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Abstract

Decision-making related to health is complex. Machine learning (ML) and

patient generated data can identify patterns and insights at the individual level,

where human cognition falls short, but not all ML-generated information is of

equal utility for making health-related decisions. We develop and apply at-

tributable components analysis (ACA), a method inspired by optimal transport

theory, to type 2 diabetes self-monitoring data to identify patterns of associ-

ation between nutrition and blood glucose control. In comparison with linear

regression, we found that ACA offers a number of characteristics that make it

promising for use in decision support applications. For example, ACA was able

to identify non-linear relationships, was more robust to outliers, and offered

broader and more expressive uncertainty estimates. In addition, our results

highlight a tradeoff between model accuracy and interpretability, and we dis-

cuss implications for ML-driven decision support systems.
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Graphical Abstract

1. Introduction

In complex domains like health, it can be difficult to anticipate the conse-

quences of daily choices on short- and long-term health status. Collecting and

analyzing data about behaviors and indicators of health can elucidate patterns

of association between a behavior and a range of outcomes. Thanks to wearable

sensors and mobile health applications, patient-generated health data can be

collected more easily than ever, but questions remain about how to incorporate

these data into health decisions [1, 2, 3].

One area where patient-generated data holds promise to inform decision-

making is type 2 diabetes self-management. In type 2 diabetes, a key goal of

self-management is keeping blood glucose (BG) within target ranges. Daily be-

haviors like diet have a direct relationship with BG levels. Importantly, different

individuals have different glycemic responses to different foods [4], emphasizing

a need for personalization [5]. Estimating the impact of a meal on BG is dif-

ficult, even for experts [6]. Machine learning (ML) may be better suited to

identify consistent patterns than human reasoning [7].

Using patient-generated data for personalized analysis in the context of nu-

trition and BG, however, poses challenges. BG measurements and meals need

to be actively tracked by users, which requires effort. Fingers need to be pricked

to record BG, and meal details need to be entered. Because of the burden of

entry, these data points are incomplete and non-randomly missing [8]. With
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nutrition logging in particular, there is a tradeoff between the time and effort of

logging and the detail and accuracy of the nutrition information logged [9, 10].

Gold standard nutrition evaluations require analysis in a specialized lab, which

is unavailable for patient-generated meal logs. In addition, glucometers can be

miscalibrated, and users can mistype entries leading to both systematic bias and

random errors. Glucose dynamics themselves are non-linear, oscillatory, noisy,

and depend on individual characteristics [11, 7]. Similar to the data quality con-

cerns of electronic health records, the incompleteness, inaccuracy, complexity,

and bias of patient-generated data create challenges for accurately represent-

ing a patient’s state [12, 13]. Still, prior work has demonstrated that accurate

inference can be possible with similar data sets [7, 14]

In addition to the challenges of the data, though, designing analysis for deci-

sion support tools brings its own substantial challenges. Algorithms need to be

able to run as a part of an automated system, identifying complex relationships

while being robust to outliers. In addition, it’s important for the output to

be interpretable. By interpretable, we mean that the relationships identified in

the output of the model can be translated into useful and actionable support

for decision-making. Notably, this definition diverges from “interpretable” as

similar to “explainable” ML, which seeks to disentangle predictions from deep

learning and other black box models [15, 16]. Interpretability is important be-

cause even the most accurate ML machinery is not useful if it cannot affect

decision-making or be transformed into an understandable action. Quantifying

uncertainty is an important part of interpretability, so that model output can

be weighed appropriately in the decision-making process [17, 18].

There is a need for methods that address these challenges. Optimal transport

is a theory that offers tools to estimate and compare probability distributions

[19, 20]. In its original formulation, optimal transport sought to optimize the

transportation of goods and resources, but has since been applied to many prob-

lems like computer vision and machine learning [19]. Optimal transport is par-

ticularly useful for data where values are highly individualized, as in medicine

[21]. Blood pressure, for instance, may be related to many factors like age,
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exercise, diet, sex, prescribed drugs, and the device used to take the measure-

ment. Here we adapt a optimal transport-based method invented by Tabak and

Trigila [22] termed attributable components analysis (ACA). This method was

created to explain variability in a quantity of interest based on a set of related or

potentially confounding covariates, or “attributable components”. Each compo-

nent represents a contribution to the observed variability while simultaneously

filtering out irrelevant effects to focus on a particular relationship.

