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Summary. A family of one-dimensional nonlinear dispersive wave equations is intro-
duced as a model for assessing the validity of weak turbulence theory for random waves
in an unambiguous and transparent fashion. These models have an explicitly solvable
weak turbulence theory which is developed here, with Kolmogorov-type wave number
spectra exhibiting interesting dependence on parameters in the equations. These predic-
tions of weak turbulence theory are compared with numerical solutions with damping
and driving that exhibit a statistical inertial scaling range over as much as two decades
in wave number.

It is established that the quasi-Gaussian random phase hypothesis of weak turbulence
theory is an excellent approximation in the numerical statistical steady state. Neverthe-
less, the predictions of weak turbulence theory fail and yield a much flatter (|k|−1/3)
spectrum compared with the steeper (|k|−3/4) spectrum observed in the numerical statis-
tical steady state. The reasons for the failure of weak turbulence theory in this context are
elucidated here. Finally, an inertial range closure and scaling theory is developed which
successfully predicts the inertial range exponents observed in the numerical statistical
steady states.
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1. Introduction

Weak turbulence theories have been utilized to predict wave number spectra of random
waves in a variety of complex physical problems ranging from surface gravity waves in
fluids to ion-acoustic waves in plasmas to optical turbulence, among many applications
([Ha], [Zak84], [Ph], [ZLF92]). These weak turbulence theories are based upon suitable
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statistical closure theories at small amplitudes involving resonant wave interactions ([Br],
[Ph], [Cr], [BS]). Different theories involving either three-wave resonances or resonant
quartets apply in different physical contexts ([Cr], [Zak84]). The theories for resonant
quartets apply prototypically for surface gravity waves in fluids without surface tension
([Ph], [ZLF92]).

Here we introduce a rich family of one-dimensional nonlinear dispersive wave equa-
tions with the goal of assessing the validity of weak turbulence theory for random waves
in an unambiguous and transparent fashion. This two-parameter family of dispersive
wave equations is given by

iψt = |∂x|αψ + |∂x|−β/4
(∣∣|∂x|−β/4ψ

∣∣2 |∂x|−β/4ψ
)
, (1.1)

with parametersα > 0 andβ. These one-dimensional models have resonant quartets for
α < 1, and a simple, exactly solvable weak turbulence theory with interesting explicit
dependence of the predicted wave number spectra on the parametersα andβ in the
equations. Also, since these model equations involve only a single space dimension,
direct numerical simulations with a large statistical inertial range with scaling behavior
are readily achieved.

These numerical simulations reveal that the random phase quasi-Gaussian approxima-
tion utilized in weak turbulence theories are excellent hypotheses and are clearly satisfied
for the one-dimensional model equations. Nevertheless, the explicit spectra predicted by
weak turbulence theory are significantly less steep than the wave number spectra ac-
tually observed in our direct numerical simulations. The reasons for the failure of the
predictions of weak turbulence theory in this context are elucidated in detail here. Fi-
nally, an alternative closure procedure developed here has an inertial range scaling theory
which successfully predicts all of the inertial range exponents observed in the numerical
simulations. Next, we briefly summarize the contents of the remainder of this paper.

In Section 2, we discuss the elementary properties of deterministic solutions of the dis-
persive wave equations (1.1), including conserved quantities and the Hamiltonian struc-
ture. In Section 2.1, we discuss resonant quartets for the equations (1.1), including a direct
numerical simulation demonstrating the regime of validity of weak wave asymptotic ex-
pansions. In Section 2.2, we carefully nondimensionalize the equations (1.1) to isolate
definite regimes depending onα andβ where weakly nonlinear behavior occurs. Finally,
we end this section with an elementary intuitive discussion regarding turbulent cascades.

In Section 3, we give a detailed discussion and derivation of the equations of weak
turbulence theory for (1.1) together with their explicit solution. In Section 3.1, we closely
follow earlier work ([Zak84], [ZLF92]) in deriving the kinetic equations of weak turbu-
lence theory, in order to elucidate the three main steps in the derivation:

Step #1:Quasi-Gaussian random phase approximation.
Step #2:Resonant set Diracδ-concentration.
Step #3:Angular averaging.

In Section 3.2, we present explicit solutions of the kinetic equations of weak turbulence
theory for the equations in (1.1), including rich families of nontrivial Kolmogorov spectra
as the parametersα andβ are varied. Our discussion follows that of Zakharov ([Zak84],
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[ZLF92]) involving his ingenious conformal transformations. We predict both direct and
inverse cascade power law spectra with interesting bifurcation behavior as the exponents
α andβ are varied (see equations (3.23), (3.24), and (3.25) below). In Section 3.2.2,
we provide a new conceptual derivation of the Kolmogorov spectra of weak turbulence
theory, as well as the conformal transformation, by utilizing a refined self-similarity
hypothesis.

In Section 4, we compare careful numerical simulations, which include large scale
forcing and dissipation at high wave numbers, with the explicit predictions of weak
turbulence theory developed in Section 3. The numerical method and a validation study
are described in Section 4.1, while Section 4.2 contains the main results in our comparison
of numerical experiments and weak turbulence theory. In Section 4.2, our numerical
experiments study the direct cascade withα = 1/2 andβ = 1 in (1.1), which is exactly
at the center of the regime where weak turbulence theory should be most successful. We
find that an inertial range scaling emerges in all our direct simulations with a wave number
spectrum|k|−3/4 independent of the number of modes and box size and spanning up to
two decades. This spectrum is significantly steeper than the|k|−1/3 spectrum predicted by
weak turbulence theory; the reasons for the failure of the predictions of weak turbulence
theory are elucidated in Section 4.2. In particular, post-processing of the numerical
solution verifies that the quasi-Gaussian random phase approximation in Step #1 above
is an excellent approximation in the numerical statistical steady state. Other detailed
careful post-processing of the numerical solution reveals unambiguously that the tacit
assumption in Step #2 regarding resonant set Diracδ-concentration is a source of failure
of the predictions of weak turbulence theory. We end Section 4.2 by reporting on the
inertial scaling regimes which emerged as we varied the parameterβ in (1.1). Once
again, these values are never close to the ones predicted by weak turbulence theory and
do not display any of the bifurcation behavior described in Section 3.

Finally, in Section 5, we briefly describe a new closure procedure with an inertial
range scaling theory which successfully predicts all of the inertial range exponents for
α = 1/2 andβ varying observed in the numerical simulations in Section 4.

2. Basic Model

We consider the two-parameter family of equations

iψt = |∂x|αψ + |∂x|−β/4
(∣∣|∂x|−β/4ψ

∣∣2 |∂x|−β/4ψ
)
, (2.1)

which is a Hamiltonian system with Hamiltonian

H =
∫ (∣∣|∂x|α/2ψ

∣∣2+ 1

2

∣∣|∂x|−β/4ψ
∣∣4) dx. (2.2)

The parameterα determines the dispersion relation

ω = Ä(k) = |k|α. (2.3)

The usual nonlinear Shroedinger equation hasα = 2, whileα = 1/2 mimics the water
wave dispersion lawω = |k|1/2. Note that, whenα satisfiesα ≥ 1, the dispersion relation
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Ä(k) is convex, a property which does not hold forα < 1. The convexity properties of
the dispersion relation will influence the character of resonant waves. The parameterβ

“tames” the nonlinearity. The valueβ = 0 corresponds to a standard cubic power law
and larger values ofβ make this nonlinearity effectively weaker because of a nonlocal
smoothing inx.

As described below, the weak turbulence theory for this model equation depends
sensitively on the values of the two parametersα andβ. In fact, critical values of these
parameters will be identified, for which the weak turbulence theory predicts interesting
bifurcations, whose consequences should be observable in numerical simulations as a
test for the validity of weak turbulence theory.

