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Abstract

We study energy transfer in a “resonant duet”—a resonant quartet where sym-

metries support a reduced subsystem with only 2 degrees of freedom—where

one mode is forced by white noise and the other is damped. We consider a phys-

ically motivated family of nonlinear damping forms and investigate their effect

on the dynamics of the system. A variety of statistical steady states arise in dif-

ferent parameter regimes, including intermittent bursting phases, states highly

constrained by slaving among amplitudes and phases, and Gaussian and non-

Gaussian quasi-equilibrium regimes. All of this can be understood analytically

using asymptotic techniques for stochastic differential equations. c© 2006 Wiley

Periodicals, Inc.

1 Introduction

Many wave systems in nature are best described in terms of Fourier modes,

and the nonlinearities of the dynamics correspond to energy exchange amongst

these modes. Often the dynamics is conservative in a large range of length scales

(the inertial range), with forcing and dissipation acting only over a more restricted

range. For example, ocean surface waves are thought to be initiated by the wind

at small (capillary) scales, with the subsequent dynamics transferring the energy to

longer scales. The main dissipation mechanism is wave breaking, which usually

acts on much longer (gravity) waves that intermittently remove energy from the

wave system.
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For dispersive wave systems, such as surface ocean waves and internal waves in

the atmosphere and ocean, the conservative energy transfer occurs mostly through

resonant sets, typically triads or quartets. Weak turbulence (or wave turbulence)

theory describes this weakly nonlinear conservative energy cascade through the

resonant sets. The theory yields kinetic equations (where the energy exchange is

through wave “collisions”) for the evolution of the Fourier spectrum. Sometimes

special power law solutions of these equations with a prescribed flux of energy can

be found [1, 2, 6, 7, 11].

In idealized systems where the damping acts on infinitely small or large length

scales (the so-called inviscid limit), it is believed that the form of damping does

not affect the spectrum. Away from this limit, however, the form of the forcing

may affect the solution. For instance, developers of general circulation models for

the atmosphere and ocean are well aware of the sensitivity of their models to the

form of the parametrization of damping used. The purpose of the present work is

to understand the effect of more realistic, nonlinear dissipation in the context of a

simple model amenable to detailed analysis. To this end, we generalize the duet

system introduced in [9]. The forms of dissipation that we consider include those

consistent with wave breaking and therefore may prove useful in parametrizing

wave breaking in more complex scenarios.

As in [9], the model emerges from isolating one resonant quartet in a general

dispersive system, adding white noise forcing and dissipation, and then further

reducing the system to just two complex degrees of freedom by exploiting a sym-

metry. The reason to model the forcing through white noise is that this permits a

complete control of the energy input, and hence also of the rate of energy transfer

through the system, when it is in a statistically stationary state.

The resulting duet system has many analogies to more complex dispersive sys-

tems, but is of low enough dimension that it is quite amenable to numerical sim-

ulation. Furthermore, it is simple enough that it can be understood almost com-

pletely using theoretical tools. In spite of its simplicity, this model exhibits a rich

variety of behaviors. In particular, it contains both Gaussian and non-Gaussian

quasi-equilibrium states. Moreover, for certain values of the parameters, the sys-

tem includes bursting dynamics which, although intermittent, are dominated by a

maximally efficient energy transfer, with most of the dynamics slaved to the evo-

lution of one single mode.

The paper is organized as follows: In Section 2, we state the duet model we

study in the paper and show how it is related to a typical nonlinear PDE. In Sec-

tion 3, we study some of the elementary statistical properties of the duet model.

In Section 4 we describe a numerical study of the duet for various parameter val-

ues and show the existence of several parameter regimes. In Sections 5 and 6 we

analyze the dynamical equations in two different asymptotic regimes and obtain

the (sometimes approximate) distributions for the system. Finally, in Section 7 we

summarize and suggest further work.
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2 The Duet System

We consider in this paper the resonant duet

(2.1)

{

i ȧ1 = 2γ a1a2
2 + σ Ẇ

i ȧ2 = 2γ a2
1a2 − iνa2 |a2|β ,

where a1 and a2 are two complex amplitudes, γ, σ, ν > 0 and β ≥ 0 are constants,

and W is a complex Weiner process. This is a prototypical model for energy trans-

fer; we have two coupled modes, and we force one and damp the other with a view

towards determining what proportion of the total energy remains in each mode.

The parameter β allows the damping to be nonlinear.

This is a generalization of the system studied in [9], which described the case

β = 0, corresponding, for instance, to a fluid’s viscosity. The purpose of intro-

ducing a more general β is to understand the role of nonlinearity in the dissipation

mechanism, and as we show below this can lead to radically different qualitative

behavior. There are several motivations to study this generalization: from a tech-

nical perspective, it is interesting to find physical systems that have equilibrium-

invariant measures that are non-Gaussian, whereas from a physical perspective,

dissipation in fluid problems is often brought about by nonlinear wave dynamics.

2.1 Relation to the Nonlinear Schrödinger Equation

As in [9], we start with a one-dimensional partial differential equation of the

form

(2.2) i
∂9

∂t
= L9 + γ |9|29 + forcing and damping,

where L is a Hermitian linear operator with symbol L̂ = ωk . In the inertial range,

this system behaves in a Hamiltonian manner as

i
∂9

∂t
= ∂H

∂9
, H =

∫

dk ωk |9̂(k)|2 + γ

2

∫

dx |9(x)|4.

