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Abstract

We study energy transfer in a “resonant duet”—a resonant quartet where sym-
metries support a reduced subsystem with only 2 degrees of freedom—where
one mode is forced by white noise and the other is damped. We consider a phys-
ically motivated family of nonlinear damping forms and investigate their effect
on the dynamics of the system. A variety of statistical steady states arise in dif-
ferent parameter regimes, including intermittent bursting phases, states highly
constrained by slaving among amplitudes and phases, and Gaussian and non-
Gaussian quasi-equilibrium regimes. All of this can be understood analytically
using asymptotic techniques for stochastic differential equations. (© 2006 Wiley
Periodicals, Inc.

1 Introduction

Many wave systems in nature are best described in terms of Fourier modes,
and the nonlinearities of the dynamics correspond to energy exchange amongst
these modes. Often the dynamics is conservative in a large range of length scales
(the inertial range), with forcing and dissipation acting only over a more restricted
range. For example, ocean surface waves are thought to be initiated by the wind
at small (capillary) scales, with the subsequent dynamics transferring the energy to
longer scales. The main dissipation mechanism is wave breaking, which usually
acts on much longer (gravity) waves that intermittently remove energy from the
wave system.
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For dispersive wave systems, such as surface ocean waves and internal waves in
the atmosphere and ocean, the conservative energy transfer occurs mostly through
resonant sets, typically triads or quartets. Weak turbulence (or wave turbulence)
theory describes this weakly nonlinear conservative energy cascade through the
resonant sets. The theory yields kinetic equations (where the energy exchange is
through wave “collisions”) for the evolution of the Fourier spectrum. Sometimes
special power law solutions of these equations with a prescribed flux of energy can
be found [1, 2, 6,7, 11].

In idealized systems where the damping acts on infinitely small or large length
scales (the so-called inviscid limit), it is believed that the form of damping does
not affect the spectrum. Away from this limit, however, the form of the forcing
may affect the solution. For instance, developers of general circulation models for
the atmosphere and ocean are well aware of the sensitivity of their models to the
form of the parametrization of damping used. The purpose of the present work is
to understand the effect of more realistic, nonlinear dissipation in the context of a
simple model amenable to detailed analysis. To this end, we generalize the duet
system introduced in [9]. The forms of dissipation that we consider include those
consistent with wave breaking and therefore may prove useful in parametrizing
wave breaking in more complex scenarios.

As in [9], the model emerges from isolating one resonant quartet in a general
dispersive system, adding white noise forcing and dissipation, and then further
reducing the system to just two complex degrees of freedom by exploiting a sym-
metry. The reason to model the forcing through white noise is that this permits a
complete control of the energy input, and hence also of the rate of energy transfer
through the system, when it is in a statistically stationary state.

The resulting duet system has many analogies to more complex dispersive sys-
tems, but is of low enough dimension that it is quite amenable to numerical sim-
ulation. Furthermore, it is simple enough that it can be understood almost com-
pletely using theoretical tools. In spite of its simplicity, this model exhibits a rich
variety of behaviors. In particular, it contains both Gaussian and non-Gaussian
quasi-equilibrium states. Moreover, for certain values of the parameters, the sys-
tem includes bursting dynamics which, although intermittent, are dominated by a
maximally efficient energy transfer, with most of the dynamics slaved to the evo-
lution of one single mode.

The paper is organized as follows: In Section 2, we state the duet model we
study in the paper and show how it is related to a typical nonlinear PDE. In Sec-
tion 3, we study some of the elementary statistical properties of the duet model.
In Section 4 we describe a numerical study of the duet for various parameter val-
ues and show the existence of several parameter regimes. In Sections 5 and 6 we
analyze the dynamical equations in two different asymptotic regimes and obtain
the (sometimes approximate) distributions for the system. Finally, in Section 7 we
summarize and suggest further work.
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2 The Duet System

We consider in this paper the resonant duet

2.1 id =2y51a§+aW
( ’ idz = 2)/0%52 — ivaz |Clz|ﬁ y
where a; and a, are two complex amplitudes, y, o, v > 0 and 8 > 0 are constants,
and W is a complex Weiner process. This is a prototypical model for energy trans-
fer; we have two coupled modes, and we force one and damp the other with a view
towards determining what proportion of the total energy remains in each mode.
The parameter g allows the damping to be nonlinear.

This is a generalization of the system studied in [9], which described the case
B = 0, corresponding, for instance, to a fluid’s viscosity. The purpose of intro-
ducing a more general § is to understand the role of nonlinearity in the dissipation
mechanism, and as we show below this can lead to radically different qualitative
behavior. There are several motivations to study this generalization: from a tech-
nical perspective, it is interesting to find physical systems that have equilibrium-
invariant measures that are non-Gaussian, whereas from a physical perspective,
dissipation in fluid problems is often brought about by nonlinear wave dynamics.

