical attributes as well as
entries with missing data are removed. The samples are normalized along each dimension before clustering,
since their attributes are often on disparate scales. Again, each algorithm is run 100 times on each sample
set, and the objective-minimizing result is selected.

In the following table, for each sample set, the marked entries are the ones with maximum correctness
rates among the hard and soft assignment groups.

Wine Seeds
Breast cancer

(original)
Breast cancer
(diagnostic)

Parkinson’s E.coli

Number of classes K 3 3 2 2 2 8
Dimension d 13 7 9 30 22 6
Sample size 178 210 683 569 197 336
Correct rates %
k-means 96.63 91.90 95.75 91.04 54.36 55.65
Algorithm 4 97.19 91.90 96.34 89.46 53.33 59.82
Algorithm 2 97.19 92.86 96.49 90.69 60.00 59.82
Fuzzy k-means 60.92 74.76 87.19 73.79 54.21 34.01
Algorithm 3 94.34 89.56 96.51 88.78 53.25 57.41
Algorithm 1 91.71 88.73 96.29 89.94 50.91 52.67

Table 1: Our algorithms outperformed (fuzzy) k-means on the majority of data sets. For hard assignment,
we have the ranking: k-means < Barycentric k-means < Hard barycentric clustering. For soft assignment
we have: fuzzy k-means < Barycentric clustering < Isotropic barycentric clustering, although the influence
of the isotropic simplification seems minuscule.

One notable difference between our synthetic tests and these real-world data is that the latter have higher
dimensions, which negatively influence fuzzy k-means’ performance. Previous studies [35] have shown that,
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as dimension increases, the pairwise distances of the sample points become homogeneous, and fuzzy k-means
tends to produce uniform assignments: P ik ≈ 1/K. Nevertheless, the barycentric clustering algorithms remain
robust, as shown below.

Figure 7: Soft assignment on the “Wine” data set. The sample is projected onto its principal 2-plane, with
the true labeling given in the first panel. The following three panels correspond to fuzzy k-means, Isotropic
barycentric clustering, and Barycentric clustering. The shaded polygons represent the convex hulls spanned
by the “core points” of each cluster, Ck = {xi, P ik > 1/4}. Fuzzy k-means assigned each xi with ambiguous
probabilities (P ik ≈ 1/3), and many sample points belong to the “cores” of two or more clusters, whereas the
assignments produced by the barycentric clustering algorithms are relatively “hard”.

6.4 Continuous latent variable and seismic data

Finally, we test Affine factor discovery (Algorithm 5). As discussed in Remark 5.1, the continuous factor
discovery problem (27) generalizes principal curves, so it is natural to evaluate Algorithm 5 in terms of its
“principal curve”, that is, the conditional mean x(z). Given data that appears to cluster around one or
several curves, the curve x(z) should discover these patterns.

We use the earthquake data from [31], which covers more than two thousand earthquakes in the 20th
century in the Southeast Asia earthquake zone. The sample {xi} is two dimensional, recording the latitude
and longitude of the earthquakes. We apply Affine factor discovery with a fixed number of iterations T =
50000, proportion constant α = 2.5%, and learning rate η = 5× 10−1, and we initialize θi to be proportional
to longitude, which is evidently far from the optimal solution. The curve of conditional means x(z) is plotted
below.

Figure 8: Left: Plot of earthquake data {xi}. Right: The conditional means x(z) with z sampled from v(z).

The Southeast Asia earthquake zone lies at the intersection of the Australian Plate, Eurasian Plate,
Indian Plate, Philippine Plate, Yangtze Plate, Amur Plate, and numerous minor plates and microplates.
The tectonic boundaries are complex and cannot be represented by a single curve. Affine factor discovery
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automatically solved this problem using piecewise principal curves. Note that even though the latent space
Z = R is connected, the support of the latent distribution, suppv(z), consists of several disjoint clusters,
giving rise to piecewise continuous x(z).

Figure 9: Left: Latent variable distribution v(z), represented by the conditional label means {θi}. We can
roughly identify four disjoint components of suppv(z), or clusters. Right: The curve x(z) of each cluster
corresponds to an earthquake belt.