Here, we apply an adapted version of the ACA method to type 2 diabetes

self-monitoring data, using ACA to estimate the mean glycemic impact of a

meal—the difference between pre-meal and post-meal measurements—based on

the meal’s macronutrient composition. By estimating how each attributable

component, in this case each macronutrient, contributes to the variability in BG

after a meal, ACA can identify patterns of association between each macronu-

trient and expected BG impact. To better understand and convey how ACA

performs for this task, we compare its output to linear regression. We then dis-

cuss how these estimates can be used as input to decision support systems, for

example finding personalized ranges of macronutrient values where BG impact

is expected to be higher or lower, to inform clinical care or create personalized

nutrition plans.

2. Materials and Methods

2.1. Data Set

The data used in this research originates from prior user studies of a smart-

phone application for diabetes self-monitoring. In the application, participants

logged meals and blood glucose (BG) readings. To log a meal, users captured

a photograph of the meal, assigned a category of the meal (breakfast, lunch,

dinner, or a snack) and entered a free-text description of the meal contents.

Users entered pre-meal BG readings when logging the meal. Two hours after

each meal, users received a notification to record and enter their post-meal BG

reading. Later, each meal was evaluated by a registered dietitian (RD) who

performed a nutrient assessment of the meal using a standard protocol and the
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Figure 1: Kernel density estimate of the number of users with n-many meals in the data set.
The mass of the distribution sits near the median of 67 meals loggged, with a long tail of users
logging considerably more meals.

USDA food composition database [23, 24]. The RD recorded the carbohydrates,

fat, protein, and fiber, in grams, as well as the total calories of the meal.

Data came from 40 users who used the smartphone application for 4 to

12 weeks in a separate IRB approved study. Each participant consented for

their data to be re-used in future research. In this analysis, we included all

participants with 30 or more total meals logged, and considered only the meals

with both pre- and post- meal BG readings, for a total of 16 users.

2.2. Descriptive Statistics

The 16 users with type 2 diabetes collected a median of 67 meals over 4 to

12 weeks. As seen in Figure 1, most users logged close to the median number of

meals, with a few users logging considerably more. As shown in Figure 2, users

varied substantially in their BG levels before and after meals.

Two users, “A” and “B”, were chosen for a detailed inspection of model

performance because they were representative of the overall data set, but differed

from each other in BG control and macronutrient consumption patterns. Users

A and B logged a total of 58 and 88 meals over 4 and 12 weeks, respectively.

See Table 1 for a detailed breakdown by meal type. As seen in Figure 3 user A

had less variability in BG impacts compared to B. Figure 4 shows kernel density

estimates of the macronutrient features for both users. Shown side by side, these

densities show variability between and within each user. For example, user A

5



Figure 2: Violin plots showing the distribution of blood glucose readings across all users.
Users varied considerably in their blood glucose levels before and after meals.

ate 25 grams of carbohydrates at lunch most of the time, while user B had much

more variability in their lunchtime carbohydrate intake. An important artifact

and limitation is that nutrition evaluations only accommodated up to 100 grams

of each macronutrient to be entered, yet user B regularly ate 100 grams or more

of carbohydrates at dinner.

Table 1: Count of meals of each meal type for users A and B.

User ID Meal Type Count
A Breakfast 13

Lunch 10
Dinner 23
Other 12
Overall 58

B Breakfast 16
Lunch 19
Dinner 44
Other 9
Overall 88
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Figure 3: A histogram of BG impacts for users A and B. User A had less variability in BG
impacts compared to user B.

Figure 4: Kernel density estimate plots of macronutrient consumption for users A and B.
There is variability in macro consumption between and within each user. Note that nutrition
evaluations only allowed up to 100 grams of each macronutrient, and user B regularly ate 100
grams or more of carbohydrates at dinner.
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2.3. Feature Selection

We experimented with different representations of features to predict BG

impact. We began with the three main macronutrients—carbohydrates, fat, and

protein—represented as their weight in grams, or their proportion of each meal’s

calories. ACA performed slightly better when representing macronutrients as

proportions than as grams, but we opted to use grams because we thought this

would be more useful for decision support. In an effort to make decisions more

straightforward, nutrition education in diabetes emphasizes the importance of

macronutrients, and usually focuses on amounts of foods with units like grams,

not their contribution to calories [25]. While some materials like the USDA’s

MyFoodPlate are based on the proportion of the plate filled with different foods,

the proportion of calories is very different than the volume a food takes up on

a plate. (Consider 1 stick of butter vs. 4 cups of raw spinach.) And finally,

representing macronutrients as proportions means that the values sum to one,

which introduces strong multicollinearity that creates challenges for inference

with linear regression.