Our goal here is to find a simple subsystem of (2.2) in which we can understand

the mechanisms of energy transfer. First, we consider a single resonant quartet,

i.e., a set of four wavenumbers kj such that the resonant conditions

k1 + k4 = k2 + k3,

ωk1
+ ωk4

= ωk2
+ ωk3

,

are satisfied. If we then excite these four modes with O(ǫ)-amplitudes, then the

dynamics of 9̂kj
can be approximated, up to leading order, by

9̂kj
(t) = ǫaj (τ )e

−i(ωk j
−2ǫγm)t

,
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with τ = ǫ2t and m =
∑

k |ak |2 (the mass of the system), and the aj satisfy the

resonant equations (see, e.g., [5])

(2.3)



















i ȧ1 = 2γ a4a2a3 − γ a1 |a1|2
i ȧ2 = 2γ a3a1a4 − γ a2 |a2|2
i ȧ3 = 2γ a2a1a4 − γ a3 |a3|2
i ȧ4 = 2γ a1a2a3 − γ a4 |a4|2 .

The last term in each equation comes from the “self-interaction” of each mode with

itself (because of the trivial relation that kj + kj = kj + kj ), and we will actually

drop these terms in what follows. This simplifies the calculations but does not

change them qualitatively (cf. [9], where these terms are retained). We now drop

the self-interaction terms in (2.3), noting that it retains its Hamiltonian structure,

and obtain

H = 2γ (a1a2a3a4 + a1a3a3a4).

These equations satisfy the “Manley-Rowe” relations

d |a1|2
dt

= d |a4|2
dt

= −d |a2|2
dt

= −d |a3|2
dt

,

from which follows the conservation of mass m, momentum p, and linear energy

e, given as

(2.4) m =
∑

j

∣

∣aj

∣

∣ , p =
∑

j

kj

∣

∣aj

∣

∣

2
, e =

∑

j

ωk j

∣

∣aj

∣

∣

2
.

With the fourth conserved quantity being the Hamiltonian itself, this makes this

system integrable. The system (2.3) can actually be solved analytically [5], but we

do not need that here.

Since we want to study energy transfer in (2.3), we consider the generalization

with forcing and damping added:

(2.5)



















i ȧ1 = 2γ a4a2a3 + σ Ẇ1(t)

i ȧ2 = 2γ a3a1a4 − iνa2 |a2|β
i ȧ3 = 2γ a2a1a4 − iνa3 |a3|β
i ȧ4 = 2γ a1a2a3 + σ Ẇ4(t),

where Ẇ1 and Ẇ4 are white noise and again we have dropped self-interaction terms.

One reason for using white-noise forcing is the following: If we were to use de-

terministic forcing, the first oscillator could reach equilibrium with the forcing by

a frequency detuning, and no more energy would be added to the system. This is

not possible with stochastic forcing, and in the case of white noise the amount of

energy entered into the system is exactly controllable.

Once we add white-noise forcing, we must damp the system somewhere, or

the energy would diverge. Furthermore, once we force one mode (say a1) then

we must force a4 with white noise, and of the same amplitude, to hope to have a
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statistical steady state. (Otherwise, the Manley-Rowe relations would imply that

〈|a1|2 − |a4|2〉 diverges.) There is no reason other than symmetry to choose the

damping strengths to be equal, but we do that here and exploit this symmetry.

Now, consider (2.5) with W1 = W4 and initial data so that a1(0) = a4(0) and

a2(0) = a3(0). Then

a1(t) = a4(t), a2(t) = a3(t), for all t,

and (2.5) reduces to (2.1). The duet system is not a model for two interacting

modes in a PDE such as (2.2), but it represents the reduction of quartet dynamics

to an invariant submanifold.

2.2 Relation to Wave Breaking

The resonant duet (2.1) with nonlinear damping (β 6= 0) is also reminiscent

of wave breaking. In particular, wave breaking is naturally parametrized through a

nonlinear dissipation of the form proposed above, with β = 1. To see this, consider

the prototypical model for wave breaking, i.e., the inviscid Burgers equation

ut +
(

1

2
u2

)

x

= 0.

Here the energy e = 1
2
u2 satisfies

et +
(

2
√

2

3
e3/2

)

x

= 0.

The energy dissipation integrated over space is proportional to the sum of the jumps

of e3/2 at shocks. In a profile of fixed shape—say a sawtooth for the asymptotic

behavior of Burgers in a periodic domain—which can be parametrized by the am-

plitude a of its first Fourier mode, the energy e is proportional to |a|2, while the

dissipation rate et is proportional to |a|3. This is the result of our nonlinear dissi-

pation when the parameter β is set to 1.

3 Elementary Properties of the Duet System

The system (2.1) is Hamiltonian with

(3.1) H = γ
(

a2
1a2

2 + a2
1a2

2

)

,

and the mass, momentum, and linear energy in (2.4) all become the same quantity,

which we will now call the energy, denoted

(3.2) E = |a1|2 + |a2|2 .
It will be convenient to use the variables ak = ρkeiθk and ξk = ρ2

k , giving

(3.3)











dξ1 = (4γ ξ1ξ2 sin(2θ)+ σ 2)dt + σ
√

2ξ1 dW1

dξ2 = (−4γ ξ1ξ2 sin(2θ)− 2νξ
β/2+1

2 )dt

dθ = 2γ (ξ2 − ξ1) cos(2θ)dt + (σ/
√

2ξ1)dWθ ,
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where W1 and Wθ are independent white noises. It is straightforward to see that for

any fixed β this system has a single nondimensional parameter, which we define

here as

D = γ−1σ
2
β−2
β+2 ν

4
β+2 .

With a view towards choosing the correct scaling limits below, we will formally

compute the expected value of the size of the two amplitudes ξ1 and ξ2. First, we

calculate

d

dt
〈ξ1〉 = 4γ 〈ξ1ξ2 sin(2θ)〉 + σ 2,

d

dt
〈ξ2〉 = −4γ 〈ξ1ξ2 sin(2θ)〉 − 2ν

〈

ξ
β/2+1

2

〉

,

where 〈 · 〉 denotes the expectation with respect to the noise. Adding these gives

d

dt
〈E〉 = σ 2 − 2ν

〈

ξ
β/2+1

2

〉

,

and thus if there is a steady state, it must be true that

〈

ξ
β/2+1

2

〉

= σ 2

2ν
.