In addition to the Hamiltonian (2.2), theL2-norm,

|ψ |2 =
∫
|ψ |2 dx,

and the linear momentum,

P =
∫ (

ψψ̄x − ψxψ̄
)

dx,

are conserved by the time evolution of the model (2.1).
In the calculations which follow, it will be convenient to have the equation (2.1)

recorded in Fourier space:

i ψ̂t = Ä(k)ψ̂ +
∫

ψ̂1ψ̂2
¯̂
ψ3

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3. (2.4)

2.1. Four Wave-Resonance Equations

We are interested in energy transfer mechanisms for weak dispersive waves which are
dominated by resonance effects. For the model (2.1), the simplest instance of such transfer
occurs for four wave resonances. To understand this, consider a solution of the form

ψ(x, t) = ε
[

4∑
j=1

Aj (T)e
i [kj x−Ä(kj )t ] + ε2ψ̃(x, t)

]
, (2.5)

whereÄ(k) denotes the dispersion relation and the slow time is given byT = ε2t .
Insertion of (2.5) into (2.1) produces the following equation forψ̃ :

(
i ∂t − |∂x|α

)
ψ̃ =

4∑
j=1

ei [kj x−Ä(kj )t ]

[
− i A′ j (T)+

(
|Aj |2
kj

β

2

+ 2
∑
l 6= j

|Al |2
kl

β

2

)
Aj

kj
β

2

+ 2
∑

l1,2,3 6= j

A1(T)A2(T)Ā3(T)

|k1| β4 |k2| β4 |k3| β4 |kj | β4
ei [(k1+k2−k3−kj )x−(ω1+ω2−ω3−ωj )t]

]
,

where we have simplified the notation by writingA1,2,3 for Al1,2,3, k1,2,3 for kl1,2,3, and
ωl for Ä(kl ). This equation corresponds to a forced linear oscillator, and it will exhibit
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secular growth in time of̃ψ(k, t) unless the corresponding terms with zero frequency
inside the bracket cancel. This cancellation, required for the validity of the proposed
expansion (2.5) for time intervals of order(1/ε2), gives rise to a system of ordinary
differential equations for theAj ’s. If the resonance conditions

k1+ k2 = k3+ k4, (2.6)

ω1+ ω2 = ω3+ ω4 (2.7)

are met, the corresponding modes will interchange energy maximally, and the system of
ordinary differential equations is then

i A′1(T) =
(
|A1|2
k1

β

2

+ 2
∑

l=2,3,4

|Al |2
kl

β

2

)
A1

k1
β

2

+ 2A3A4 Ā2

|k1| β4 |k2| β4 |k3| β4 |k4| β4
,

i A′2(T) =
(
|A2|2
k2

β

2

+ 2
∑

l=1,3,4

|Al |2
kl

β

2

)
A2

k2
β

2

+ 2A3A4 Ā1

|k1| β4 |k2| β4 |k3| β4 |k4| β4
,

i A′3(T) =
(
|A3|2
k3

β

2

+ 2
∑

l=1,2,4

|Al |2
kl

β

2

)
A3

k3
β

2

+ 2A1A2 Ā4

|k1| β4 |k2| β4 |k3| β4 |k4| β4
,

i A′4(T) =
(
|A4|2
k4

β

2

+ 2
∑

l=1,2,3

|Al |2
kl

β

2

)
A4

k4
β

2

+ 2A1A2 Ā3

|k1| β4 |k2| β4 |k3| β4 |k4| β4
. (2.8)

[The first two terms in the right-hand side of (2.8), which are always present even if
the resonant conditions (2.6) and (2.7) are not satisfied, do not contribute to the energy
exchange between modes. Indeed, one can think of them as providing a weakly nonlinear
correction to the linear frequenciesÄ(k).]

Thus, for equations (2.8) to apply, we need to show that the dispersion relation (2.3)
admits four wave resonances satisfying (2.6), (2.7). To this end, we may rewrite the
resonant conditions in the form

k3− k1 = k2− k4 = k∗,
ω3− ω1 = ω2− ω4 = ω∗,

which can be interpreted as follows (see Fig. 1): If we displace the curve of the dispersion
relationω = Ä(k) by the constants(k∗, ω∗), this displaced curve will intersect the
original one at two points, one with coordinates(k1, ω1) in the original system and
(k3, ω3) in the displaced one, and the other with respective coordinates(k4, ω4) and
(k2, ω2). In one dimension, we conclude graphically in Figure 1 that four wave resonances
will only take place for nonconvex dispersion laws. In particular, for power lawsω = kα,
four wave resonances exist only whenα is strictly less than one, so we will concentrate
on this case for the remaining of this work.

Remark. In the derivation of equations (2.8), it has been assumed implicitly that the
dispersion relationÄ(k) does not allow three wave resonances of the form

k1 = k2+ k3, (2.9)

ω1 = ω2+ ω3. (2.10)



14 A. J. Majda, D. W. McLaughlin, and E. G. Tabak

Fig. 1. Geometrical construction for four wave resonances. In one dimension,
resonant quartets only exist for nonconvex dispersion laws.

This is indeed true for the dispersion relation (2.3) in one dimension, as can be shown
from a graphical construction similar to the one just described for four wave resonances.

Equations (2.8) can be integrated explicitly in terms of elliptic functions ([Cr]). In-
stead, we have chosen to plot their numerical solution for a particular resonant quartet,
and contrast it with the numerical solution to the full equation (2.1), with only that quar-
tet present in the initial data. This procedure provides us with extra flexibility that we
will use in later sections to better understand the mechanisms of energy transfer through
resonant waves. The algorithm used for the numerical solution of the mode equations
(2.8) is a standard fourth order Runge-Kutta; the one used for the solution of the pde
(2.1) will be described in detail in Section 4.

Figure 2 displays the solution of the system (2.8), withk1 = 400,k2 = 25,k3 = 441,
andk4 = −16, which form a resonant quartet ifα = 1/2. The initial dataA1...4 are
arbitrary, but fixed, complex numbers of order one. The curves plotted show the absolute
value of theAj ’s as functions of time. Figures 3a, b, and c display the numerical solution
of the full equation (2.1) on a periodic box of length 2π with the same initial data as in
Figure 2, multiplied by three values ofε: 0.1, 0.15, and 0.2. In addition, a curve of the
L2-norm of the quartet has been included, as a measure of how much energy is being
transferred to the modes not in the initial set.

In all cases, the solution of the full equation (2.1) agrees almost exactly with the one
of the mode equations (2.8) for some time, and suddenly breaks down. The breakdown
time scales as 1/ε4, since for time intervals longer than O(ε−2), the mode equations
(2.8) are no longer a valid approximation of the pde. This scaling can be checked in the
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Fig. 2. Numerical solution of the asymptotic equations for a resonant
quartet.

Fig. 3a. Numerical solution of the full partial differential equation, with
initial data supported only in a resonant quartet. The top line is the total
energy in the quartet. Hereε = 0.1.

computations withε = 0.15 andε = 0.2, with corresponding breakdown times given
approximately byt = 11000 andt = 3500. The breakdown time forε = 0.1 lies beyond
the interval of the numerical solution.
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Fig. 3b. Numerical solution of the full partial differential equation, with
initial data supported only in a resonant quartet. Hereε = 0.15. The
asymptotics for a single resonant quartet break down at aboutt = 11000.

2.2. Nondimensionalization with Forces and Dissipation

We are interested in understanding the statistical behavior ofturbulent cascadesfor the
model (2.1), whereby energy, which is continuously added to the system at some length
scale, is transferred internally toward a very different scale, at which it is dissipated.
In order to model these cascades, we need to add to (2.1) or (2.4) some forcing and
dissipation. To this end, we consider the following generalization of (2.4):

i ψ̂t = |k|αψ̂ +
∫

ψ̂1ψ̂2
¯̂
ψ3

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3

+i

[(∑
j

f j δ(k− |kj |)
)
− (ν−|k|−d + ν+|k|d)] ψ̂. (2.11)

We have adopted the simplest possible form of the forcing terms, because the theory
is insensitive to their nature. The reason for including two dissipative terms, one for
low and one for high frequencies, is that bothdirect andinverse cascadesare expected,
carrying the equivalent of energy and enstrophy toward opposite ends of the spectrum.
The corresponding powersd and−d, which determine the sharpness of the dissipative
ends of the spectrum, will be left temporarily free.