7 Conclusions

This paper developed a novel formalization of clustering in terms of Wasserstein barycenters, exteding ideas
proposed in [30]. Clustering can be seen as a special case of the latent variable discovery problem: given data
∼ ρ(x) ∈ P(Rd) and a latent variable space Z such as the class labels {1, . . .K}, find a joint distribution
ρ(x, z) ∈ P(Rd × Z) so that each data point x is given a latent variable assignment ρ(z|x). The resulting
conditional distributions ρ(x|z) can be regarded as the clusters.

Conventionally, the fitness of the assignment ρ(z|x) is assessed by some “dissimilarity measure”: similar
points should be grouped together in one cluster. Instead, we start from the intuition that the goal of learning
is to obtain the most information. Specifically, we maximize the information gained from the assignment of z
in ρ(x, z). If information gain is characterized by the reduction in uncertainty, and if uncertainty is measured
by variance, then the objective of clustering, as well as latent variable discovery in general, is to minimize
the x-variance of ρ(x, z), given ρ(x).

To properly define the x-variance of a joint distribution ρ(x, z), we choose the distribution µ that best
represents all clusters ρ(x|z), and then define the variance of ρ(x, z) by V ar(µ). Moving from ρ(x) to the
representative µ eliminates the data’s variability attributable to the latent variable z. The representative
µ can be naturally defined as the Wasserstein barycenter from optimal transport theory, which minimizes
a transport cost between each cluster ρ(x|z) and µ, which is our setting corresponds to a measure of data-
deformation.

Hence, the optimal clustering plan is defined as the latent variable assignment ρ(z|x) that minimizes the
variance of the barycenter, V ar(µ). It was shown in [30] that, in the simple setting when all clusters ρ(x|z)
are identical up to rigid translations, this formulation becomes exactly k-means. This article,

1. examined the more general scenario when the clusters belong to a location-scale family, and derived
the barycentric clustering algorithms (Algorithms 1 and 2) capable of recognizing non-isotropic clusters
with varying radii and sizes,
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2. devised simplified versions, Isotropic barycentric clustering and Barycentric k-means (Algorithms 3 and
4), which can run efficiently with little loss in robustness, and

3. based on new findings in Wasserstein barycenters with infinitely many marginals, constructed Affine
factor discovery (Algorithm 5), which uncovers continuous latent variables and generalizes principal
curves and surfaces.

The barycentric clustering algorithms were tested and compared with the more standard k-means and
fuzzy k-means on real-world data, as well as artificial data designed to demonstrate the effects of relaxing the
various hypotheses underlying the “standard data” [28] for k-means. In nearly all cases, the new procedure
in its most general version shows better and more robust performance. Similarly, Affine factor discovery
yielded principal curves that reliably summarize the data, automatically generating piecewise continuous
curves when needed.

The methodology developed in this article, in addition to its value as a practical tool for clustering and
continuous factor discovery, opens the way to further inquiry into various directions:

1. Moving from the standard Euclidean distance to other problem-specific metrics. In particular, one
can apply the (squared) geodesic distance of the manifold that underlies the data, such as the Fermat
distance introduced in [27].

2. The uncertainty or variability of the data, quantified as variance in this paper, could be generalized
to other variability measures. Clustering methods similar to barycentric clustering may stem from
different variability measures.
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Appendices:

A Proof of Theorem 3.1

The special case when F(P0) is the Gaussian family and when the labels are finite Z = {1, . . .K} is proven
by Theorem 6.1 of [2]. Theorem 5 of [37] extends it to the case with general Z, provided that the marginal
ρ(x) has finite second moment. Essentially, it uses an approximation argument to go from the finite latent
space Z = {1, . . .K} to general measurable spaces.

Since Corollary 4.5 of [4] has proved Theorem 3.1 in the simplified setting with the finite latent space
Z = {1, . . .K}, the approximation argument of [37] can be applied to generalize Z to general measurable
spaces.