For the case of linear damping (β = 0), this gives an exact bound for the average

energy of a2. If β > 0, then this is an upper bound, since using Jensen’s inequality

gives

(3.4) 〈ξ2〉 ≤
〈

ξ
β/2+1

2

〉
2

β+2 =
(

σ 2

2ν

)

2
β+2

.

On the other hand, we can also consider the equation

d ln ξ2 = −4γ ξ1 sin(2θ)− 2νξ
β/2

2 .

After averaging, and again assuming the existence of a steady state, we obtain

〈ξ1 sin(2θ)〉 = −ν
2γ

〈

ξ
β/2

2

〉

,

and using the fact that 〈ξ1〉 ≥ |〈ξ1 sin(2θ)〉|, we have

(3.5) 〈ξ1〉 ≥ ν

2γ

〈

ξ
β/2

2

〉

.

4 Numerics and Predictions

We used the standard first-order Euler scheme throughout to simulate the equa-

tions here. We sometimes simulated (3.3), and at other times different scaled ver-

sions of the equations; for example, (6.1) was typically used for large D-values,

and (5.1) were typically used for small D-values. We will state in each case be-

low which equations we simulated. Furthermore, in all numerical simulations for
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β = 0, we evolved ln ξ2 instead of ξ2. As we will see from the numerics and anal-

ysis in Section 6, in this β = 0 regime, ξ2 tends to become very close to 0: in fact,

ln(1/ξ2) reaches O(D) frequently during many realizations.

We will analytically explain all of the observations of this section in Sections 5

and 6 below.

4.1 Scaling of Amplitudes of ξ1 and ξ2 with D

Figures 4.1 and 4.2 show a series of experiments concerning which of the

bounds (3.4) or (3.5) are saturated in which parameter regimes. Figure 4.1 cor-

responds to the system (3.3) with β = 0, σ = γ = 1, and various ν in the range

0.2 to 8.0. For these choices of parameters, D = ν2, so we are plotting D-values

from 0.04 to 64.0. To create this graph, we simulated between 10 and 25 real-

izations of the system from t = 0 to t = 105, and we calculated the time and

ensemble average starting at t = 104 of 〈ξ1〉 and 〈ξ2〉. We took time steps ranging

from 1t = 10−3 to 1t = 10−5. As we will see from the analysis below, the sys-

tem becomes stiff for some values of D, and we took smaller time steps and larger

ensembles when appropriate. We have plotted 〈ξ1〉 with circles and 〈ξ2〉 with stars,

and plotted the bounds (3.4) and (3.5) with solid lines. The bounds (3.4) and (3.5)

hold, and furthermore (3.4) is exact as predicted. Also, inequality (3.5) seems toDo you mean “(3.4) is

exactly as predicted”? get closer to an equality as D gets larger. Furthermore, as D becomes small, the

amplitudes ξ1 and ξ2 approach each other.

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D

<
ξ 1

>
,<

ξ 2
>

FIGURE 4.1. 〈ξ1〉 (circles) and 〈ξ2〉 (asterisks) as functions of D =
ν2/σ 2γ for β = 0, with (3.4) and (3.5) plotted as solid lines.
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10
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2.5

3

3.5

4

D

<
ξ 1

>
, 
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FIGURE 4.2. 〈ξ1〉 (circles) and 〈ξ2〉 (asterisks) as functions of D =
γ−1σ 6/7ν4/7 for β = 5, with (3.4) and (3.5) plotted as solid lines. Note

that for β 6= 0, we need to calculate 〈ξ2〉 before we can draw the curve

that is the lower bound for 〈ξ1〉.

Figure 4.2 corresponds to the system with β = 5, σ = γ = 1, and various

ν in the range 0.1 to 3000. In this case we simulated the equations directly with

ensemble sizes, time steps, and time domains similar to the β = 0 case. For these

choices of parameters, D = ν4/7, so we are plotting D-values from near 0.25 to

near 100. Again, one sees that the bounds (3.4) and (3.5) hold. However, notice

that the bounds are not as sharp in this case. Again, for small D, the amplitudes

are nearly equal.

4.2 Pathwise Dynamics

In all of the following numerical simulations, we simulated rescaled versions of

the equations ((6.1) for large D and (5.1) for small D). Again, for β = 0 we also

simulated ln ξ2 instead of ξ2 directly.

Figure 4.3 shows realizations of the system for various D and β. As one can

see from the two pictures in the bottom row, for small D the two modes oscillate

around each other in much the same way as in the unforced system. For large D,

however, the scenario is quite different, and even depends sensitively on the value

of β. In the case of large D but linear damping, the second oscillator stays pinned

to 0 for most of the time, undergoing brief outbursts intermittently. On the other

hand, for large D and β > 0, the amplitudes of a1 and a2 are locked.
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0
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0.4

0.6

0.8

1

1.2

1.4

1.6

t

ξ 1
,ξ

2

FIGURE 4.3. Realizations of (6.1) for various values of D and β. In

each case, the solid curve is ξ1 and the dashed curve is ξ2. The left

column correspond to β = 0, while the right column corresponds to

β = 5; the first row corresponds to D = 25, while the bottom row

corresponds to D = 0.1.

4.3 Equilibrium Probability Densities

Figure 4.4 shows the (numerically calculated) densities of ξ1 and ξ2 for various

values of D and β. For small D, one sees that the two oscillators are quite similar

for either choice of β. There is one difference, in that for β = 0, the measures

are indistinguishable from Gaussian, while for β > 0, the measures are definitely

non-Gaussian. For large D, the two oscillators act quite differently. We see that for

the case of β = 0, ξ1 is close to Gaussian, but the measure for ξ2 is quite different,

having a long tail. For the case of β > 0, we see that neither measure is Gaussian.