In order to nondimensionalize the equation, we first introduce a wave number (or
“inverse length”) scaleK . The amplitude scale will not be independent ofK ; we assume
that the square of the amplitude scales, as a power ofω, as it does in any Kolmogorov-like
spectrum. Therefore, we introduce an amplitude scalea = εK−(αγ )/2, where the value of
γ is to be measured or predicted by the theory. The natural time scale is determined by
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Fig. 3c. Numerical solution of the full partial differential equation, with
initial data supported only in a resonant quartet. Hereε = 0.2. The
asymptotics for a single resonant quartet break down at aboutt = 3500.

the nonlinear term in (2.11), which scales asa3/K β . Thus, a “nonlinear turnover time”
T is

T = K β+αγ

ε2
. (2.12)

After rescaling withK , a, andT , equation (2.11) becomes

i ψ̂t =
(

K α+β+αγ

ε2

)
|k|αψ̂

+
∫

ψ̂1ψ̂2
¯̂
ψ3

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3

+ i

[∑
j

(
f j K β+αγ−1

ε2

)
δ

(
k− |kj |

K

)]
ψ̂

− i

[(
ν−K β+αγ−d

ε2

)
|k|−d +

(
ν+K β+αγ+d

ε2

)
|k|d

]
ψ̂. (2.13)

The condition for weak nonlinearity (“strong linearity”) is

ε2¿ K α+β+αγ . (2.14)

For the forces to act on the time scale associated with the nonlinear turnover time, we
must require that

f j = O

(
ε2

|kj |β+αγ−1

)
. (2.15)
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Finally, the dissipation scalesK− andK+ may be defined by

K−β+αγ−d ≡ ε2

ν−
, (2.16)

K+β+αγ+d ≡ ε2

ν+
. (2.17)

2.3. Why Are There Cascades?

The two quantities analogous to energy and enstrophy in 2-D turbulence are, for our
model, theparticle numberor two-point functionand theenergy, with names borrowed
from statistical mechanics. The particle number at wave numberk or, more conveniently,
at frequencyω, is defined as the ensemble average of|ψ |2:

N(ω) = 〈|ψ̂ |2〉.

The energy, on the other hand, is given by

e(ω) = N(ω) ω.

The integrals overω of both the number of particles and the energy are conserved in
the unforced, nondissipative model (2.4). However, if the system is forced at some wave
numbers and damped at others, we expect that the energye(ω)will flow toward the short
waves, and the number of particlesN(ω) toward the long waves. This can be seen easily
from a global balance of particles and energy. Let us consider an idealized situation in
which N particles are being created per unit time with frequencyω, andN− and N+

particles are being removed with frequenciesω− andω+. In a steady configuration, both
the number of particles and the energy are conserved:

N = N− + N+,
Nω = N−ω− + N+ω+.

ThenN− andN+ are given by

N− = N
(
ω+ − ω)

ω+ − ω− , (2.18)

N+ = N
(
ω − ω−)

ω+ − ω− . (2.19)

For these to be positive,ω has to lie betweenω− andω+, so we can take, without loss
of generality,

ω− < ω < ω+.

As neitherN− nor N+ vanish, nor do the corresponding energiesω−N− andω+N+,
there will be fluxes of particles and energy in both directions fromω. However, ifω−

is near zero, there will be almost no energy removal at the low frequencies, and the
cascade of energy will flow mostly fromω toω+, from the low to the high frequencies.
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Similarly, if ω+ is very large, it follows from (2.19) that only a negligible number of
particles will be removed at the high frequencies, and the particles will flow mostly from
ω toω−, toward the low frequencies. Thus we see that, if the dissipation takes place only
at frequencies near zero and very high, there will be an inertial range where the energy
will flow from its source to the sink at the high frequencies (direct cascade) and another
where the particles will flow from their source to the sink at the low frequencies (inverse
cascade).

3. Explicitly Solvable Weak Turbulence Theory

Weak Turbulence theory ([Zak84] [ZLF92]) provides a formalism for the statistical
description of weakly nonlinear dispersive waves, in terms of a closed equation for
certain two-point spectral functions. In this section, we sketch the heuristic derivation
of thesekinetic equationsfor our one-dimensional pde model (2.1), subject to random
initial data. In addition, we describe both the equilibrium and nonequilibrium stationary
solutions to these equations, which characterize the energy spectrum for the model pde
(2.1).

To derive these equations, one begins with the basic evolution equation (2.4) in k
space:

i ψ̂t = ω(k)ψ̂ +
∫

ψ̂1ψ̂2
¯̂
ψ3

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3, (3.1)

whereψ̂j ≡ ψ̂(kj , t). Randomness enters through the initial data, which takes the form

ψ̂(k, t = 0) = g(k), (3.2)

whereg(k) denotes complex valued independent Gaussian random variables with zero
mean, uniformly distributed phase, and with two-point functions given by

〈g(k)ḡ(k′)〉 = no(k)δ(k− k′).

Here〈· · ·〉 denotes expectation with respect to the probability distribution.
Next, one introduces the two-point function

n(k, t) ≡ 〈ψ̂(k, t) ¯̂ψ(k, t)〉. (3.3)

Thekinetic equations of weak turbulence theoryare a closed system of equations for the
approximate temporal evolution of these two-point functionsn(k, t). These functions
can be interpreted as the spectral density (ink space) of the random fieldψ(x, t),∫

|ψ(x, t)|2 dx =
∫

n(k, t) dk,

and hence the kinetic equations provide evolution equations for this spectrum.
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3.1. Derivation of the Kinetic Equations

In this section, we sketch the derivation of the kinetic equations following [Zak84]
[ZLF92] for our one-dimensional model. First, from equation (3.1) one obtains the
identity

nt =
∫

2 Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3. (3.4)

If the evolution ofψ̂(k, t)were trivial, such as given by a constant coefficientlinear evo-
lution equation, independent Gaussian variables would remain independent Gaussians,
and the right hand side of equation (3.4) would vanish. The nonlinear terms which are
present in the evolution equation (3.1) break this Gaussian property. However, for waves
of small amplitude, the nonlinearity is a weak perturbation, and the variablesψ̂ should
remain close to Gaussian.

Step #1: Quasi-Gaussian Random Phase Approximation.From (3.1) we compute
an identity for the four-point functions which depends upon six-point functions, and
then for closure we use a quasi-Gaussian hypothesis to reduce sixth-order moments to
products of second-order moments:

i 〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉t ≈ (ω1+ ω2− ω3− ωk)〈ψ̂1ψ̂2

¯̂
ψ3
¯̂
ψk〉

+ 6
n2n3nk + n1n3nk − n1n2nk − n1n2n3

|k1| β4 |k2| β4 |k3| β4 |k| β4
. (3.5)

In the linear case, the left-hand side of (3.5) would vanish, while the two terms of
the right-hand side would be finite. Thus, for small nonlinearity, we may neglect the
left-hand side and use a multiple-scale type of analysis to write

〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉 ≈ −6

n2n3nk + n1n3nk − n1n2nk − n1n2n3

|k1| β4 |k2| β4 |k3| β4 |k| β4 (ω1+ ω2− ω3− ωk)
.