B Existence of derivative

Here we establish that ∂Σy/∂P
i
k, the partial derivatives of the barycenter’s covariance implicitly defined by

(12) with respect to the membership probabilities ρ(k|xi), always exist. Theorem 1.1 from [10] is a useful
result on matrix derivatives which we restate below. Denote by Sd,S+

d ⊆Md the linear subspace of symmetric
matrices and the cone of positive-definite matrices.

Theorem B.1. The principal matrix square root function S ∈ S+
d → S

1
2 ∈ S+

d is Fréchet differentiable to
any order, and the first order derivative is given by the operator

(∇S 1
2 )(H) := ∇S 1

2 |H =

∫ ∞
0

e−S
1
2 t ·H · e−S

1
2 tdt

such that for any H ∈ Sd and S + hH ∈ S+
d

lim
h→0

1

h
[(S + hH)

1
2 − S 1

2 − h(∇S 1
2 )(H)] = 0.

Now we prove the existence of the partial derivatives through the Implicit Function Theorem.

Theorem B.2. For {Σ1, . . .ΣK} ⊆ S+
d , the solution Σy to the covariance formula (12) depends differentiably

on Σ1, . . .ΣK .
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Proof. For convenience, define the function

F (Σy,Σ1, . . .ΣK) =

K∑
k=1

Pk(Σ
1
2
y ΣkΣ

1
2
y )

1
2 − Σy

It is a composition of C1 functions on
∏K+1
i=1 S+

d and thus is C1. To confirm that the gradient ∇Σy
F is

non-singular, perturb Σy along an arbitrary direction S ∈ Sd,

(∇ΣyF )(S) =

K∑
k=1

Pk

(
∇
(
Σ

1
2
y ΣkΣ

1
2
y

) 1
2

)((
∇Σ

1
2
y

)
(S)ΣkΣ

1
2
y + Σ

1
2
y Σk

(
∇Σ

1
2
y

)
(S)
)
− S

=

K∑
k=1

∫ ∞
0

e−(Σ
1
2
y ΣkΣ

1
2
y )

1
2 t
[( ∫ ∞

0

e−Σ
1
2
y uSe−Σ

1
2
y udu

)
ΣkΣ

1
2
y

+ Σ
1
2
y Σk

(∫ ∞
0

e−Σ
1
2
y uSe−Σ

1
2
y udu

)]
e−(Σ

1
2
y ΣkΣ

1
2
y )

1
2 tdt− S

To evaluate integrals of the form
∫∞

0
e−Σ

1
2 tSe−Σ

1
2 tdt, we can apply the eigendecomposition Σ = UDUT∫ ∞

0

e−(UDUT )
1
2 tSe−(UDUT )

1
2 tdt = U

(∫ ∞
0

e−D
1
2 tUTSUe−D

1
2 tdt

)
UT = U(T ◦ UTSU)UT

where ◦ is Hadamard product and Tij = 1√
λi+
√
λj

.

Thus, using Σ
1
2
y ΣkΣ

1
2
y = UkDkU

T
k , Σy = UyDyU

T
y and the corresponding Tk, Ty, we obtain

(∇Σy
F )(S) =

K∑
k=1

PkUk

[
Tk ◦ UTk

[
Uy

(
Ty ◦ UTy SUy

)
UTy ΣkΣ

1
2
y + Σ

1
2
y ΣkUy

(
Ty ◦ UTy SUy

)
UTy

]
Uk

]
UTk − S

To check non-singularity, we set (∇Σy
F )(S) = 0 and vectorize the equation to disentangle S. We apply the

identity that vec(AXB) = (BT ⊗ A)vec(X) where ⊗ is the Kronecker product [15]. Meanwhile, vectorizing
the Hadamard product yields

vec(T ◦X) = diag(vec(T ))vec(X) = (D
1
2 ⊗ I + I ⊗D 1

2 )−1vec(X).