5 D ≪ 1, the Thermal Regime

Combining (3.4) with the numerical observation (see Figures 4.1 and 4.2) that

the average energy of a1 and a2 are the same for small D suggests the scalings

ξj = σ
4

β+2 ν
− 2
β+2 ξ̃j ,

t = σ
− 2β
β+2 ν

− 2
β+2 t̃ .
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FIGURE 4.4. Numerically computed densities of (6.1) for various val-

ues of D and β. The left columns correspond to β = 0, while the right

column corresponds to β = 5; the first row corresponds to D = 25,

while the bottom row corresponds to D = 0.1. Where the graph in-

cludes a descending line, this is a graph of an exponential.

This scaling can be obtained by assuming that (3.4) is saturated and that the ξj are

of the same size. This gives us

(5.1)











dξ1 = 4D−1ξ1ξ2 sin(2θ)dt + 1 dt + (2ξ1)
1/2dW1

dξ2 = −4D−1ξ1ξ2 sin(2θ)dt − 2ξ
(β+2)/2

2 dt

dθ = 2D−1(ξ2 − ξ1) cos(2θ)dt + (2ξ1)
−1/2dWθ ,

where we have dropped tildes. Also, notice that every term representing Hamilton-

ian dynamics has a D−1 in front of it, and all of the terms arising from forcing and

damping are of order 1.

What we show below is that there exist functions T̃α and ψ (see (A.6) for defi-

nitions) so that the dynamics of (5.1) can be approximated by

(5.2)

{

d E = 2(1 − Eβ/2+1T̃β/2+1(h))dt +
√

E dW1 +
√

h2/E dW2,

dh = −2Eβ/2hT̃β/2(h)dt +
√
(4ψ(h)− h)h/E dW2,
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where h = 2H/E2. (Recall that H and E are defined in (3.1) and (3.2).) In

particular, T̃0 = 2 and T̃1 = 1, so if β = 0, we get the simpler SDE

d E = 2(1 − E)dt +
√

E dW1 +
√

h2

E
dW2,

dh = −4h dt +
√

(4ψ(h)− h)
h

E
dW2.

This represents a dimensional reduction of the original system. We have only

reduced the original system (2.1) by 2 degrees of freedom, but this formulation has

the advantage that it has no small parameter. In the D ≪ 1 limit, (5.1) is a stiff

set of equations. From a numerical point of view, this technique would represent

a clear savings in the small-D limit. This viewpoint is entirely analogous to the

reduction to the slow manifold in singular perturbation theory for deterministic

ODE.

5.1 Consequences of Equation (5.2)

Converting (5.2) to the appropriate Fokker-Planck equation gives

Ft = (2(Eβ/2+1T̃β/2+1(h)− 1)F)E + (Eβ/2hT̃β/2(h)F)h

+ (E F)E E + (2hF)Eh + (4hE−1ψ(h)F)hh.
(5.3)

The steady state distribution is any F that satisfies

0 =
(

2(Eβ/2+1T̃β/2+1(h)− 1)F
)

E
+ (Eβ/2hT̃β/2(h)F)h

+ (E F)E E + (2hF)Eh + (4hE−1ψ(h)F)hh

(5.4)

on the domain 0 ≤ E ≤ ∞, −1 ≤ h ≤ 1, with Dirichlet boundary conditions.

In certain cases, we can solve (5.4) exactly. We first simplify by calculating the

marginal distribution in h of E . We integrate (5.4) in h, obtaining

(5.5) 2(Cβ/2+1 Eβ/2+1 − 1)F̃E + (E F̃)E E = 0,

where

F̃(E) =
∫ 1

−1

dh F(E, h), Cα =
∫ 1

−1

dh T̃α(h).

The only solution of (5.5) that is bounded at infinity is

(5.6) F̃(E) = E exp(−k E1+β/2)

with k = 4Cβ/2+1/(β + 2). We note that this agrees with the results obtained

in [9] and [10], where a similar analysis was done using the implicit assumption

that the distribution depends only upon E . Also, one can see from Figure 5.1 that

this agrees quite well, for various choices of β, with the numerically calculated

distribution. Note that this distribution is not Gaussian for β > 0.
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FIGURE 5.1. A pdf of the energy of (6.1) for D = 0.01 and various val-

ues of β. The circles represent the numerically determined distributions,

and the line is the prediction made in (5.6) with k determined numeri-

cally.

We mention parenthetically that in the case where β = 0, the solution for F

in (5.3) separates, and the PDE can be solved explicitly to obtain

F(E, h) = Ee−E exp(−χ(h)/2)
hψ(h)

,

where χ(h) =
∫ h

0
dh′ ψ(h′). The authors cannot find such a nice separation of

variables for the β > 0 case.

5.2 Derivation of (5.2) and (5.3)

The corresponding generator of the diffusion in (5.1) is

1

D
L H + L F D,

where

L H = 4ξ1ξ2 sin(2θ)(∂ξ1
− ∂ξ2

)+ 2(ξ2 − ξ1) cos(2θ)∂θ ,(5.7)

L F D = ∂ξ1
+ ξ1∂

2
ξ1ξ1

− 2ξ
β+2

2

2 ∂ξ2
+ 1

4ξ1

∂2
θ .(5.8)

We are considering D ≪ 1, so that the L H term dominates. First note that L H

is skew. This is because it is written in the form L H = F ·∇, where F is divergence

free, and thus L∗
H = −(F · ∇)+ div F = −L H .

By inspection, one can see that the null space of L H (and also L∗
H for that

matter) is made up of functions of H and E . This makes sense, since it says exactly

that any positive function of the conserved quantities can be used to construct an

invariant measure for the unforced system.
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We write

(5.9) ∂t f − L∗ f = ∂t f − 1

D
L∗

H f − L∗
F D f = 0.