Step #2: Resonance Set Diracδ-Concentration. We perturbω with a small imaginary
term (corresponding to dissipation in the original system) to get

Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉 ≈ 6π

n2n3nk + n1n3nk − n1n2nk − n1n2n3

|k1| β4 |k2| β4 |k3| β4 |k| β4
× δ(ω1+ ω2− ω3− ω), (3.6)

where we have used the identity Im
(

1
ω−i ε

)→ −πδ(ω). In this manner we close (3.4),
obtaining

nt = 12π
∫

2n2n3nk − n1n2nk − n1n2n3

|k1| β2 |k2| β2 |k3| β2 |k| β2
δ(ω1+ ω2− ω3− ω)

δ(k1+ k2− k3− k) dk1dk2dk3, (3.7)

which is the kinetic equation forn.
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Step #3: Angular Averaging. Typically in weak turbulence theory one next averages
over the angles ink-space. In our one-dimensional model, this reduces to averaging
over the sign of thek’s. One restricts to initial datano(k) which are even ink, and
seeks a solutionn(k, t)which remains even. Withk positive, one has the following three
possibilities: eitherk1, k2, andk3 are negative;k1 andk2 are positive andk3 negative; or
k3 is positive andk1 andk2 have opposite signs. Then (3.7) becomes

N(ω)t = T(n;ω), (3.8)

whereN(ω) = n(k(ω)) dk
dw and

T(n;ω) = 12π

α4

∫
n1n3nω + n2n3nω − n1n2nω − n1n2n3

ω
β/2+α−1

α

1 ω
β/2+α−1

α

2 ω
β/2+α−1

α

3 ω
β/2+α−1

α

× δ(ω1+ ω2− ω3− ω)
×
(
δ(ω1

1
α + ω2

1
α − ω3

1
α + ω 1

α )+ δ(ω1
1
α + ω2

1
α + ω3

1
α − ω 1

α )

+ δ(ω1
1
α − ω2

1
α − ω3

1
α − ω 1

α )

+ δ(−ω1
1
α + ω2

1
α − ω3

1
α − ω 1

α )
)

dω1 dω2 dω3. (3.9)

Hereni stands forn(k(ωi )) andnω for n(k(ω)).
Equations (3.8–3.9) constitute thekinetic equations of weak turbulence theorywith

which we shall work. Steps #1, #2, and #3 summarize the three main approximations
utilized by Zakharov and coworkers ([Zak84], [ZLF92]) in deriving these equations.

3.2. Explicit Solutions of the Kinetic Equations

In this subsection we consider stationary solutions of the kinetic equations (3.8), corre-
sponding to equilibrium and nonequilibrium energy spectra. Clearly

n1(ω) = c (3.10)

and

n2(ω) = c

ω
(3.11)

are solutions, since they make the integrand vanish. The former corresponds toequipar-
tition of particle number, and the latter toequipartition of energy, with energy defined
by

Eω =
∫ ∞
−∞

ω(k)n(k) dk=
∫ ∞

0
ωN(ω) dω. (3.12)

Both (3.10) and (3.11) are limiting cases of the more general solution

neq(ω) = 1

c1+ c2ω
, (3.13)

which corresponds to equipartition of a linear combination of the number of particles
and the energy, or alternatively, to equipartition of energy with a shift in frequency space.
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Zakharov ([Zak84], [ZLF92]) found that the kinetic equations of weak turbulence
theory frequently possess power law solutions of the form

nK (ω) = c

ωγ
, (3.14)

for powersγ other than zero and one. These are called “Kolmogorov solutions” because
of their similarity to the Kolmogorov spectra of fluid turbulence. Zakharov found these
solutions by inserting the power law ansatz (3.14) into the interaction kernelT(n;ω),
equation (3.9), and introducing a “conformal transformation” of the resulting integrand
to find zeros ofT(n;ω). As a result of these operations, which are described in the
appendix, the kernelT(n;ω) takes the simple form

T(nK ;ω) = ω−y−1I (α, β, γ ), (3.15)

where

I (α, β, γ ) = −
∫
1

(ξ1ξ2ξ3)
− β/2−1

α
−1−γ (1−ξ1

γ−ξ2
γ+ξ3

γ ) δ (1−ξ1−ξ2+ξ3)

× δ(ξ1
1
α +ξ2

1
α +ξ3

1
α −1)

(
1−ξ y

1−ξ y
2+ξ y

3

)
dξ1 dξ2 dξ3, (3.16)

with 1 the domain

1 =
 0< ξ1 < 1

0< ξ2 < 1
ξ1+ ξ2 > 1

,

and with

y = 2β − 3

α
+ 3γ + 1.

3.2.1. The Kolmogorov Solutions.Equilibrium solutions satisfy

T(nK ;ω) = ω−y−1I (α, β, γ ) = 0, (3.17)

which, with (3.16), is seen to admit the four power law solutionsω−γ : γ = 0, γ = 1,
y = 1, andy = 0. The first two (γ = 0 andγ = 1) recover equipartition of particle
number (3.10) and of energy (3.11). The latter two (y = 1 andy = 0) are of Kolmogorov
type; they yield

n(ω) =
{

cω
2/3β−1
α ,

cω
2/3β−1+α/3

α .
(3.18)

which correspond exactly to the results of [DNPZ] ford = 1. Alternatively, in terms of
k, we have

n(k) =
{

c |k|2/3β−1,

c |k|2/3β−1+α/3.
(3.19)

These equilibrium solutions admit an interesting physical interpretation [Zak84] in
terms of “fluxes inω (or k) space,” which we now describe. We can rewrite the kinetic
equations (3.9 ) in either of the two equivalent conservation forms:

N(ω)t + Q(N;ω)ω = 0, (3.20)

e(ω)t + P(e;ω)ω = 0, (3.21)
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wheree(ω) = ωN(ω), and where

Q(N;ω) = −
∫ ω

0
T(n;ω) dω,

P(e;ω) = −
∫ ω

0
ωT(n;ω) dω. (3.22)

The functionsQ andP defined in this way can be considered as fluxes of particles and
energy inω-space. As argued in Section 2.3, we expect the energy to flow from long to
short waves (“direct cascade”), while the particles should travel towards the long waves
(“inverse cascade”). This corresponds to a positiveP and a negativeQ.

Next, we evaluate these fluxes on the Kolmogorov form (3.14),

Q(NK ;ω) = −ω
−y

−y
I ,

P(eK ;ω) = − ω
−y+1

−y+ 1
I ,

from which we can compute the signs ofQ andP asy approaches the equilibrium values
of zero and one. SinceI vanishes at both values,Q(ω) vanishes identically aty = 1
andP(ω) = 0 aty = 0. To investigate the other two cases, we use l’Hˆopital’s rule after
computing∂ I /∂y. Under some mild hypotheses, which hold at least forα close to 1/2,
we obtain the followingparameter dependence of the fluxes:

The energy fluxP is positive for

3/2< β < 3/2− 1/2α. (3.23)

The particle fluxQ is negative for

3/2− 2α < β < 3/2− 1/2α.

Let us explicitly write these results forα = 1/2, which is the case on which we will
concentrate in Section 4. The Kolmogorov solutions are, for the inverse cascade,

nK (ω) = cω4/3β−5/3,

nK (k) = c |k|2/3β−5/6, (3.24)

with negative flux of particlesQ for 1/2< β < 5/4 and, for the direct cascade,

nK (ω) = cω4/3β−2,

nK (k) = c |k|2/3β−1, (3.25)

with positive flux of energyP for 3/4 < β < 3/2. The common range for which both
cascades have the sign consistent with physical intuition is 3/4< β < 5/4.

Thus, weak turbulence theory for this model problem predicts bifurcation behavior
for the signs of the fluxes which, if weak turbulence theory is valid, should be apparent
in numerical simulations of the original nonlinear wave equations. In fact, one would
expect these bifurcations to be more apparent than the direct distinction between the two
Kolmogorov spectra, since the two spectra have powers which differ only by the small
value of 1/6 for the direct and inverse cascade.
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3.2.2. A Conceptual Derivation of the Kolmogorov Solutions.There is a very simple
reason, grounded in self-similarity, behind the conformal mappings that lead to the
Kolmogorov solutions. In this section, we present a new argument that reveals this logic,
thus motivating Zakharov’s “conformal transformations” and providing a more intuitive
derivation of the stationary power law exponents. The idea is to exploit the self-similarity
we expect from the statistical steady states of the model (2.11). Within the inertial
range, we seek a scale invariant regime where the mechanisms of energy transfer should
look identical under magnification. In the weak-turbulent regime, the energy transfer
takes place through resonant quartets. Consider one such quartet,(ω1, ω2, ω3, ω4). In a
nonequilibrium statistical steady state, there will be some definite rate of energy transfer
between these four modes. Let as callω4 simplyω, and concentrate on the energy balance
for it. Out of its interaction with the other three resonant modes, there will arise an energy
input (or output, depending on the sign)e4. Similarly, the other three modes will have
balancese1, e2, ande3.