2.1 Relation to the Nonlinear Schrodinger Equation

As in [9], we start with a one-dimensional partial differential equation of the
form

ow
2.2) iE = LV + y |W|? ¥ + forcing and damping,

where L is a Hermitian linear operator with symbol L = w. In the inertial range,
this system behaves in a Hamiltonian manner as

ow oH “ y
= — H= | dka,|VK)|?+ = [ dx|¥(x)|*.
= / o (0| +2/ ()

Our goal here is to find a simple subsystem of (2.2) in which we can understand
the mechanisms of energy transfer. First, we consider a single resonant quartet,
i.e., a set of four wavenumbers k; such that the resonant conditions

ki + ks = ko + k3,

Wk, + W, = Oy + Wiy,

are satisfied. If we then excite these four modes with O (¢)-amplitudes, then the
dynamics of W, can be approximated, up to leading order, by

\,I\ka (t) = e ('C)e_i(wkj —26ym)t,
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with 7 = €t and m = Dk lax|? (the mass of the system), and the g; satisfy the
resonant equations (see, €.g., [5])

ia) = 2yasaas — yap la|*
2.3) iay = 2yasaias — yas las)?
iay = 2yaraiay — yas |as)?
idy = 2y@apa; — yay |agl* .
The last term in each equation comes from the “self-interaction” of each mode with
itself (because of the trivial relation that k; + k; = k; + k;), and we will actually
drop these terms in what follows. This simplifies the calculations but does not
change them qualitatively (cf. [9], where these terms are retained). We now drop
the self-interaction terms in (2.3), noting that it retains its Hamiltonian structure,
and obtain
H =2y(aiayazas + ajaszazay).
These equations satisfy the “Manley-Rowe” relations
dlai? _dla _ dlal® _ dlas
dt— dt — dr  dt
from which follows the conservation of mass m, momentum p, and linear energy
e, given as

e m=Ylgl.  p=Yklg[. e=) oylal
j j j

With the fourth conserved quantity being the Hamiltonian itself, this makes this
system integrable. The system (2.3) can actually be solved analytically [5], but we
do not need that here.

Since we want to study energy transfer in (2.3), we consider the generalization
with forcing and damping added:

ia, = 2yasaras + O’Wl (1)
(2 5) idz = 2)/53611614 - ivaz |612|}3
’ 1a3 = 2)/52611(14 — iva3 |Cl3|/3

iay = 2yaiaxas + o Wa(t),

where W, and W, are white noise and again we have dropped self-interaction terms.
One reason for using white-noise forcing is the following: If we were to use de-
terministic forcing, the first oscillator could reach equilibrium with the forcing by
a frequency detuning, and no more energy would be added to the system. This is
not possible with stochastic forcing, and in the case of white noise the amount of
energy entered into the system is exactly controllable.

Once we add white-noise forcing, we must damp the system somewhere, or
the energy would diverge. Furthermore, once we force one mode (say a;) then
we must force a4 with white noise, and of the same amplitude, to hope to have a
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statistical steady state. (Otherwise, the Manley-Rowe relations would imply that
(|ay = |a4|2) diverges.) There is no reason other than symmetry to choose the
damping strengths to be equal, but we do that here and exploit this symmetry.
Now, consider (2.5) with W; = W, and initial data so that a;(0) = a4(0) and
a,(0) = a3(0). Then
a(t) = as(t), ax(t) =as(r), forallz,
and (2.5) reduces to (2.1). The duet system is not a model for two interacting

modes in a PDE such as (2.2), but it represents the reduction of quartet dynamics
to an invariant submanifold.

2.2 Relation to Wave Breaking

The resonant duet (2.1) with nonlinear damping (8 # 0) is also reminiscent
of wave breaking. In particular, wave breaking is naturally parametrized through a
nonlinear dissipation of the form proposed above, with 8 = 1. To see this, consider
the prototypical model for wave breaking, i.e., the inviscid Burgers equation

+12 0
u — U = V.
t 2 N

Here the energy ¢ = 1u? satisfies

2
242
s (2o7) <o

X
The energy dissipation integrated over space is proportional to the sum of the jumps
of €*/2 at shocks. In a profile of fixed shape—say a sawtooth for the asymptotic
behavior of Burgers in a periodic domain—which can be parametrized by the am-
plitude a of its first Fourier mode, the energy e is proportional to |a|?, while the
dissipation rate e; is proportional to |a|*. This is the result of our nonlinear dissi-
pation when the parameter S is set to 1.

3 Elementary Properties of the Duet System

The system (2.1) is Hamiltonian with
(3.1) H = y(aia; + aia3),

and the mass, momentum, and linear energy in (2.4) all become the same quantity,
which we will now call the energy, denoted

(3.2) E = l|ai]* + |as)* .