Let us assume that f can be developed in a series as

f = f0 + D f1 + D2 f2 + · · ·
and plugging this into (5.9) gives

L∗
H f0 = 0,

L∗
H f1 = ∂t f0 − L∗

F D f0.

The first term tells us that f0 is a function of H and E ; we will denote this by

F(H, E). The second equation gives a compatibility condition of the form

∂t F − L∗
F D F ∈ R(L∗

H ) = N (L H )
⊥.

This means that for any function G ∈ N (L H ) (i.e., any function G = G(H, E)),

we must have
∫

dξ1 dξ2 dθ(∂t F + L∗
F D F)G = 0.

We can integrate by parts to write this as

(5.10)

∫

Ft G + F L F DG = 0,

where, again, G is any test function of E and H . We stress that we are not interested

in determining f1 or any other term in the asymptotic expansion; we are only trying

to determine the form of f0. What we will do in (5.10) is rewrite the F L F DG

integral so that it is in H - and E-coordinates, then average over the remaining

coordinate to obtain an operator that depends solely on H and E . The way we doIn (5.11) what is relation

of second line to the

first? Is it the integrand?

this is first to add two integrals and delta functions, as in

(5.11)

∫ ∞

0

d Ê

∫ Ê2/2

−Ê2/2

d Ĥ

∫ 2π

0

dθ

∫ ∞

0

dξ1

∫ ∞

0

dξ2

δ(H(ξ1, ξ2, θ)− Ĥ)δ(E(ξ1, ξ2, θ)− Ê)F(H, E)L F D(H, E, ξ1, ξ2, θ).

We use the two delta functions to remove two dξ -integrals, and then do the dθ-

integral explicitly (see the Appendix for details) to obtain

(5.12)

∫ ∞

0

d Ê

∫ Ê2/2

−Ê2/2

d Ĥ J (Ĥ , Ê)F(Ĥ , Ê)φ̃(Ĥ , Ê),

where

J (Ĥ , Ê) = 2

Ê
√

1 + a
K

(

√

1 − a

1 + a

)

,

φ̃(Ĥ , Ê) = (2 − 2Tβ/2+1(Ĥ , Ê))G E − Ĥ Tβ/2(Ĥ , Ê)G H

+ ÊG E E + 2Ĥ G H E + 4Ê Ĥψ(Ĥ , Ê)G H H ,
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with a = |2Ĥ/Ê2|, K the elliptic K -function, and Tα andψ defined below in (A.6).

Although the expression Tα is rather complex, it is worth noting here that T0 = 2

and T1 = Ê , so that for β = 0 the expression for φ̃(Ĥ , Ê) is much nicer, namely,

2(1 − Ê)G E − 2Ĥ G H + ÊG E E + 2Ĥ G E H + 4Ê ĤψG H H .

Since J really represents the Jacobian of changing variables to H and E , we

want to understand the evolution of X = J F . We plug (5.12) into (5.10), integrate

by parts, and note that G is arbitrary, to obtain

X t = (2(Tβ/2+1 − 1)X)E + (H Tβ/2 X)H + (E X)E E

+ (2H X)E H + (2E HψX)H H .
(5.13)

Further, making the change h = 2H/E2 and writing F for X gives (5.3). This is,

of course, equivalent to the SDE in (5.2).

6 D ≫ 1, the Intermittent Regime

In contrast to the small-D asymptotics of Section 5, we will see here that there

is a vast qualitative difference between the case where β = 0 and where β > 0,

and we will deal with these two cases separately below. In both cases, however, we

will do the scaling

ξ1 = γ−1σ
2β
β+2 ν

2
β+2 ξ̃1, ξ2 = σ

4
β+2 ν

− 2
β+2 ξ̃2, t = γ−1σ

− 4
β+2 ν

2
β+2 t̃ .

This is obtained by assuming that the bounds (3.4) and (3.5) are saturated. The

scaling gives us (after dropping tildes)

(6.1)











dξ1 = 4ξ1ξ2 sin(2θ)dt + dt + (2ξ1)
1/2 dW1

dξ2 = D(−4ξ1ξ2 sin(2θ)− 2ξ
β/2+1

2 )dt

dθ = 2(ξ2 − Dξ1) cos(2θ)dt + (2ξ1)
−1/2dWθ .

6.1 Nonlinear Damping, β > 0

The β > 0 case turns out to be the more straightforward of the two. Let us

rewrite the equation for ξ2 in (6.1) as

dξ2 = −2Dξ2

(

2 sin(2θ)ξ1 + ξ
β/2

2

)

.

We write α(t) = sin(2θ(t)), and for now think of this as a control parameter that

varies in time in some specified way. For any fixed α, this equation is strongly

stable to the curve ξ2 = (−2αξ1)
2/β (by “strongly stable” we mean it has a large

negative eigenvalue). Furthermore, if ξ2 ≪ Dξ1, the equation for θ in (6.1) is

strongly stable to the value of θ for which cos(2θ) = 0 and sin(2θ) = −1, namely,

θ = 3π/4.

If we happen to choose an initial condition with ξ2 = O(D), then the dynamics

of ξ2 will pull the solution rapidly into a neighborhood of the manifold

ξ2 = (−2αξ1)
2/β .
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Once we are there, the value of θ locks to θ = 3π/4 and thus α locks to −1, and

this causes ξ2 to lock to the manifold ξ2 = (2ξ1)
2/β , and then ξ2 stays O(1).

We stress that although there are regions of phase space for which there is no

phase or amplitude locking, this is a self-correcting phenomenon since the deter-

ministic part of the vector field causes the system to leave these areas quickly. With

the locking, the equation for ξ1 in (6.1) becomes

dξ1 =
(

−2
2β+2
β ξ 1+ 2

β
1 + 1

)

dt +
√

2ξ1 dW,

and it is straightforward to calculate that the steady state distribution for this equa-

tion is

(6.2) f (ξ1) = Ce−kξ
1+2/β
1 ,

where in fact k = 2(2β+2)/ββ/(β+2). Thus the steady state distribution for the full

system (6.1) is

f (ξ1)δ(ξ2 − (2ξ1)
2/β)δ

(

θ − 3π

4

)

.