Since our dispersion law is homogeneous, the natural symmetry group inω-space is
stretching. If we multiply allω’s in our quartet by any constantλ, we obtain another
resonant quartet. Due to the self-similarity of the statistical steady state, the corresponding
energy inputs will beλxe1, . . . , λ

xe4, where the exponentx is a constant. In particular,
we may choose three values ofλ which make our originalω appear in positions 3, 2,
and 1 in the stretched versions of the original quartets. As an example, ifω is 7 and we
consider the resonant quartet(2, 3, 6, 7) (hereα = 1/2), the three other quartets can be
obtained multiplying by 7/6, 7/3, and 7/2; they are(7/3, 7/2, 7, 49/6), (14/3, 7, 14, 49/3),
and(7, 21/2, 21, 49/2), respectively.

The net energy input for modeω from the original quartet and its three stretched
versions is

eω = e4+
(
ω

ω3

)x

e3+
(
ω

ω2

)x

e2+
(
ω

ω1

)x

e1. (3.26)

This energy inputeω, we argue, has to vanish. The reason is again self-similarity. The
bottom line is the following structural assumption: In a self-similar regime, each mech-
anism of energy transfer has to balance independently. Here a “mechanism” is a type of
resonant quartet, a type defined as an element in the quotient space of quartets by the
action of stretching. In other words, energy that comes into a mode through a particular
quartet should not leave through quartets of a different type. This involves, of course, a
higher degree of self-similarity than previously assumed. Yet it seems hardly plausible
that, in a self-similar regime, one mechanism should be used for bringing energy into
modes, and a different one used to take it away.

Thuseω has to vanish. But the energy balances−e1,−e2, ande3 are proportional to
e4, with proportionality constants given by powers ofωi /ω, i = 1, 2, 3, as follows from
the power law ansatz; the actual powers will be computed below. Thus the condition
eω = 0 becomes

1−
(ω1

ω

)y
−
(ω2

ω

)y
+
(ω3

ω

)y
= 0, (3.27)

wherey is a new constant. Sinceω1+ω2 = ω3+ω, equation (3.27) holds only ify = 0
or y = 1. This same argument applies without modification to the number of particlesn.
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With this symmetry intuition, one is led to the conformal changes of variables as
follows: One inserts the Kolmogorov formn = ω−γ into T(n;ω) in equation (3.9).
With c chosen for simplicity as(α4/12π)1/3, this gives

T(nK ;ω) = −
∫
(ω1ω2ω3ω)

− β/2+α−1
α
−γ (ω1

γ + ω2
γ − ω3

γ − ωγ ) δ(ω1+ ω2− ω3− ω)

×
(
δ(ω1

1
α + ω2

1
α − ω3

1
α + ω 1

α )+ δ(ω1
1
α + ω2

1
α + ω3

1
α − ω 1

α )

+ δ(ω1
1
α − ω2

1
α − ω3

1
α − ω 1

α )

+ δ(−ω1
1
α + ω2

1
α − ω3

1
α − ω 1

α )
)

dω1 dω2 dω3. (3.28)

Notice that power law solutions correspond naturally to the stretching group. The integral
is the sum of four terms, corresponding to the four possible positions ofω in a resonant
quartet. We will map the last three of these terms into terms proportional to the first one,
by stretching and permuting theω’s. The effect of stretching all theω’s by a factorλ on
any term of (3.28) is to multiply that term by

λ−
2β+4α−4

α
−4γ+γ−1− 1

α
+3 = λ− 2β−3

α
−3γ−2.

The factorλ will be chosen asωi /ω, wherei takes the values 3, 1, and 2 in the second,
third, and fourth term, respectively. If, in addition, we permuteω by ωi , we bring in
an additional factorω/ωj . We have adopted the convention thatω1 + ω2 = ω3 + ω.
Therefore we may permuteω andω3, but to permuteω andω1 or ω2, we also need to
permuteω3 and the remainingωi . This latter permutation introduces a minus sign in
front of (3.28).

Therefore, doing the stretchings and permutations, and adding the four integrals to-
gether, we obtain the factor (3.27), where

y = 2β − 3

α
+ 3γ + 1.

The values ofγ corresponding toy = 1 and 0 are

γ = −2/3β + 1

α

and

γ = −2/3β + 1

α
− 1

3
.

Thus we obtain a rather intuitive derivation of the powers for the direct and inverse
cascades in (3.18).

4. Direct Numerical Simulation

Since we are in one spatial dimension, numerical simulation can assess in detail the
turbulence associated with the model (2.1). One can observe the development of iner-
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tial range cascades, check the particular exponents of the power laws, and study the
bifurcations that should take place when the parameters are such that the theoretical
fluxes switch sign. Simulating the model directly, one can also determine the validity
of the various hypotheses of weak turbulence from the three steps in Section 3.1, such
as Step #1 involving quasi-Gaussianity and equidistribution of phases. One of the main
advantages of the model equation (2.1) is that its one-dimensionality allows for efficient
numerical simulation. Thus, we are able to include enough modes to be confident both
that the inertial range is large enough and that box-size effects are not significant.

4.1. The Algorithm

We will work with the equation (2.1) in Fourier space, i.e., equation (2.4). Since we
are interested in weakly nonlinear regimes but over long times, we need to solve the
linear part with particular care. Moreover, we need an efficient way to handle the natural
stiffness of the problem, which is characterized by a broad set of linear frequencies and
a strong disparity between the linear and nonlinear temporal scales. We have addressed
both problems through a procedure similar to that developed in [HLS], which solves
the linear part of the equation analytically with an integrating factor, and concentrates
the computational efforts on the nonlinear part, thus eliminating the problem’s natural
stiffness altogether. Freed from the constraint of having to resolve numerically all the
linear modes, one can simulate inertial ranges of reasonable size.

The procedure is the following: We introduce the variable

v̂(k) = ei |k|α(t−tn)ψ̂(k),

in terms of which (2.4) reads

v̂t = −i
ei |k|α(t−tn)

|k|β/4
× F

[∣∣∣∣F−1

(
v̂e−i |k|α(t−tn)

|k|β/4

)∣∣∣∣2 F−1

(
v̂e−i |k|α(t−tn)

|k|β/4

)]
, (4.1)

whereF stands for the Fourier transform. We solve (4.1) with a fourth-order Runge-Kutta
scheme, obtaining anO((1t /T)4) global error, whereT is the nonlinear turnover time
in (2.12). Notice that the definition of̂v changes at every step in the time iteration, since
it does not involve the global timet but the localt − tn. Because of this dependence, one
avoids computing exponentials of big imaginary numbers. Moreover, the exponentials
needed can be computed and tabulated once and for all, since they are the same for all
time steps.

Although we have concentrated on (2.4), the equation we really want to model numer-
ically is (2.11), with forces and dissipation. Since the new terms are linear and diagonal
in Fourier space, we may consider including them in the definition ofÄ(k), thus leaving
the previous procedure unaltered. Yet we do not need much accuracy in the simulation of
the forces and dissipation; the statistical behavior of the solutions should be independent
of their precise nature. Therefore, we may choose, for flexibility, to include these effects
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in a separate step. Thus, after each step1t of the unforced model (2.4), we multiply the
ψ̂ ’s by the diagonal factor

e
[(∑

j
f j δ

j
k

)
−ν−|k|−d−ν+|k|d

]
1t
,

which forces and dissipates the solution at localized windows ink-space.
In Section 2, we have already presented a validation study for the numerical algorithm

devised in this fashion when the initial data consists of four resonant waves, which has
been used to illustrate the discussion of Section 2.1. The runs displayed in Figure 3 show
very good agreement between our general numerical procedure and the direct numerical
simulation of the asymptotic equations for resonant waves (2.8), for a time interval that
scales consistently with the range of validity of the asymptotic expansion (2.5).

4.2. Numerical Experiments

We focus on the direct cascade of energy from long waves to short waves. The inverse
cascade of particle number toward low waves is more difficult to observe numerically
due to the very long time that it takes for the particles created at a very low rate in the high
frequencies to fill the whole inertial range. Thus we focus here on the direct cascade, for
which the numerical experiments are more definitive, and postpone the numerical study
of the inverse cascade to later work ([MMT]). To study the direct cascade, we force at
the low wave numbers.