It will be convenient to use the variables a; = pye®% and & = p?, giving
d& = (4y£1&sin(20) 4+ o2)dt + 0/2& dW,

(3.3) d& = (—4y& & sin(20) — 2vEL Yt
do =2y (& — &) cos(20)dt + (o/+/251)d Wy,
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where W, and W, are independent white noises. It is straightforward to see that for
any fixed B this system has a single nondimensional parameter, which we define
here as

D= yfloz%vﬁ.
With a view towards choosing the correct scaling limits below, we will formally

compute the expected value of the size of the two amplitudes &; and &,. First, we
calculate

d
dt
d

1 (&) = —dy (162 sin(20)) — (g,

where ( - ) denotes the expectation with respect to the noise. Adding these gives
d
dt
and thus if there is a steady state, it must be true that

(€1) = 4y (5155in(20)) + 07,

(E) =0? — 21)( 5/2+1)’

2
B/2+1y _ 9
(2 >_2l)

For the case of linear damping (8 = 0), this gives an exact bound for the average
energy of a. If B > 0, then this is an upper bound, since using Jensen’s inequality
gives

2
2 o2\ P2
(3.4) (&) < (&77")7 = (2—> :
%
On the other hand, we can also consider the equation
dIng = —4y& sin(20) — 2vEP>,

After averaging, and again assuming the existence of a steady state, we obtain

(& sin(20)) = — (££7%),

2y
and using the fact that (§;) > |(&; sin(26))|, we have
v
35 > — (g2,
(3.5) &)= 6"

4 Numerics and Predictions

We used the standard first-order Euler scheme throughout to simulate the equa-
tions here. We sometimes simulated (3.3), and at other times different scaled ver-
sions of the equations; for example, (6.1) was typically used for large D-values,
and (5.1) were typically used for small D-values. We will state in each case be-
low which equations we simulated. Furthermore, in all numerical simulations for
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B = 0, we evolved In &, instead of &. As we will see from the numerics and anal-
ysis in Section 6, in this § = 0 regime, &, tends to become very close to 0: in fact,
In(1/%,) reaches O (D) frequently during many realizations.

We will analytically explain all of the observations of this section in Sections 5
and 6 below.

4.1 Scaling of Amplitudes of & and &, with D

Figures 4.1 and 4.2 show a series of experiments concerning which of the
bounds (3.4) or (3.5) are saturated in which parameter regimes. Figure 4.1 cor-
responds to the system (3.3) with 8 = 0, 0 = y = 1, and various v in the range
0.2 to 8.0. For these choices of parameters, D = v2, so we are plotting D-values
from 0.04 to 64.0. To create this graph, we simulated between 10 and 25 real-
izations of the system from ¢ = 0 to ¢+ = 10°, and we calculated the time and
ensemble average starting at t = 10* of (&) and (£,). We took time steps ranging
from At = 1073 to At = 107>. As we will see from the analysis below, the sys-
tem becomes stiff for some values of D, and we took smaller time steps and larger
ensembles when appropriate. We have plotted (&;) with circles and (&) with stars,
and plotted the bounds (3.4) and (3.5) with solid lines. The bounds (3.4) and (3.5)
hold, and furthermore (3.4) is exact as predicted. Also, inequality (3.5) seems to
get closer to an equality as D gets larger. Furthermore, as D becomes small, the
amplitudes &, and &, approach each other.

0.5f J

0 1 1 1
107 107" 10° 10’

FIGURE 4.1. (&) (circles) and (&) (asterisks) as functions of D =
v2 /o2y for B = 0, with (3.4) and (3.5) plotted as solid lines.
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0 0 2
10 10 10

FIGURE 4.2. (&) (circles) and (&) (asterisks) as functions of D =
y~1a®7v#7 for B = 5, with (3.4) and (3.5) plotted as solid lines. Note
that for 8 # 0, we need to calculate (&;) before we can draw the curve
that is the lower bound for (7).

Figure 4.2 corresponds to the system with § = 5, ¢ = y = 1, and various
v in the range 0.1 to 3000. In this case we simulated the equations directly with
ensemble sizes, time steps, and time domains similar to the 8 = 0 case. For these
choices of parameters, D = v#7, so we are plotting D-values from near 0.25 to
near 100. Again, one sees that the bounds (3.4) and (3.5) hold. However, notice
that the bounds are not as sharp in this case. Again, for small D, the amplitudes
are nearly equal.

4.2 Pathwise Dynamics

In all of the following numerical simulations, we simulated rescaled versions of
the equations ((6.1) for large D and (5.1) for small D). Again, for § = 0 we also
simulated In &, instead of &, directly.

Figure 4.3 shows realizations of the system for various D and 8. As one can
see from the two pictures in the bottom row, for small D the two modes oscillate
around each other in much the same way as in the unforced system. For large D,
however, the scenario is quite different, and even depends sensitively on the value
of . In the case of large D but linear damping, the second oscillator stays pinned
to 0 for most of the time, undergoing brief outbursts intermittently. On the other
hand, for large D and B > 0, the amplitudes of a; and a, are locked.
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FIGURE 4.3. Realizations of (6.1) for various values of D and 8. In
each case, the solid curve is & and the dashed curve is &. The left
column correspond to 8 = 0, while the right column corresponds to
B = 5; the first row corresponds to D = 25, while the bottom row
corresponds to D = 0.1.