In Figures 6.1 and 6.2, we see that the numerics agree with these predictions.

We mention that it is an implicit assumption in the above argument that D be

chosen sufficiently large, and the minimum such choice of D depends on β. As

β → 0, one will need to choose larger values of D to ensure phase and amplitude

locking. It is an interesting observation that the distribution for ξ1 is not Gaussian

for any value of β > 0, although it becomes nearly Gaussian as β → ∞.
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FIGURE 6.1. In each graph, the curve is ξ2 = (2ξ1)
2/β and the dots are

the solution of (6.1) at times t = 1000 + 25k, D = 250.
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FIGURE 6.2. In each graph, the curve is the prediction given in (6.2)

and the dots are the numerically computed distribution of (6.1).

6.2 Linear Damping, β = 0

The case β = 0 is somewhat more complicated. If we consider (6.1) with

β = 0, we note that we might expect phase locking of θ to occur, at least for most

regions of the phase space, but now there is certainly no mechanism that locks ξ2

to ξ1. The situation is further complicated because the θ does not stay locked for

typical trajectories of the system.

We will show that the dynamics in the β = 0 regime are of two phases that

switch back and forth intermittently. The first phase is a quiescent one in which

ξ2 is pinned very near 0 and ξ1 undergoes a random walk. The second phase is

characterized by a burst in the energy of ξ2. We will also show that the quiescent

phase is essentially unaffected in its duration and quality by D, although it is af-

fected by noise, and the bursting phase is essentially unaffected by the noise, but is

affected greatly by D. In fact, as we show below, the length, in time, of the bursts

are O(ln D/D), and their amplitude is O(D).

Let us consider the system where β = 0, namely,

(6.3)











dξ1 = (4 sin(2θ)ξ1ξ2 + 1)dt + (2ξ1)
1/2 dW1

dξ2 = −2Dξ2(2 sin(2θ)ξ1 + 1)dt

dθ = 2(ξ2 − Dξ1) cos(2θ)dt + (2ξ1)
−1/2dWθ .

We will define the “quiescent” phase to be that in which ξ2 < 1, and the “burst-

ing” phase to be that in which ξ2 > 1. The 1 is arbitrary and chosen only for

definiteness. When we are in the quiescent stage, it is easy to see that θ is locked

to θ = 3π/4, and since it has a multiplier of O(D), one can see that its variance

is O(1/D) since ξ1 is always of O(1). In this phase we can simplify the system,
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using the substitution sin(2θ) = −1, to obtain

dξ1 = (1 − 4ξ1ξ2)dt +
√

2ξ1 dW,

dξ2 = 2D(2ξ1 − 1)ξ2 dt.
(6.4)

The ξ2-equation is linear, and we see by inspection that it is always changing

rapidly. It will be rapidly shrinking if ξ1 <
1
2

and rapidly growing if ξ1 >
1
2
.

Consider an initial condition (ξ1, ξ2) = (A, 1) with A < 1
2
. Then ξ2 moves toward

0 rapidly. Effectively, the equation for ξ1 does not then depend on ξ2, and it is easy

to see that it is a random walk with a positive drift.

If we think of ξ1(t) as a parameter forcing the equation for ξ2 in (6.4), we get

ξ2(t) = exp

[

−2D

∫ t

0

ds (2ξ1(s)− 1)

]

.

In particular, the quiescent stage will last until the value of t for which

0 =
∫ t

0

ds(2ξ1(s)− 1).

This does not depend on D. In essence, the effect of large D in the quiescent

regime is to pin ξ2 to 0 more strongly when ξ1 <
1
2

and have it come back to 1

more quickly when ξ1 >
1
2
, but this effect cancels out, and D will not affect the

length of the quiescent stage. In particular, the mean value 〈ξ1〉 takes when this

phase ends is 1 − A, and this is a quantity independent of D.

In summary, as long as D is sufficiently large, the length of time the quiescent

phase lasts is independent of D, and the values that ξ1 takes during this phase are

also independent of D. On the other hand, the values that ξ2 takes during this phase

depend on D greatly, in that they go like e−Dt for the first half of this phase (while

ξ1 <
1
2
) and then grow like eDt in the second half (while ξ1 >

1
2
).

Now we consider the bursting phase. We will see that the assumption that θ is

locked in this phase is not valid. In fact, let us assume that θ is locked to θ = 3π/4

and show that this is not a self-consistent assumption. Consider the system (6.4).

For definiteness, let us consider an initial condition (B, 1) with B > 1
2
. It is easy

to see that the bursting phase will not be greatly affected by the noise, since during

the burst the deterministic vector field is everywhere O(D). Thus we consider the

deterministic equation

dξ1 = −4ξ1ξ2 dt,

dξ2 = 2D(2ξ1 − 1)ξ2 dt,

and we consider the following problem: given initial conditions (ξ1, ξ2) = (B, 1)

with B > 1
2
, where and when does the trajectory “land”; i.e., is it true that for some

t > 0, (ξ1(t), ξ2(t)) = (C, 1), and what are C and t? Noting that for this system

we have
dξ2

dξ1

= −D(2ξ1 − 1)

2ξ1

,
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we can integrate this to get

ξ2(ξ1) = Dη(ξ1)+ C := D

(

ln(ξ1)

2
− ξ1

)

+ C,

and the solution that passes through (B, 1) is

ξ2(ξ1) = D(η(ξ1)− η(B))+ 1.