The Direct Cascade forα = 1/2. We adopted, for our numerical experiments, the value
of the parameterα equal to 1/2, which mimics in one dimension the dispersion relation
for surface waves. Initially, we chose the other parameterβ to be one, right at the center
of the range where, in the Kolmogorov solutions (3.24, 3.25), both the direct and the
inverse cascades have theoretical fluxes with the correct sign. The powerd chosen for
the dissipation terms isd = 8, a fourth power of the Laplacian and its inverse, in order
to get sharp transitions between the inertial and the dissipative ranges.

The first experiment has, by design, the smallest size compatible with a reasonable
hope for meaningful results. We consider an inertial range covering one decade of modes,
between|k| = 50 and|k| = 500. For these parameters (α = 1/2,β = 1), the value ofγ in
the theoretical Kolmogorov spectrum (3.14) isγ = 2/3. In the nondimensional scaling,
the condition for weak nonlinearity (2.14) is strongest at the lower end of the inertial
range; the corresponding bound forε is ε ¿ 5011/12. We have adopted, accordingly,
a conservativeε = 0.5. All modes between|k| = 8 and|k| = 12 were forced, with
f j ’s given by (2.15). For the dissipation scalesK− andK+ we chose the values 4 and
1000, well outside the inertial range; the corresponding dissipation parametersν− and
ν+ were computed from (2.16) and (2.17). For the size of the periodic box we adopted
2π , with 4096 modes in the computational grid, ranging fromk = −2047 tok = 2048.
In this way we minimize the risk of aliasing errors, since more than half of the grid lies
beyond the dissipation scale. The longest nonlinear turnover time is the one computed
from (2.12) at the upper end of the inertial range, with valueT = 4 ∗ 5004/3 ≈ 15,000;
this is the natural unit of time for the computation. We always integrate the equations
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Fig. 4. Log-log plot of the statistical steady state of the model equation
with α = 1/2,β = 1, and a box-size of 2π . A fit with a power law with
exponentαγ = 3/4 is shown, and contrasted with the exponents corre-
sponding to the direct and inverse cascade according to weak turbulence
theory, respectively,αγ = 1/3 andαγ = 1/6.

until a statistically steady configuration is reached, which typically occurs after about
five to ten turnover times.

As initial data, we chose a random realization of the spectrum predicted by the theory.
To this end, we picked, for each wave number, two random numbers, one for the phase
and one for the amplitude, with probability corresponding to a Gaussian distribution in
the complex plane with uniformly distributed phase. The theoretical spectrum is injected
into the data through the standard deviation of this Gaussian, which is given byεω−γ /2.

The results of this first experiment are plotted in Figure 4, which showsn(k) aver-
aged over a time window betweent = 20000 andt = 30000. These results are very
encouraging: They display all the features one would require from a toy model for tur-
bulent behavior of random waves: a small forcing range in the low wave numbers, a
long inertial range wheren scales as a power ofk, and a sharp transition to a dissipative
range with a much faster rate of decay. Moreover, the scales, both spatial and temporal,
are at least qualitatively in agreement with the ones planned, thus confirming the scaling
assumptions of Section 2.2. However, the experimental results yield the much steeper
spectrumn ∼ |k|−3/4, instead of the predicted|k|−1/3 for the direct cascade.

In Figure 5a, we see the evolution of the spectrum from the initial|k|−1/6 to the final
|k|−3/4, averaged over the time windows 0–100, 100–1000, 5000–10000, and 20000–
30000. The apparent spread of the data in the initial spectra is due to the relatively
small size of the first few time windows. To check that the last average corresponds to
a statistically steady state, we did a second run with initial datan ∼ |k|−3/2, which, as
shown in Figure 5b, converged to the same solution from below. This has the additional



A One-Dimensional Model for Dispersive Wave Turbulence 29

Fig. 5a. Evolution toward the steady state from above, i.e., starting with
a flatter spectrum. The initial state, in fact, is the steady state predicted
by weak turbulence theory.

implication that the computed statistically steady state has a broad basin of attraction
among families of initial spectra.

Is it possible thatn = |k|−3/4 or, equivalently,n = ω−3/2, is another zero of the
kernelT(nK , ω), one which has escaped the analysis in Section 3.2.1? To give a definite
answer to this question, we have computed the integral (3.16) numerically forα = 1/2
andβ = 1. The results of this integration are shown in Figure 6. We can see the four
zeros ofI (ω), corresponding toγ = 0,γ = 1/3,γ = 2/3, andγ = 1. Moreover, we see
thatthese are the only zeros of T(n, ω) whenn takes the form of a power law. (As far as
we know, this is the first argument showing that these are the only zeros.) In particular,
γ = 3/2 is far from being a zero ofT , so the statistically steady solution we have reached
is not another solution of the kinetic equations of weak turbulence theory.

Analysis of the Failure of Weak Turbulence Theory. Why are we not getting the
answer predicted by weak turbulence theory? Did any of its explicit assumptions not
hold? Figure 7 shows the correlation of four wave numbers with all other wave num-
bers, showing that, as assumed by the theory, only nearby frequencies are correlated.
Figure 8 demonstrates quasi-Gaussianity, by plotting the fourth and sixth moments of
the amplitude of each wave, for each wave number, as a function of the second moment.
These curves fit nearly exactly the curves corresponding to a Gaussian distribution in
the complex plane. This verifies that the quasi-Gaussian random phase approximation
from Step #1 in 3.1 is valid in our numerical solution.

We have also checked another basic assumption of all inertial-range theories: spectral
independence from the nature of the forces. To this end, we have replaced the determin-
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Fig. 5b. Evolution from below, i.e., starting with a steeper spectrum,
converging to the same statistically steady distribution as the previous
experiments.

istic forces of (2.11) by white noise in the forcing range; the results, not displayed here,
are identical to the ones with the standard form of the forcing terms.

Was the box size not big enough? Figure 9 displays the results of a run with a box
four times as large, with the same parameters of the first run, but with four times the
number of modes, at intervals1k = 1/4. The results are virtually indistinguishable
from the previous ones. This is good news: On the theoretical side, it tells us that the
spectrum does not depend on the size of the box, so a theory developed for the infinite
line will be applicable to real scenarios, which always involve finite domains. From the
computational viewpoint, this independence allows us to do runs with larger inertial
ranges with relatively little computational effort, since we may keep the box size small.

This leads us to the next natural question: Was the inertial range not large enough?
Figure 10 shows the results of a run with an inertial range about four times larger, and
a box size of 4π . Figure 11, on the other hand, corresponds to an even larger inertial
range, spanning more than two decades, with a box size equal to 2π . Both runs have
16384 modes, with respective spacings1k = 1/2 and1k = 1. Since the turnover time
at the dissipative end of the spectrum is now much smaller than before, the runs take
much longer to converge to the final statistically steady state. We checked convergence
as before, by approaching the final state both from above and from below. This final
state, as we see, is insensitive to the width of the inertial range, at least for the range of
widths of our numerical experiments.

Thus the situation at the end of this first set of direct cascade experiments is the
following: The model displays a direct cascade of energy from the long to the short
waves, through a spectrum which, within the inertial range, fits a power law in frequency
space. This spectrum is independent of the box size and the width of the inertial range,
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Fig. 6. Numerical search for the zeros of the right-hand side of the
kinetic equation, whenα = 1/2 andβ = 1. The only four zeros of
the integral are those found analytically through conformal mapping;
in particular,γ = 3/2 of the numerical steady state is not a zero of the
kinetic equation.

Fig. 7. Correlation of wave numbers. Each wave number is essentially
correlated only to itself.
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Fig. 8. Fourth- and sixth-order moments of the statistical steady state,
as functions of the second-order moments. The straight lines correspond
to fits with a Gaussian closure.

Fig. 9. Statistical steady state with a larger box, i.e., box= 8π .
The inertial range scaling is not affected by the larger box-size.
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Fig. 10. Statistical steady state with box= 4π and a larger inertial
range, the spectrum is still the same as before.