4.3 Equilibrium Probability Densities

Figure 4.4 shows the (numerically calculated) densities of &; and &, for various
values of D and 8. For small D, one sees that the two oscillators are quite similar
for either choice of 8. There is one difference, in that for § = 0, the measures
are indistinguishable from Gaussian, while for g > 0, the measures are definitely
non-Gaussian. For large D, the two oscillators act quite differently. We see that for
the case of 8 = 0, & is close to Gaussian, but the measure for &, is quite different,
having a long tail. For the case of 8 > 0, we see that neither measure is Gaussian.

5 D « 1, the Thermal Regime

Combining (3.4) with the numerical observation (see Figures 4.1 and 4.2) that
the average energy of a; and a, are the same for small D suggests the scalings

4 __ 2 ~
Sj = g B2y ﬁ+2§j,

2
26 _ 2 .
t=o0 B2y BH2f,
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0.7

FIGURE 4.4. Numerically computed densities of (6.1) for various val-
ues of D and B. The left columns correspond to 8 = 0, while the right
column corresponds to 8 = 5; the first row corresponds to D = 25,
while the bottom row corresponds to D = 0.1. Where the graph in-
cludes a descending line, this is a graph of an exponential.

This scaling can be obtained by assuming that (3.4) is saturated and that the &; are
of the same size. This gives us

d& = 4D7'E & sin(20)dt + 1dt + (28)'2d W,
G.D d&, = —4D7E & sin(20)dr — 267 dr
do =2D7" (& — &) cos(20)dr + (2&) 72 d W,

where we have dropped tildes. Also, notice that every term representing Hamilton-
ian dynamics has a D~! in front of it, and all of the terms arising from forcing and
damping are of order 1.

What we show below is that there exist functions Ta and ¢ (see (A.6) for defi-
nitions) so that the dynamics of (5.1) can be approximated by

5.2) dE =2(1 — EFPP*1 Ty 1 (h))dt + VE dW, + /h2/E dWs,
‘ dh = —2EPhTg )y (h)dt + /(@@ (h) — hYR]E dW,,
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where h = 2H/E>. (~Recall that H and E are defined in (3.1) and (3.2).) In
particular, 7o = 2 and 7} = 1, so if 8 = 0, we get the simpler SDE

h2
dE =2(1 — E)dt + VEdW, +,/ - dWs,

dh = —4hdt + /4y (h) — h)%sz.

This represents a dimensional reduction of the original system. We have only
reduced the original system (2.1) by 2 degrees of freedom, but this formulation has
the advantage that it has no small parameter. In the D < 1 limit, (5.1) is a stiff
set of equations. From a numerical point of view, this technique would represent
a clear savings in the small-D limit. This viewpoint is entirely analogous to the
reduction to the slow manifold in singular perturbation theory for deterministic
ODE.

5.1 Consequences of Equation (5.2)
Converting (5.2) to the appropriate Fokker-Planck equation gives
53 Fy = QEPP Tyn 1 (h) = DF) g + (EPPh Ty p () F),
' + (EF)ge + QhF) gy + GhE™" Y (h) F)p.

The steady state distribution is any F' that satisfies
0= (2(EP* ' Ty 41 (h) — DF) , + (EPhTy0(h)F),
+ (EF)ge + QhF) gy + GhE™" Y (W) F)u,

on the domain 0 < £ < oo, —1 < h < 1, with Dirichlet boundary conditions.

5.4

In certain cases, we can solve (5.4) exactly. We first simplify by calculating the
marginal distribution in / of E. We integrate (5.4) in /, obtaining

(5.5) 2Cpppp EPPH — 1) Fp 4+ (EF) g =0,
where
F(E)=/ dh F(E, h), Cq =/ dh T,(h).
—1 —1
The only solution of (5.5) that is bounded at infinity is
(5.6) F(E) = E exp(—kE'/?)

with k = 4Cgo11/(B + 2). We note that this agrees with the results obtained
in [9] and [10], where a similar analysis was done using the implicit assumption
that the distribution depends only upon E. Also, one can see from Figure 5.1 that
this agrees quite well, for various choices of 8, with the numerically calculated
distribution. Note that this distribution is not Gaussian for 8 > 0.
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B=0.20 B=0.50 B=1.00

0 0.5 1 1.5 0 %5 1 01 02 Ué 04 05 06
1 1

&

FIGURE 5.1. A pdf of the energy of (6.1) for D = 0.01 and various val-
ues of B. The circles represent the numerically determined distributions,
and the line is the prediction made in (5.6) with k determined numeri-
cally.

We mention parenthetically that in the case where f = 0, the solution for F
in (5.3) separates, and the PDE can be solved explicitly to obtain
FoE CXP(—X(h)/2)’
hy (h)

where x (h) = /Oh dh’ yr(h’). The authors cannot find such a nice separation of
variables for the 8 > 0 case.