Since η is a function that is concave down with maximum at 1
2
, this shows that

C < 1
2
. Furthermore, this curve has maximum O(D). This would seem to explain

the bursting phenomenon well, since here we have a quick transition from (B, 1)

to (C, 1) with an excursion height of O(D), which brings us to the start of another

quiescent phase.

Unfortunately, this argument is not quite correct, because one can see that the

phase-locking assumption is not valid. Since the equation has a transition into the

ξ2 > Dξ1 region of phase space (and in fact spends most of its time there), the

locking in the θ-equation switches signs, and θ now locks to π/4. This changes

the signs in the dξj -equations so makes this analysis incorrect. “so makes this analysis

incorrect” is faulty.

Please reword and

clarify. Insert “and”

before “so”?

Now consider system (6.3), rescale ξ1 = x , ξ2 = Dy, and τ = Dt , and write

α(t) = sin(2θ). The equations become

dx = 4αxy + 1

D
,

dy = −2y(2αx + 1),

dα = 2(y − x)(1 − α2),

(6.5)

and our initial condition is now (x0, y0) = (B, 1/D). The quantity α wants to lock

to either 1 or −1 depending on the values of x and y. Let us split the positive

quadrant into the two pieces R1 = {ξ1 >
1
2
} and R2 = {ξ1 <

1
2
}. By a simple phase

plane analysis, one sees that for α = −1, the vector field points up and to the left

in R1 and down and to the right in R2. On the other hand, if α = 1, then the vector

field points down and to the right everywhere.

If we start at the point (B, 1/D), there are two possibilities of landing point

(where we are “landing” at a point with y = 1/D). First, the trajectory can move

up and to the left, cross the line ξ1 = 1
2
, and then land at some point to the left of 1

2
.

This is the same picture we would obtain assuming θ = 3π/4 throughout the burst.

Second, the trajectory can move to the right of the line x = 1
2

above y = 1, and

then land to the right of x = 1
2
. But we will again be in the region where ξ2 ≪ Dξ1,

and then the bursting process starts over again with this new initial condition. The

second case is a sort of “multibump” bursting. In any case, the system will return

quickly to the quiescent mode, no matter how many bumps it traverses.

Furthermore, we claim that the multibump bursting is not important for large-D

dynamics. Recall that the initial condition B, while random, has mean less than 1.

The probability of our having a burst which starts at, say, ξ1 = 10 is quite rare but,

as one can see from Figure 6.3, for large D the burst has to start at ξ1 > 10 to get
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FIGURE 6.3. Evolution of system (6.5) for D = 104 and three initial

conditions: (11, 1/D), (12, 1/D), and (13, 1/D). The threshhold for

getting a multibump solution seems to be somewhere between 12 and 13.

a multibump solution. Moreover, the probability of a multibump occurring goes to

0 as D → ∞.

We can calculate the length of time the burst takes directly from the vector field.

Take a (nonmultibump) burst starting at (B, 1). Take B∗ = (B + 1
2
)/2, and let C∗

be the solution to η(B∗) = η(C∗). Then the solution will pass through the points

(B, 1), (B∗, O(D)), (C∗, O(D)), and (C, 1). We can estimate how long it takes to

pass through these points. To get from (B, 1) to (B∗, O(D)), the ξ2-variable must

move an O(D) distance. In this region, dξ2 = O(Dξ2), so that it goes like eDt . It

will thus take a ln(D)/D time to traverse this distance. The same argument holds

for the transit from C∗ to C .

Now, to get from B∗ to C∗, note that dξ1 = O(ξ1ξ2) = O(Dξ1), and it has

to move a O(1) distance. This will take O(1/D) time. All in all, the burst will

take O(ln(D)/D) time. Compare this with Figure 6.4, where the circles represent

the proportion of time the system spends in the bursting phase as a function of D.

For this calculation, we took the system (6.1) with various D and initial condition

(ξ1, ξ2, θ) = (1, 1, 0) and measured the proportion of time ξ2 > 1 from t = 103

to t = 105; this shows that the proportion of time the system spends bursting is

O(ln(D)/D).

In summary, the β = 0 case is a system that switches intermittently between

two quite distinct phases. It stays in the quiescent mode for an O(1) time, then

bursts for an O(ln(D)/D) time, with a burst height of O(D). From this, one can

calculate how the moments of ξ2 act with respect to D. During the quiescent phase,

ξ2 moves between 0 and 1 like e±Dt . The pdf of ξ2 during this phase is f (ξ2) =
(Dξ2)

−1. During the bursting phase, the solution moves from 1 to O(D) in time

O(ln(D)/D), so that the pdf in that phase is the uniform distribution ln(D)/D2.

Therefore, if we were to calculate the moments of ξ2, we would have

〈

ξ n
2

〉

=
∫ 1

0

dξ2

ξ n−1
2

D
+
∫ D

1

dξ2

ξ n
2 ln(D)

D2
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FIGURE 6.4. The solid curve is 0.7 ln(D)/D, and the circles are the

proportion of time the system of (6.1) spends bursting as a function of D.

= D−1 + Dn−1 ln D.

This shows that the two phases have quite different characters and explains why

there is no uniform rescaling that can describe the statistics of both phases, giving

rise to the intermittency of the system.

7 Summary

In this work, we have proposed a simple, two-mode model for nonlinear energy

transfer, where one mode receives a controlled amount of energy through white

noise, and the other dissipates energy through a nonlinear mechanism that can be

tuned to parametrize wave breaking.

The system exhibits a bifurcation between a quasi-equilibrium regime and an

intermittent regime as an appropriate nondimensional combination of the driving

and damping coefficients is increased. When the damping is linear, a case pre-

viously studied in [9], the low-forcing regime is Gaussian, and the high-forcing

regime is highly intermittent. By contrast, under nonlinear damping, the low-

forcing regime has non-Gaussian statistics, and the high-forcing regime is strongly

constrained by slaving among the system’s degrees of freedom.