Then, the equation (∇ΣyF )(S) = 0 becomes,

vec(S) = vec

{
K∑
k=1

PkUk

[
Tk ◦ UTk

[
Uy

(
Ty ◦ UTy SUy

)
UTy ΣkΣ

1
2
y + Σ

1
2
y ΣkUy

(
Ty ◦ UTy SUy

)
UTy

]
Uk

]
UTk

}

=

K∑
k=1

Pk(Uk ⊗ Uk)(D
1
2

k ⊗ I + I ⊗D
1
2

k )−1(UTk ⊗ UTk )
(
Σ

1
2
y Σk ⊗ I + I ⊗ ΣkΣ

1
2
y

)
(Uy ⊗ Uy)(D

1
2
y ⊗ I + I ⊗D

1
2
y )−1(UTy ⊗ UTy )vec(S)

Splitting the term Σ
1
2
y Σk ⊗ I = (Σ

1
2
y ΣkΣ

1
2
y ⊗ I) · (Σ−

1
2

y ⊗ I), we get

vec(S) =

{[ K∑
k=1

Pk(Uk ⊗ Uk)(D
1
2

k ⊗ I + I ⊗D
1
2

k )−1
(
Dk ⊗ I)(UTk ⊗ UTk )

]
·[

(Uy ⊗ Uy)(D
− 1

2
y ⊗ I)(D

1
2
y ⊗ I + I ⊗D

1
2
y )−1(UTy ⊗ UTy )

]
+[ K∑

k=1

Pk(Uk ⊗ Uk)(D
1
2

k ⊗ I + I ⊗D
1
2

k )−1
(
I ⊗Dk)(UTk ⊗ UTk )

]
·
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[
(Uy ⊗ Uy)(I ⊗D−

1
2

y )(D
1
2
y ⊗ I + I ⊗D

1
2
y )−1(UTy ⊗ UTy )

]}
vec(S).

Applying the three identities

Dk ⊗ I = (D
1
2

k ⊗ I + I ⊗D
1
2

k )(D
1
2

k ⊗ I − I ⊗D
1
2

k ) + I ⊗Dk,

I ⊗Dk = (D
1
2

k ⊗ I + I ⊗D
1
2

k )2 −D
1
2

k ⊗ I − 2D
1
2

k ⊗D
1
2

k ,

D
− 1

2
y ⊗D−

1
2

y = (D
1
2
y ⊗ I + I ⊗D

1
2
y )−1(D

− 1
2

y ⊗ I + I ⊗D−
1
2

y ),

we obtain

vec(S) =

{[ K∑
k=1

Pk(Uk ⊗ Uk)(D
1
2

k ⊗ I − I ⊗D
1
2

k )(UTk ⊗ UTk )
]
·[

(Uy ⊗ Uy)(D
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2
y ⊗ I)(D
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2
y ⊗ I + I ⊗D

1
2
y )−1(UTy ⊗ UTy )
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vec(S)

Hence, it follows that[ K∑
k=1

Pk(Uk ⊗ Uk)(D
1
2

k ⊗ I + I ⊗D
1
2

k )−1(D
1
2

k ⊗D
1
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·
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Σ
− 1

2
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− 1
2

y
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vec(S) = O

Denote the lengthy matrix by
[∑K

k=1 PkYk
]
Y . Since each Yk and Y are positive-definite, the entire ma-

trix is positive-definite and the equation holds if and only if S = O. We can conclude that the gradient
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(∇ΣyF ) is always non-singular, and the implicit function theorem implies that Σy depends differentiably on

{Σ1, . . .ΣK} ⊆
∏K
i=1 S

+
d .

It follows that since Σk depends differentiably on P ik, the derivatives ∂Σy/∂P
i
k exist.

C Computation of derivative

To solve for the gradient ∇P iTr[Σy], set Λik = ∂Σy/∂P
i
k ∈ Sd as an unknown variable. Rather artificially,

define the term

Ωik :=
1

Pk

∂(Pk)2Σk
∂P ik

=
1

Pk

∂Pk
∑N
i=1 P

i
k(xi − xk) · (xi − xk)T

∂P ik

= Σk + (xi − xk) · (xi − xk)T + 2

N∑
i=1

P ik(xi − xk) ·
(
− ∂xk
∂P ik

)T
= Σk + (xi − xk) · (xi − xk)T

Taking partial derivative ∂P ik on both sides of the covariance formula (12), we obtain