F(E, h) =

5.2 Derivation of (5.2) and (5.3)

The corresponding generator of the diffusion in (5.1) is

1
—L Lrp,
plH + Lrp
where
(5.7) Ly = 48,8, sin(20) (9, — 9g,) + 2(52 — §1) cos(20)dy,
B+2 1
(5.8) Lpp =0 + &10;, — 25,7 0, + — ;.

48

We are considering D < 1, so that the Ly term dominates. First note that Ly
is skew. This is because it is written in the form Ly = F -V, where F is divergence
free,and thus L}, = —(F - V) +divF = —Ly.

By inspection, one can see that the null space of Ly (and also L7, for that
matter) is made up of functions of H and E. This makes sense, since it says exactly
that any positive function of the conserved quantities can be used to construct an
invariant measure for the unforced system.
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We write
(5.9 8,f—L*f=8,f—%L}§f—L’}Df=0.
Let us assume that f can be developed in a series as
f=fo+Di+Dfot---
and plugging this into (5.9) gives
Ly fo=0,
Ly fi = 8. fo — Lip fo-
The first term tells us that fj is a function of H and E; we will denote this by
F(H, E). The second equation gives a compatibility condition of the form
&F — Ly, F e R(LY) = N(Lu)* .
This means that for any function G € N'(Lp) (i.e., any function G = G(H, E)),
we must have
/dél d&, d60(,F + L, F)G = 0.

We can integrate by parts to write this as
(5.10) /FIG—FFLFDG:O,

where, again, G is any test function of E and H. We stress that we are not interested
in determining f; or any other term in the asymptotic expansion; we are only trying
to determine the form of f;. What we will do in (5.10) is rewrite the FLyrpG
integral so that it is in H- and E-coordinates, then average over the remaining
coordinate to obtain an operator that depends solely on H and E. The way we do
this is first to add two integrals and delta functions, as in

o EZ/Z R 2 oo 0
(5.11) / dE/A dH/ d@/ d&/ d&
0 —E2)2 0 0 0
S(H(£), &,0) — H)S(E(&1,£,60) — EYF(H, E)Lrp(H, E, £, &, 0).

We use the two delta functions to remove two d&-integrals, and then do the d6-
integral explicitly (see the Appendix for details) to obtain

o B2 o

(5.12) f dE/ dHJ(H,E)F(H,E)p(H, E),
0 —E2)2

where

A 2 1—
J(H, E) = K 1],
EJ1+a I+a
G(H, E) = (2 —2Tpp11(H, E))Gr — HTyo(H, E)Gy
+ EGpp +2HGyg +4EAI:11//(ﬁ, E)Gpy,



14 DEVILLE ET AL.

witha = |2H/E?|, K the elliptic K -function, and T,, and ¥ defined below in (A.6).
Although the expression 7, is rather complex, it is worth noting here that 7y = 2
and T; = E, so that for 8 = 0 the expression for ¢ (H, E) is much nicer, namely,

20— E)YGg —2HGy + EGpp +2HG gy + AEHY Gy y.

Since J really represents the Jacobian of changing variables to H and E, we
want to understand the evolution of X = J F. We plug (5.12) into (5.10), integrate
by parts, and note that G is arbitrary, to obtain

X, = QTpp41 — DX)g + (HTppX)n + (EX)EE
+ QRQHX)gy + CEHY X)un.

Further, making the change h = 2H/E? and writing F for X gives (5.3). This is,
of course, equivalent to the SDE in (5.2).

(5.13)

6 D > 1, the Intermittent Regime

In contrast to the small-D asymptotics of Section 5, we will see here that there
is a vast qualitative difference between the case where § = 0 and where § > 0,
and we will deal with these two cases separately below. In both cases, however, we
will do the scaling

1 1

28 2~ 4 _ 2 - _4 2
£ =y loFRvFE, §r =02y P28, t =y o FRVFRE
This is obtained by assuming that the bounds (3.4) and (3.5) are saturated. The

scaling gives us (after dropping tildes)

d&| = 4£,&,sin(20)dt + dt + (2&)'/? dW,
(6.1) dg, = D(—4& & sin(20) — 260> dr
d6 = 2(& — D&;) cos(20)dt + (2&,) ' >d W.

6.1 Nonlinear Damping, § > 0

The B > 0 case turns out to be the more straightforward of the two. Let us
rewrite the equation for & in (6.1) as

d&; = —2D&(2sin(20)&, + &7%).

We write a(t) = sin(26(¢)), and for now think of this as a control parameter that
varies in time in some specified way. For any fixed «, this equation is strongly
stable to the curve & = (—2af;)*# (by “strongly stable” we mean it has a large
negative eigenvalue). Furthermore, if & <« D&, the equation for 6 in (6.1) is
strongly stable to the value of 6§ for which cos(20) = 0 and sin(26) = —1, namely,
0 = 3m/4.

If we happen to choose an initial condition with &, = O (D), then the dynamics
of & will pull the solution rapidly into a neighborhood of the manifold

& = (—2a&)*".
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Once we are there, the value of 0 locks to & = 37 /4 and thus « locks to —1, and
this causes & to lock to the manifold & = (2£,)*/#, and then &, stays O(1).