Fig. 11. Statistical steady state with box= 2π , and an even larger
inertial range. We conclude that the spectrum is insensitive to the box
size and the length of the inertial range.
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Fig. 12a. Imaginary part of the fourth-order correlation

Im〈ψ̂441ψ̂81
¯̂
ψ(−36)

¯̂
ψk〉 as a function ofk. This correlation is con-

centrated atk = ±576, since the correspondingω = 24 satisfies
ω1 + ω2 − ω3 − ω = 0. Nevertheless, the distribution does not ap-
proximate aδ-function; in fact, the area below it, close to zero, does
not even have a clear sign.

at least for the parameters tried. The exponent in the power law, however, disagrees
significantly with the one predicted by the weak turbulence theory:γ = 3/2 instead of
2/3, giving rise to a much steeper spectrum. However, the main explicit assumptions of
the theory are satisfied, i.e., quasi-Gaussianity and independence between modes.

How can we find a way out of this puzzle? Since the numerical experiments satisfy
all the explicit assumptions of weak turbulence theory, yet they yield very different
results from that theory, there must be other assumptions which are not met. In order
to find them, we carefully review the derivation of the kinetic equations, presented in
Section 3.1.

The steps leading to (3.6) are the most delicate: First one proposes a closure that
reduces sixth-order moments to the product of second-order moments, then in Step #2
one does a multiple-scale analysis and finally adds dissipation to the system, in such a
way that 1/ω becomes 1/(ω− i ε), thus giving rise to aδ-function. But is it really allowed
to add dissipation within the inertial range? By definition, there is neither dissipation nor
forcing in this range, only energy transfer. Hence this formal argument, which transforms
a 1/ω distribution into aδ-function, may prove invalid.

To check the validity of this formal argument, we have plotted in Figure 12a

Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉 as a function ofk, for k1 = 441, k2 = 81, andk3 = −36, with

correspondingω’s 21, 9, and 6. This arbitrary triad was chosen as a prototype for all
triads within the inertial range. In standard fashion, the ensemble average was replaced
by a time average betweent = 20000 andt = 30000; the results shown correspond to
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Fig. 12b. Same distribution as in Figure 12a, in absolute value and in
terms of|ω−24|, in a log-log plot, with an envelope well approximated
by a constant times 1/|ω − 24|.

the first numerical experiment described above. We see that the distribution is concen-
trated atk = ±576= ±242, as expected, since 21+ 9 = 6+ 24. However, it does not
look like a delta function; its area does not even have a clear sign! It looks more like the
function 1/(ω− 24) times a random number. To check this, we show, in Figure 12b, the
same plot in logarithmic scale and in terms of|ω − 24|. The solid line in the plot has
slope−1, corresponding to a 1/|ω−24| distribution. Thus, we claim that the predictions
of weak turbulence theory fail because the hypothesis in Step #2 from Section 3.1 is not
satisfied.

These results have a clear interpretation: If we neglect the nonlinear terms in (3.5),
we can integrate the equation exactly, which yields

ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk = ce1t , (4.2)

where1 stands forω1 + ω2 − ω3 − ω4. Integrating betweent = T0 and t = T and
dividing by T − T0 yields

Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉 = c

T − T0

sin1T − sin1T0

1
≡ C

1
, (4.3)

which, forT large, may be interpreted as a random number times 1/1. Indeed, we have
plotted in Figure 13 the right-hand side of (4.3) as a function of1, with T0 andT equal
to 20000 and 30000, respectively, as in Figure 12b, and the constantc chosen to yield
a scale comparable to the one in that figure. The resemblance to Figure 12b is striking,
leaving little doubt that one is looking at two instances of the same phenomenon.

From post-processing of the numerical solution, we conclude that the nonlinear effect
is to randomly modify the linear frequencies so that the distribution of the fourth-order
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Fig. 12c. Same as figure 12b, with a box four times larger. The box size
does not seem to affect the character of this fourth-order correlation
function.

Fig. 13. A plot intended to mimic Figure 12b, with the exact formula
for the fourth order correlation (i.e., average over a large time window)
for the model equation without the nonlinear term. The modes with
|ω − 24| < 0.1 have been cut off, since for them the nonlinearity has
the effect of flattening the linear distribution.
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Fig. 14a. Statistical steady state withβ = 3/4. The exponent of the
power law has been least-square fitted to 0.9.

correlation as a function of1 is flat for values smaller than a nonlinear threshold. A flat
part of the distribution for|ω−24| < 0.1 can be observed in Figure 12b, and even more
clearly in Figure 12c, corresponding to the run with largest box-size, 8π . The agreement
between the two runs, on the other hand, shows that the fourth-order correlation is box-
size independent. Similar experiments, not displayed, show equally strong independence
on the size of the inertial range.

Absence of Spectral Bifurcations Varyingβ. Although we have concentrated here for
conciseness on a fixed value of the parametersα andβ, i.e.,α = 1/2 andβ = 1, we have
experimented with other values and found entirely similar results. In particular, we found
no trace of the bifurcation behavior that should be observed if the predictions of weak
turbulence theory from (3.23), (3.24), and (3.25) are valid regarding the nonphysical
direction of the fluxes. By way of illustration, we show in Figures 14a, 14b, 14c, and 14d
the results withα = 1/2 andβ = 3/4, 1/2, 1/4 and 0 (recall that the predicted bifurcation
value forα = 1/2 isβ = 3/4). We see the exponent of the inertial range spectra changing
smoothly withβ, from αγ = 3/4 for β = 1 to about 5/4 forβ = 0. These values,
computed through least-square fitting over the inertial range, are never close to the ones
predicted by weak turbulence theory and do not display any kind of bifurcation behavior.
Notice that, since the nonlinear turnover time decreases withβ, the statistically steady
configurations are reached much earlier in these cases than in the case withβ = 1.
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Fig. 14b. Statistical steady state withβ = 1/2, and a power law scaling
with exponent least-square fitted to 1.02.

Fig. 14c. Statistical steady state withβ = 1/4; the corresponding ex-
ponent is 1.11.

5. A New Inertial Range Scaling Theory

In this section, we sketch a new theory for inertial range scaling, which relies heavily on
the use of refined self-similarity, as we introduced it in Section 3.2.2. The predictions of
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Fig. 14d. Case withβ = 0; the exponent of the power law isαγ =
1.253.

this new theory agree surprisingly well with the numerical results presented in Section 4.
In fact, the theory yields essentially theexact exponentfor the power laws forall values
of the parameterβ observed in Section 4.

The new theory starts at the level of the exact equation (3.4) for the evolution of the
two-point functionn(k):

nt =
∫

2 Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψk〉

|k1| β4 |k2| β4 |k3| β4 |k| β4
δ(k1+ k2− k3− k) dk1dk2dk3. (5.1)

At this level already, we close (5.1) with the following approximation:

2 Im〈ψ̂1ψ̂2
¯̂
ψ3
¯̂
ψ4〉 ∼ Ĉ

(n1n2n3n4)
1/2

ω1+ ω2− ω3− ω4
, (5.2)

which follows from (4.3), provided we assume thatC in (4.3) takes the dimensionally
correct formC = Ĉ (n1n2n3n4)

1/2, with Ĉ a constant. Next we propose for then’s in
(5.2) a suitable power law

n(k) = |k|−αγ , (5.3)

and replace (5.2) in the right-hand side of (5.1):

n(k)t = Ĉ
∫
(|k|1|k|2|k|3|k|)−

2αγ+β
4

(ω1+ ω2− ω3− ω) δ(k1+ k2− k3− k) dk1dk2dk3. (5.4)

Now we apply the argument of Section 3.2.2 to (5.4). Given any quartet(k1, k2, k3, k)
which, for the sake of this argument, does not even need to be resonant, consider three
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Table 1. Comparison of the Numerical Results with the Predictions of
Both Theories

β αγ from the αγ from weak αγ from
numerical experiments turbulence theory the new theory

1 0.75 1/3 = 0.333 3/4 = 0.75
3/4 0.9 1/2 = 0.5 7/8 = 0.875
1/2 1.02 2/3 = 0.667 1
1/4 1.11 5/6 = 0.833 9/8 = 1.125
0 1.253 1 5/4 = 1.25

stretchedversions of it, wherek occupies the other three positions. Our assumption, based
upon refined self-similarity, is that the contribution ton(k)t from these four quartets has
to add up to zero. Stretching thek’s in the right-hand side of (5.4) by a factor|kj |/|k| and
permutingk andkj brings out a factor( |kj |

|k|
)y

.