Appendix: Details of Change of Variables

We do the dξ2-integral in (5.11) by making the substitution ξ2 = Ê −ξ1. Noting

that the dξ2-integral is over positive reals, this means that we must have Ê −ξ1 ≥ 0,

or 0 ≤ ξ1 ≤ Ê , and we get

∫ ∞

0

d Ê

∫ Ê2/2

−Ê2/2

d Ĥ

∫ 2π

0

dθ

∫ Ê

0

dξ1 δ(γ (ξ1)− Ĥ)F(H, Ê)φ(H, Ê, ξ1, Ê − ξ1, θ),
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where γ (ξ1) = H = 2 cos(2θ)(Êξ1 − ξ 2
1 ). Let us for now consider the integral

only in the Ĥ > 0 regime. Thus we consider

∫ ∞

0

d Ê

∫ Ê2/2

0

d Ĥ

∫ π/4

−π/4
dθ

∫ Ê

0

dξ1 δ(γ (ξ1)− Ĥ)F(H, Ê)φ(H, Ê, ξ1, Ê − ξ1, θ).

We only need to consider those θ for which cos(2θ) > 0, because the sign of Ĥ

and the sign of cos(2θ) are the same. Let us note the following two symmetries

of the integrand: If we make the change θ 7→ −θ , every term in the integrand

remains unchanged (every appearance of θ is as cos(2θ)), and if we make the

change ξ1 7→ Ê − ξ1, the terms γ and F remain unchanged. We exploit these

symmetries and can write the innermost two integrals as

(A.1) 2

∫ π/4

0

dθ

∫ Ê/2

0

dξ1 δ(γ (ξ1)− Ĥ)F(H, Ê)(φ + φ12),

where φ12 is φ with the roles of ξ1 and Ê − ξ1 interchanged. Now we do the

innermost integral, noting that γ is invertible on this domain. Using the rule that
∫ b

a

dx δ(γ (x)− A) f (x) = f (γ−1(A))

γ ′(γ−1(A))
if A ∈ [γ (a), γ (b)],

we get the innermost integral to be

J1(Ê, Ĥ , cos(2θ))F(Ĥ , Ê)(φ + φ12) if cos(2θ) ≥ 2Ĥ

Ê2
,

where

J1(Ê, Ĥ , cos(2θ)) = 1

2 cos(2θ)

√

Ê − 2Ĥ/cos(2θ)

,

and we use the substitution ξ1 7→ γ−1(Ĥ) = 1
2
(Ê −

√

Ê2 − 2Ĥ/cos(2θ)). Chang-

ing variables in the dθ-integral using ρ = cos(2θ) brings (A.1) to

(A.2)

∫ 2Ĥ/Ê2

1

dρ J2(Ê, Ĥ , ρ)F(φ + φ12),

where

J2(Ĥ , Ê, ρ) = 1

2ρ
√

1 − ρ2

√

Ê2 − 2Ĥ/ρ

,

and we make the further substitution in the integrand that cos(2θ) 7→ ρ.

Substituting G = G(H, E) = G(2ξ1ξ2 cos(2θ), ξ1 + ξ2), (5.8) evaluates to

φ = G E

(

1 − 2ξ
β+2

2

2

)

+ G H

(

−2ξ1ξ
β+2

2

2 cos(2θ)
)

+ G E Eξ1 + G H E(4ξ1ξ2 cos(2θ))+ G H H (4ξ1ξ
2
2 ).

(A.3)
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If we denote

R± = 1

2

(

Ê ±

√

Ê2 − 2Ĥ

ρ

)

,

note that after the necessary substitutions we have

φ = G E

(

1 − 2R
β+2

2
−
)

+ G H

(

−2R+ R
β+2

2
− ρ

)

+ G E E R+ + G H E 4R+ R−ρ + G H H 4R+ R− R−,
(A.4)

φ12 = G E

(

1 − 2R
β+2

2
+
)

+ G H

(

−2R
β+2

2
+ R−ρ

)

+ G E E R− + G H E 4R− R+ρ + G H H 4R+ R+ R−.
(A.5)

So, our integrand is J2 F(φ + φ12), with How does second line of

this equation fit into first

line? Addition?

Multiplication? Please

clarify.

φ + φ12 = G E

(

2 − 2(R
β/2+1
− + R

β/2+1
+ )

)

+ G H

(

−H(R
β/2
− + R

β/2
+ )

)

EG E E + 4H G E H + 2E H

ρ
G H H .

If we define

J (Ĥ , Ê) =
∫ 1

2Ĥ/Ê2

J2(Ĥ , Ê, ρ) dρ,

φ−1(Ĥ , Ê) =
∫ 1

2Ĥ/Ê2

ρ−1 J2(Ĥ , Ê, ρ) dρ,

Sα(Ĥ , Ê) =
∫ 1

2Ĥ/Ê2

J2(Ĥ , Ê, ρ)
(

R+(Ĥ , Ê, ρ)α + R−(Ĥ , Ê, ρ)α
)

dρ,

ψ(Ĥ , Ê) = φ−1

J (Ĥ , Ê)
, Tα(Ĥ , Ê) = Sα(Ĥ , Ê)

J (Ĥ , Ê)
,

(A.6)

then we see that (A.2) becomes, after dρ-integration,

J F{(2 − 2Tβ/2+1)G E − Ĥ Tβ/2G H + ÊG E E + 4Ĥ G E H + 2Ê ĤψG H H },

which proves (5.12). Also, note that T0(Ĥ , Ê) = 2 and T1(Ĥ , Ê) = Ê , so for

β = 0 this simplifies to

J F {2(1 − E)G E − 2H G H + EG E E + 4H G E H + 2E HψG H H } .

In general, however, Tα(Ĥ , Ê) is a function of both Ĥ and Ê , which means that

for β > 0, the drift coefficients depend on both variables.
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