We stress that although there are regions of phase space for which there is no
phase or amplitude locking, this is a self-correcting phenomenon since the deter-
ministic part of the vector field causes the system to leave these areas quickly. With
the locking, the equation for &; in (6.1) becomes

28+2
gy = (=277 5 +1)dt + /28 aW,
and it is straightforward to calculate that the steady state distribution for this equa-
tion is
(62) fE) = Ce

where in fact k = 2#+2/8 /(B +2). Thus the steady state distribution for the full
system (6.1) is

+2/B

3
FENSE — (2;1)2“9)5(9 _ T”)

In Figures 6.1 and 6.2, we see that the numerics agree with these predictions.
We mention that it is an implicit assumption in the above argument that D be
chosen sufficiently large, and the minimum such choice of D depends on 8. As
B — 0, one will need to choose larger values of D to ensure phase and amplitude
locking. It is an interesting observation that the distribution for &; is not Gaussian
for any value of 8 > 0, although it becomes nearly Gaussian as 8 — oo.

B =0.500000 B =1.000000

0 0.2 %4 0.6 0.8 0
1

B =2.000000 B =5.000000

FIGURE 6.1. In each graph, the curve is & = (2£1)*/# and the dots are
the solution of (6.1) at times r = 1000 + 25k, D = 250.
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FIGURE 6.2. In each graph, the curve is the prediction given in (6.2)
and the dots are the numerically computed distribution of (6.1).

6.2 Linear Damping, 8 =0

The case B = 0 is somewhat more complicated. If we consider (6.1) with
B = 0, we note that we might expect phase locking of 8 to occur, at least for most
regions of the phase space, but now there is certainly no mechanism that locks &,
to &;. The situation is further complicated because the 6 does not stay locked for
typical trajectories of the system.

We will show that the dynamics in the § = 0 regime are of two phases that
switch back and forth intermittently. The first phase is a quiescent one in which
&, is pinned very near O and &; undergoes a random walk. The second phase is
characterized by a burst in the energy of &,. We will also show that the quiescent
phase is essentially unaffected in its duration and quality by D, although it is af-
fected by noise, and the bursting phase is essentially unaffected by the noise, but is
affected greatly by D. In fact, as we show below, the length, in time, of the bursts
are O(In D/ D), and their amplitude is O (D).

Let us consider the system where 8 = 0, namely,

dg§ = (4sin(20)§,& + Ddr + (2&)">dW,
(6.3) d&, = —2D& (2sin(20)&, + 1)dt
d6 = 2(& — D&;) cos(20)dt + (2&,) " />d W.

We will define the “quiescent” phase to be that in which &, < 1, and the “burst-
ing” phase to be that in which & > 1. The 1 is arbitrary and chosen only for
definiteness. When we are in the quiescent stage, it is easy to see that 6 is locked
to & = 3w /4, and since it has a multiplier of O (D), one can see that its variance
is O(1/D) since & is always of O(1). In this phase we can simplify the system,
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using the substitution sin(20) = —1, to obtain

d§ = (1 — 4§ &)dt + /264 W,
d& =2D(2§ — 1)éy dt.
The &;-equation is linear, and we see by inspection that it is always changing
rapidly. It will be rapidly shrinking if & < % and rapidly growing if & > %
Consider an initial condition (&1, &) = (A, 1) with A < % Then &, moves toward
0 rapidly. Effectively, the equation for &; does not then depend on &,, and it is easy
to see that it is a random walk with a positive drift.

If we think of &, (¢) as a parameter forcing the equation for &; in (6.4), we get

(6.4)

&x(t) = exp [—ZD/ ds (25(s) — 1)]-
0

In particular, the quiescent stage will last until the value of # for which

0= / ds(2&,(s) — 1).
0

This does not depend on D. In essence, the effect of large D in the quiescent
regime is to pin & to 0 more strongly when &; < % and have it come back to 1
more quickly when & > % but this effect cancels out, and D will not affect the
length of the quiescent stage. In particular, the mean value (£;) takes when this
phase ends is 1 — A, and this is a quantity independent of D.

In summary, as long as D is sufficiently large, the length of time the quiescent
phase lasts is independent of D, and the values that &, takes during this phase are
also independent of D. On the other hand, the values that &, takes during this phase
depend on D greatly, in that they go like e =P’ for the first half of this phase (while
& < %) and then grow like e?’ in the second half (while & > %).

Now we consider the bursting phase. We will see that the assumption that 6 is
locked in this phase is not valid. In fact, let us assume that 6 is locked to 6 = 37 /4
and show that this is not a self-consistent assumption. Consider the system (6.4).
For definiteness, let us consider an initial condition (B, 1) with B > % It is easy
to see that the bursting phase will not be greatly affected by the noise, since during
the burst the deterministic vector field is everywhere O (D). Thus we consider the
deterministic equation

d§ = —4§,6, dt,
d& =12D(25 — D&, dt,
and we consider the following problem: given initial conditions (£, &) = (B, 1)

with B > %, where and when does the trajectory “land”; i.e., is it true that for some
t >0, (& (1),&() = (C,1), and what are C and #? Noting that for this system

we have
d§ _ —DQ& — 1)
d&, 2§ '
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we can integrate this to get

In(&1)
2

&G =DnéE)+C:=D ( - El) +C,

and the solution that passes through (B, 1) is
§(51) = D((§1) —n(B)) + 1.