In addition, we also included fiber and pre-meal BG as features. We included

fiber because increasing fiber is a common recommendation for individuals with

diabetes [26]. We included pre-meal BG because of its relationship with post-

meal BG. Glucose dynamics at their simplest consist of a glycemic response

to nutrition. Because of this, to infer glycemic response to nutrition—to solve

the equations uniquely—we need the initial state (pre-meal glucose), the kick

(nutrition consumption), and the response (post-meal glucose).

A particular challenge of type 2 diabetes self-monitoring data is representing

the impact of a particular meal on BG, or the glycemic impact. An optimal

sampling rate for BG is on the order of minutes, not hours [27, 28]. A single

reading two hours after the meal is the clinical standard for postprandial mea-

surement [29] but is not well suited to capture the fluctuations in BG after a

meal. Even with appropriately sampled continuous glucose monitoring (CGM)

data, it’s not clear which features are most important to diabetes-related com-

plications; the highest peak in blood glucose, the integral of the glycemic curve
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from the mean to some time after the meal, the average value over time, or the

speed of oscillations following a meal are different ways of representing BG im-

pact, with different potential physiologic implications. While more frequent or

continuous measurement would be preferred from a data standpoint, checking

BG 6-10 times per day is recommended for those on insulin therapy, and there

is no recommendation for those not on insulin [5]. Here, we follow the standard

practice for postprandial BG measurement, and take the difference of post-meal

BG minus pre-meal BG to represent the glycemic impact of a meal.

2.4. Attributable Components

Attributable component analysis [ACA; 22] is a methodology for explaining

the potentially nonlinear variability in a quantity of interest, x, in terms of co-

variates z = (z1, . . . , zL). The method is highly motivated by theory and ideas

from optimal transport [20, 30]. In our application, x represents the glycemic

impact, and z for the macronutrient content of a meal. The covariates can be

categorical (such as “meal”, with values in [“breakfast”, “lunch”, “dinner”]),

real (such as “total amount of carbohydrates”) or, in fact, of nearly any type.

The output of attributable component analysis is x̄(z), the conditional expec-

tation of x with respect to covariates z; this conditional mean is provided as

a sum of components, which can be thought of as modes of variability. Each

component is represented by the product of one-dimensional functions of each

covariate zl.

A more detailed explanation of ACA is provided in Appendix A, but a

summary is provided here.

Given a set of m observations of the variable of interest x and L covariates,{
{z(i)l }Ll=1, x

(i)
}m
i=1

, the ACA algorithm seeks to estimate the conditional mean

x̄(z) with the following equation:

x̄(z1, . . . , zL) =

d∑
k=1

∏
l∈L

∑
j

α(l)j(zl)V (l)kj , (1)

each k is a component of the variability in x, the V ’s are essentially basis

functions that represent the variability, and can be represented by many classes
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of functions, e.g., as the sum of the product of sinusoidal functions in the case

of Fourier decomposition (cf. Appendix [ACA; 22]), and α(l)ji = 1 when zil = j

and α(l)ji = 0 otherwise.

The complete estimate of x̄ based on all L features is useful, but being a

probability distribution, is difficult to translate into useful recommendations

because of the complexity dimensionality. To address this problem, we instead

use the marginal dependence that translates x̄ from an L−dimensional function

into a one dimensional function.

2.4.1. Interpretability through marginalization

We make the ACA output more interpretable for decision-making by “marginal-

izing” the ACA output function. To understand what this means, why this is

necessary, and how this works, begin with the ACA estimated conditional mean

that adopts the form in Equation 1 where the V (l)kj are found by the algorithm,

and the α(l)j(zl) are known via interpolation on grids or prototypal analysis.

Even though this estimation allows us to make predictions for new values of

z, its complexity makes it difficult to interpret. For example, if we limit the

covariates to only binary forms, e.g., increases or decreases, then there are 2L

combinations of actions a person must interpret and choose among; this is too

complex. Because the point of this intervention is to help people understand

glycemic impacts of nutrition to make balanced choices that are sustainable be-

haviorally, we must translate ACA output into a simpler form, one where the

impact of a single covariate is considered at a time, leading to only L different

options. We can do this by asking simpler questions, such as: averaging over

all other covariates, how does x depend on a specific zl or small set thereof.