The exponenty is given by

y = −2αγ − β − α − 1+ 3+ 1, (5.5)

where the first five terms follow straightforwardly from stretching, and the last one from
the permutation, which affects the element of volume ink-space. This permutation also
brings in a minus sign whenω is permuted withω1 or ω2, so finally we obtain an
expression of the form

0 = n(k)t

=
∫

F(k123, k)
(|k1|y + |k2|y − |k3|y − |k|y

)
δ(k1+ k2− k3− k) dk1dk2dk3, (5.6)

with solutionsy = 0 andy = 1. The corresponding powersαγ are

αγ = 3

2
− α + β

2
for y = 0, (5.7)

and

αγ = 1− α + β
2

for y = 1. (5.8)

The exponent in (5.7), corresponding toy = 0, agrees essentially exactly with the
one observed experimentally in Section 4 forα = 1/2 andβ = 1, 3/4, 1/2, 1/4, and 0
(see Figures 8, 14a, 14b, 14c, and 14d). Table 1 compares the least square fits of the
exponents over the inertial range for these five cases with the theoretical prediction from
the new theory (5.7) and the one from weak turbulence theory from (3.25). Figure 15
shows these exponents for both theories as functions ofβ for α = 1/2, with the points
corresponding to the numerical experiments signaled by stars. The predictions of both
theories are distinctively different; the new theory of this section fits all the experimental
evidence, while weak turbulence fails dramatically. We suspect that the exponent in (5.8)
with y = 1 will be significant for the inverse cascade.



A One-Dimensional Model for Dispersive Wave Turbulence 41

Fig. 15. Plot of the exponentαγ of the power law steady state as
a function ofβ, for the predictions for the direct cascade of weak
turbulence theory and the new closure. The stars correspond to the
experiments of Figures 8, 14a, 14b, 14c, and 14d. There is a remark-
able agreement between the numerical results and the predictions of
the new theory, with errors in the exponent always below three percent.

6. Conclusions

A family of one-dimensional nonlinear dispersive wave equations has been introduced
and studied as a model for assessing the validity of weak turbulence theory for random
waves in an unambiguous and transparent fashion. The explicit predictions of weak
turbulence theory have been developed and compared with the inertial range scaling
laws that emerge from statistical steady states with large scale forcing and dissipation.
Despite the fact that the quasi-Gaussian random phase approximation is an excellent
approximation for the numerical statistical steady state, the predictions of weak turbu-
lence theory fail dramatically. One source of failure of the hypothesis of weak turbulence
theory has been identified explicitly—the tacit assumption of weak turbulence theory
involving Diracδ-concentration along the resonant set fails dramatically (see Step #2 in
Sections 3.1 and 4.2).

A different closure theory has been briefly developed here. This closure has an inertial
range scaling theory which successfully predicts the correct power law exponents in all
of the numerical experiments reported here. The ramifications of this closure theory and
refined self-similarity hypothesis for other systems with dispersive wave turbulence will
be reported elsewhere in the near future ([MMT]).

The present paper has focused on numerical experiments for direct cascades; another
interesting research direction currently being pursued by the authors is the comparison
of the predictions of weak turbulence and the new theory from Section 5 with numerical
results in the regime with inverse cascades.
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Appendix: Zakharov’s Original Argument

For convenience, we summarize Zakharov’s original derivation of the Kolmogorov so-
lutions, as it applies to our model problem. We will start with (3.28), which already
includes the Kolmogorov ansatz (3.14). Once we have performed the integration over
ω3, the domain of integration in theω1, ω2 plane is the convex region

ω1 > 0, ω2 > 0, ω1+ ω2 > ω,

which we subdivide into the four domains

11 =
 0< ω1 < ω,

0< ω2 < ω,

ω1+ ω2 > ω,

12 =
{

0< ω1 < ω,

ω2 > ω,
13 =

{ω1 > ω,

0< ω2 < ω,
14 =

{ω1 > ω,

ω2 > ω.

The last three can be transformed into11 with the conformal mappings

C2 =


ω1 = ω(ω′1+ω′2−ω)

ω′2
,

ω2 = ω2

ω′2
,(

ω3 = ωω′1
ω′2

)
,

C3 =


ω1 = ω2

ω′1
,

ω2 = ω(ω′1+ω′2−ω)
ω′1

,(
ω3 = ωω′2

ω′1

)
,

C4 =


ω1 = ωω′1

ω′1+ω′2−ω
,

ω2 = ωω′2
ω′1+ω′2−ω

,(
ω3 = ω2

ω′3

)
.

The Jacobians of the transformations(ω1, ω2, ω3) → (ω′1, ω
′
2, ω

′
3) (with ω′3 = ω′1 +

ω′2− ω) are

J2 = −
(
ω

ω′2

)4

, J3 = −
(
ω

ω′1

)4

, J4 =
(
ω

ω′3

)4

.

The productω1ω2ω3ω becomes, under these transformations,

ω1ω2ω3ω =


ω′1ω

′
2ω
′
3ω
(
ω
ω′2

)4
,

ω′1ω
′
2ω
′
3ω
(
ω
ω′1

)4
,

ω′1ω
′
2ω
′
3ω
(
ω
ω′3

)4
.

Then we can transform (3.28) into

T(nK ;ω) =
∫
11

(ω1ω2ω3ω)
− β/2−1

α
−1−γ

× (ω1
γ + ω2

γ − ω3
γ − ωγ ) δ(ω1+ ω2− ω3− ω)

×
(
δ(ω1

1
α + ω2

1
α − ω3

1
α + ω 1

α )+ δ(ω1
1
α + ω2

1
α + ω3

1
α − ω 1

α )

+ δ(ω1
1
α − ω2

1
α − ω3

1
α − ω 1

α )

+ δ(−ω1
1
α + ω2

1
α − ω3

1
α − ω 1

α )
)

×
(
1−

(ω1

ω

)y
−
(ω2

ω

)y
+
(ω3

ω

)y)
dω1 dω2 dω3 = 0,
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where

y = 4

(
β/2− 1

α
+ 1+ γ

)
− γ + 1+ 1

α
− 4= 3γ + 1+ 2β − 3

α
.

The Kolmogorov solutions for the exponentγ could be obtained at this point in the
argument; however, it is convenient to simplify further: We can perform the change of
variablesωj → ωξj to get

T(nK ;ω) = −ω−y−1
∫
1

(ξ1ξ2ξ3)
− β/2−1

α
−1−γ

× (1− ξ1
γ − ξ2

γ + ξ3
γ ) δ (1− ξ1− ξ2+ ξ3)

×
(
δ(ξ1

1
α + ξ2

1
α − ξ3

1
α + 1)+ δ(ξ1

1
α + ξ2

1
α + ξ3

1
α − 1)

+ δ(ξ1
1
α − ξ2

1
α − ξ3

1
α − 1)+ δ(−ξ1

1
α + ξ2

1
α − ξ3

1
α − 1)

)
× (

1− ξ y
1 − ξ y

2 + ξ y
3

)
dξ1 dξ2 dξ3 = ω−y−1I ,

where1 is the domain

1 =
 0< ξ1 < 1,

0< ξ2 < 1,
ξ1+ ξ2 > 1.

Now we writeT(nk;ω) in as the sum of four integrals. Only for the second of these
do the delta functions have support inside1. This is due to the fact that each of the
resonances has support in one of the domains1j . After the conformal transformations,
therefore, only the one with support in11 remains. Then the equation forT simplifies
into

T(nK ;ω) = ω−y−1I (α, β, γ ),

which is equation (3.15) in Section 3, withI (α, β, γ ) defined by (3.16).
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