Since 7 is a function that is concave down with maximum at %, this shows that
C < % Furthermore, this curve has maximum O (D). This would seem to explain
the bursting phenomenon well, since here we have a quick transition from (B, 1)
to (C, 1) with an excursion height of O (D), which brings us to the start of another
quiescent phase.

Unfortunately, this argument is not quite correct, because one can see that the
phase-locking assumption is not valid. Since the equation has a transition into the
& > D& region of phase space (and in fact spends most of its time there), the
locking in the #-equation switches signs, and & now locks to w /4. This changes
the signs in the d&;-equations so makes this analysis incorrect.

Now consider system (6.3), rescale §; = x, & = Dy, and T = Dt, and write
a(t) = sin(20). The equations become

1
d - 4 + )
x = daxy + o

(6.5) dy = —2yQax + 1),
da =2(y —x)(1 —a?),

and our initial condition is now (xo, y9) = (B, 1/D). The quantity o wants to lock
to either 1 or —1 depending on the values of x and y. Let us split the positive
quadrant into the two pieces R| = {&; > %} and R, = {§; < %}. By a simple phase
plane analysis, one sees that for « = —1, the vector field points up and to the left
in R, and down and to the right in R,. On the other hand, if « = 1, then the vector
field points down and to the right everywhere.

If we start at the point (B, 1/D), there are two possibilities of landing point
(where we are “landing” at a point with y = 1/D). First, the trajectory can move
up and to the left, cross the line &; = % and then land at some point to the left of %
This is the same picture we would obtain assuming 6 = 37 /4 throughout the burst.
Second, the trajectory can move to the right of the line x = % above y = 1, and
then land to the right of x = % But we will again be in the region where &, < D&,
and then the bursting process starts over again with this new initial condition. The
second case is a sort of “multibump” bursting. In any case, the system will return
quickly to the quiescent mode, no matter how many bumps it traverses.

Furthermore, we claim that the multibump bursting is not important for large- D
dynamics. Recall that the initial condition B, while random, has mean less than 1.
The probability of our having a burst which starts at, say, &, = 10 is quite rare but,
as one can see from Figure 6.3, for large D the burst has to start at & > 10 to get

“so makes this analysis
incorrect” is faulty.
Please reword and
clarify. Insert “and”

before “so”?
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FIGURE 6.3. Evolution of system (6.5) for D = 10* and three initial
conditions: (11, 1/D), (12,1/D), and (13, 1/D). The threshhold for
getting a multibump solution seems to be somewhere between 12 and 13.

a multibump solution. Moreover, the probability of a multibump occurring goes to
0Oas D — oo.

We can calculate the length of time the burst takes directly from the vector field.
Take a (nonmultibump) burst starting at (B, 1). Take B* = (B + %) /2, and let C*
be the solution to n(B*) = n(C*). Then the solution will pass through the points
(B, 1), (B*, O(D)), (C*, O(D)), and (C, 1). We can estimate how long it takes to
pass through these points. To get from (B, 1) to (B*, O (D)), the &-variable must
move an O (D) distance. In this region, d&;, = O(D&,), so that it goes like e?’. Tt
will thus take a In(D)/D time to traverse this distance. The same argument holds
for the transit from C* to C.

Now, to get from B* to C*, note that d&| = O0(£,&) = O(DE), and it has
to move a O(1) distance. This will take O(1/D) time. All in all, the burst will
take O (In(D)/D) time. Compare this with Figure 6.4, where the circles represent
the proportion of time the system spends in the bursting phase as a function of D.
For this calculation, we took the system (6.1) with various D and initial condition
(&1,&,60) = (1, 1,0) and measured the proportion of time & > 1 from t = 10°
to t = 10°; this shows that the proportion of time the system spends bursting is
O(n(D)/D).

In summary, the § = 0 case is a system that switches intermittently between
two quite distinct phases. It stays in the quiescent mode for an O(1) time, then
bursts for an O (In(D)/D) time, with a burst height of O (D). From this, one can
calculate how the moments of &, act with respect to D. During the quiescent phase,
£ moves between 0 and 1 like e*?!. The pdf of &, during this phase is f(&) =
(D&)~'. During the bursting phase, the solution moves from 1 to O (D) in time
O(In(D)/D), so that the pdf in that phase is the uniform distribution In(D)/D?.
Therefore, if we were to calculate the moments of &,, we would have

1 n—1 D n
(&) = / dg 22—+ f ag, 2D
0 1

D D?
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fraction of time bursting

FIGURE 6.4. The solid curve is 0.71In(D)/D, and the circles are the
proportion of time the system of (6.1) spends bursting as a function of D.