Λik =
∑
h6=k

(
∇
(
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2
y

(
(Ph)2Σh
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2
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=
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Vectorize and simplify it by the previous computations,

vec(Λik) =

{
I −

[ K∑
h=1

Ph(Uh ⊗ Uh)(D
1
2

h ⊗ I + I ⊗D
1
2

h )−1(D
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·
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Therefore,

vec(Λik) =
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Denote the solution by Λik = vec−1(Wkvec(Ω
i
k)), we obtain an expression for the gradient of the objective

function

∇P iTr[Σy] =

K∑
k=1

Tr[Λik] ~ek =

K∑
k=1

vec(I)T ·Wk · vec(Ωik) ~ek
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D Proof of Theorem 4.1

By Theorem 1 of [37], the left side of (24) can be written as∫
W 2

2

(
ρ(x|z), µ

)
dv(z) = min

π∈Π1

∫
||x− y||2dπ(x, y, z) (35)

Π1 :=
{
π ∈ P(Rd × Rd × Z) | πXZ = ρ(x, z), πY Z = πY ⊗ πZ

}
and the minimum is attained by some π. Similarly, Kantorovich theorem [33] shows that for each z1, z2 ∈ Z,
there exists a coupling π̃(x1, x2|z1, z2) between ρ(x1|z1), ρ(x2|z2) that achieves the optimal transport cost

W 2
2

(
ρ(x1|z1), ρ(x2|z2)

)
=

∫
||x1 − x2||2dπ̃(x1, x2|z1, z2)

By the standard measureable selection theorems (e.g. Corollary 5.22 of [33]), there exists a measureable
selection of optimal couplings π̃(x1, x2|z1, z2) so that we can collect them into a joint measure

π̃(x1, x2|z1, z2)v(z1)v(z2) = π̃(x1, x2, z1, z2) ∈ P(Rd × Z × Rd × Z)

Moreover, it can be made to satisfy

π̃(x1, x2|z1, z2) = π̃(x2, x1|z2, z1) (36)

for all z1, z2. It follows that the right side of (24) becomes

1

2

∫∫
W 2

2

(
ρ(x1|z1), ρ(x2|z2)

)
dv(z1)dv(z2) =

1

2
min
π̃∈Π2

∫
||x1 − x2||2dπ̃(x1, x2, z1, z2) (37)

Π2 :=
{
π̃ ∈ P(Rd × Z × Rd × Z) | π̃X1Z1 = π̃X2Z2 = ρ(x, z),

π̃Z1Z2
= v(z)⊗ v(z), π̃(x1, x2|z1, z2) = π̃(x2, x1|z2, z1)

}
Given the solution π of (35), define the joint measure

π′(x1, z1, x2, z2, y) := π(x1, z1|y)⊗ π(x2, z2|y)πY (y)

Then, its marginal π′′ := π′X1Z1X2Z2
belongs to Π2. It follows that

(35) =

∫
||x− y||2dπ

=
1

2

∫
||x1 − y||2 + ||x2 − y||2 − 2〈x1 − y, x2 − y〉dπ′

=
1

2

∫
||x1 − x2||2dπ′′

≥ (37)

Conversely, given the solution π̃ of (37), define the random variables (X1, Z1, X2, Z2) ∼ π̃, as well as
Xz1 ∼ π̃X1Z1(x1|z1) and Xz2 ∼ π̃X2Z2(x2|z2). The symmetry (36) implies that we can define

Y :=

∫
Xz1dv(z1) =

∫
Xz2dv(z2)

Then, define the joint measure π̃′(x1, z1, x2, z2, y) as the distribution of (X1, Z1, X2, Z2, Y ). It follows that
the margin π̃′′ := π̃

′

X1Y Z1
belongs to Π1 and

(37) =
1

2

∫
||x1 − x2||2dπ̃ =

1

2

∫
||x1 − y||2 + ||x2 − y||2 − 2〈x1 − y, x2 − y〉dπ̃′

=

∫
||x− y||2dπ̃′′ ≥ (35)

Hence, we have the equality (35) = (37).
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E Derivation of gradients in Section 5