=D '+ D" 'InD.

This shows that the two phases have quite different characters and explains why
there is no uniform rescaling that can describe the statistics of both phases, giving
rise to the intermittency of the system.

7 Summary

In this work, we have proposed a simple, two-mode model for nonlinear energy
transfer, where one mode receives a controlled amount of energy through white
noise, and the other dissipates energy through a nonlinear mechanism that can be
tuned to parametrize wave breaking.

The system exhibits a bifurcation between a quasi-equilibrium regime and an
intermittent regime as an appropriate nondimensional combination of the driving
and damping coefficients is increased. When the damping is linear, a case pre-
viously studied in [9], the low-forcing regime is Gaussian, and the high-forcing
regime is highly intermittent. By contrast, under nonlinear damping, the low-
forcing regime has non-Gaussian statistics, and the high-forcing regime is strongly
constrained by slaving among the system’s degrees of freedom.

Appendix: Details of Change of Variables

We do the d&;-integral in (5.11) by making the substitution & = E— &;. Noting
that the d&,-integral is over positive reals, this means that we must have £ —&; > 0,
or 0 <& < E, and we get

o E?)2 o E R R R R
/dE/ dHf def 451 8(y (&) — FVF(H, B)p(H, E. &1, E — £, 0),
0 - 0 0

E2)2
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where y(§)) = H = 2cos(29)(E"§1 — Sf). Let us for now consider the integral
only in the H>0 regime. Thus we consider

oo rE2  rm/4 E R R R R
/ dE/ dHf d9/ dé§ 8(y(§) — H)F(H, E)p(H, E, &, E — §,0).
0 0 —n/4Jo

We only need to consider those 6 for which cos(20) > 0, because the sign of H
and the sign of cos(26) are the same. Let us note the following two symmetries
of the integrand: If we make the change 6 +— —0, every term in the integrand
remains unchanged (every appearance of 6 is as cos(26)), and if we make the
change & — E - &1, the terms y and F remain unchanged. We exploit these
symmetries and can write the innermost two integrals as

/4 E)2 R R
(AD) 2 fo o /0 48, 5(y (&) — B)F(H, EY@ + d),

where ¢, is ¢ with the roles of & and E— &, interchanged. Now we do the
innermost integral, noting that y is invertible on this domain. Using the rule that

fly='(A)

b
dx o —A = —
/a x8(y(x) — A) f(x) V1A

if A e[y(a),y()],

we get the innermost integral to be

. .. 2H
JI(E, H,cos(20))F(H, E)(¢ + ¢12) if cos(20) > 22

where
1

Ji(E, H,cos(20)) =

2 Cos(29)\/ E — 2H /cos(20) ’

and we use the substitution & > y ! (I:I) = %(E — \/éz — 21:1/008(29)). Chang-
ing variables in the df-integral using p = cos(26) brings (A.1) to

2H /E2 o
(A2) / dp (B, A, p)F (& + o),
1

where

J(H,E, p)=

1
201 — p2\JE2 —2H/p

and we make the further substitution in the integrand that cos(260) +— p.
Substituting G = G(H, E) = G(2£,£, cos(20), &1 + &), (5.8) evaluates to

¢=Ge(l— 252'%) + GH(—zsls;% cos(26))

(A.3) R
+ Gpeé1 + Gup(4615c08(20)) + Guu(48:85).
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1/« .. 2H
R.=-|E+ E2— "2},
2 P

note that after the necessary substitutions we have

If we denote

B+2

¢=Gg(l- ZR%Z) +Gu(—2R4R* p)

(A4)
+ GggRy + Gyg4R,R_p+ Gyyg4R, R _R_,
£+2 B+2
(A5) ¢10=Gr(1=2R, ) + Gu(=2R," R-p)

+ GEERf + GHE4R,R+,0 + GHH4R+R+R,.

So, our integrand is Jo F (¢ + ¢12), with How does second line of
this equation fit into first

¢+ ¢ =Gr(2— 2R + R + Gu(-H(RY? + RE?)) line? Addition?

EGegg +4HGgpy + —ZEH Gun. Mul-tiplication? Please
P clarify.

If we define

1
J(H,E):/ L(H, E, p)dp,
20 /E?
1
6.\(H, E) =/ P~ (B, B, p) dp,

2H/E?
(A.6) ;
sa<H,E>=/A B ELp) (R (HL E. p) + R_(H. E. 0)") dp.
20/ E2
. B ~ o~ S,H,E
Wl By =2 1B =2 E)
J(H, E) J(H, E)

then we see that (A.2) becomes, after dp-integration,
JF{Q2 = 2T3241)Gg — HTyGy + EGpp +4HGpy + 2EHY G yy),

which proves (5.12). Also, note that TO(FI, E) = 2 and T1(I:I, E) = E, so for
B = 0 this simplifies to

In general, however, Ta(ﬁ , E ) is a function of both H and E , which means that
for B > 0, the drift coefficients depend on both variables.
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