For each z, the partial derivative of the conditional standard deviation σ(z) times the marginal latent distri-
bution v(z) with respect to the conditional latent distribution ρi = ρ(z|xi) is given by

∂
(
σ(z)v(z)

)
∂ρi

=

∑N
j=1 ||xj − x(z)||2ρj + ||xi − x(z)||2 ·

∑N
j=1 ρj − 2

∑N
j=1 ρj(xj − x)T · ∂x(z)

∂ρi

2N
(∑N

j=1 ρj ·
∑N
j=1 ||xj − x(z)||2ρj

) 1
2

=
1

2N

[
σ(z) +

||xi − x(z)||2

σ(z)

]
Meanwhile, for each ρi, the partial derivatives of (30) are given by

∂ρi(z)

∂θj
=
[
− θj
||θ||3

+
N

α2

θj ||z − θi||2

||θ||4
+ 1i=j

N

α2

z − θi
||θ||2

]
ρi(z)

So the Jacobian matrix Jθp of the vector p := [ρi] with respect to the parameter vector θ := [θj ] is

JTθ p(z) = θ ·
[(
− 1

||θ||3
+
N

α2

||z − θi||2

||θ||4
)
ρi(z)

]T
i

+ diag
(N
α2

z − θi
||θ||2

ρi(z)
)

= θ ·
[(
− 1

||θ||
+
||z − θi||2

ε2
)ρi(z)
||θ||2

]T
i

+ diag
(z − θi

ε2
ρi(z)

)
To show that we can differentiate under the integral sign of σ in (26), we rewrite the standard deviation

σ(z) into

σ(z) =
[1

2

∫∫
||x− y||2dρ(x|z)dρ(y|z)

] 1
2

=
(1

2

N∑
i,j=1

||xi − xj ||2ρiρj
) 1

2

=

(∑N
i,j=1 ||xi − xj ||2ρiρj

) 1
2

√
2
∑N
i=1 ρi

Define the matrix D = [Dij ] = [||xi−xj ||2]. Then, the distribution term dv(z) in σ can be cancelled, and we
obtain a simpler formula for σ:

σ =
1√
2N

∫ ( N∑
i,j=1

Dijρiρj

) 1
2

dz =
1√
2N

∫
||
√
Dp||dz

It is straightforward to show that for each θ0 ∈ RN (θ 6= 0), there exists some compact neighborhood U
(θ0 ∈ Uo ⊆ U ⊆ RN − {0}) such that the integrand ||

√
Dp|| and its θ gradient are uniformly bounded by

some integrable function. Thereby, Theorem 3.2 of [21] shows that at θ0, we are allowed to take derivatives
under the integral sign:

∇θσ =

∫
∇θ(σ(z)v(z))dz =

∫ ∇θ(σ(z)v(z)
)

v(z)
dv(z)

=

∫
1

v(z)
JTθ p(z) · ∇p

(
σ(z)v(z)

)
dv(z)

∂σ

∂θi
=

∫
1

2N · v(z)

{ θi
||θ||2

N∑
j=1

[
σ(z) +

||xj − x(z)||2

σ(z)

]
·
[ ||z − θj ||2

ε2
− 1

||θ||

]
ρj(z)

+
z − θi
ε2

ρi(z)
[
σ(z) +

||xi − x(z)||2

σ(z)

]}
dv(z)

In particular, since the Jacobian Jθp consists of a rank-one matrix and a diagonal matrix, computing the
above integrand for any z takes only linear time, O(N).

28


	Introduction
	The Wasserstein Barycenter problem
	Optimal affine transport
	Factor discovery with affine maps
	Gradient descent solution
	Relation to k-means
	Isotropic solution
	Relation to Mahalanobis distance
	An alternative approach

	Continuous extension
	Performance
	Comparison of soft assignments
	Comparison of hard assignments
	Clustering on real-world data
	Continuous latent variable and seismic data

	Conclusions
	Proof of Theorem 3.1
	Existence of derivative
	Computation of derivative
	Proof of Theorem 4.1
	Derivation of gradients in Section 5