Such questions ask us to marginalize the full estimated conditional mean and

the separated form of the estimation makes it straightforward to perform this

task. In order to find the marginal dependence of x on a group of covariates H

denoted by {zht}st=1, with ht ∈ H and s = |H|, one has

x̄(zh1
, . . . , zhs

) =
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d∑
k=1

 1

m

m∑
i=1

∏
h6∈H

∑
j

α(h)jiV (h)kj

 ∏
h∈H

∑
j

α(h)j(zh)V (h)kj . (2)

In this case, x̄(zh1 , . . . , zhs) represents a function that captures the impact

of a particular subset of features on x. For a single covariate of interest h, x̄(zh)

is a one-dimensional function that captures the impact that one covariate, for

example fat, has on glycemic impact. In Figs. 5, 6, and 7 where we compare

the ACA to linear regression, the one-dimensional ACA output shown is x̄(zh)

as opposed to the full ACA model x̄(z1, . . . , zL).

2.5. Other regression methods and ACA

There are other methods that can be used for similar tasks. ACA is a non-

parametric density estimation method, and its task of explaining variability

based on a set of covariates is similar to regression with clustering or principal

components analysis (PCA). Importantly, ACA’s output is more interpretable

than these alternatives. If the goal is to identify patterns between an indi-

vidual’s nutrition and their glycemic control or to make recommendations to

change diet, then it’s important that the output can be translated for human

understanding. With ACA, each attributable component is a covariate, mean-

ing the relationships identified are in the same dimensions as the input data.

PCA finds the uncorrelated components that explain the most variability in

the dependent variable [31], but what exactly each component means could be

difficult to explain in a clinical situation. Similarly, clusters can be difficult to

convey to clinicians without extensive training, and require interpretation [32].

It’s important that the model output aligns with cognitive models [33]; a com-

plex, black box method with strong performance metrics is only useful if it can

be translated into something clinically meaningful.

As ACA is operationalized here, its output is also similar to other regression

methods like least-squares or support vector machine (SVM) regression. How-

ever, it’s notable that the method by which ACA estimates this regression is by

approximating a joint distribution and marginalizing over the features, which is

different than how other methods fit the data.
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In choosing a comparison method, we aim to identify and highlight qualita-

tive and quantitative differences between ACA and another regression approach.

We do not aim to argue for the hypothesis that ACA is the best method for this

data and task, and an intrinsic evaluation of ACA has been reported elsewhere

and is outside the scope of this work. As a baseline, therefore, we compare ACA

against multiple linear regression [34]. While there are many potential choices

for a regression comparator, including various non-linear variants, linear regres-

sion is a highly used model and is a reasonable choice for our data because its

limited complexity means it has the potential to perform well on small, n-of-1

data sets in our experiments.

2.6. Comparator: Linear Regression

As a comparison method, we fit the data with multiple linear regression

x̄(z1, ..., zL) = β0 + β1z1 + β2z2 + ...+ βLzL (3)

where x is the quantity of interest and z1, ..., zL are covariates and β0 is the

intercept term. More compactly

x̄(z1, ..., zL) = β0 +

L∑
l=1

βlzl (4)

We then find the best fit using the ordinary least squares method [34].

As with ACA, to improve the interpretability of the output, we fit the model

with all covariates, z, but marginalize to consider a specific zl (or small subset)

by averaging over the other covariates. To compute the marginal dependence

of x on a group of covariates H denoted by {zht
}st=1, with ht ∈ H and s = |H|,

one has

x̄(zh1
, . . . , zhs

) = β0 +
∑
h6∈H

βh

[
1

m

m∑
i=1

z
(i)
h

]
+
∑
h∈H

βhzh (5)

2.7. Translating Inference-Based Analysis – ACA and Linear Regression – to
Decision Support

The outcome of the marginalization calculation in Eq. 2 and the linear re-

gression in Eq. 5 is a one-dimensional graph, e.g., Figure 5, where the macronu-
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trient is given on the x-axis as the independent variable or covariate and the

y-axis is the glycemic impact. This plot is not, alone, useful for making decisions

for most patients, clinicians, or machines.

The aim is to support patients in making decisions about how to modify

their diet to improve their BG levels, for example increasing or decreasing the

amount of a macronutrient like protein in their diet. To be useful to these ends,

the raw information output by ACA needs to be translated and interpreted

with contextual information and clinical knowledge. For example, this clinical

knowledge might include an understanding of what constitutes a “good” or

“bad” BG impact, or what gradations of good/bad BG impact are and at what

resolution.

One simple approach would be to determine a clinically significant threshold

for BG impact that is too high, and aim to keep individuals below that threshold.

Then one draws a horizontal line to identify ranges of each macronutrient where

mean BG impact is expected to be above or below the threshold. These ranges

could be useful for patients, educators, or providers in setting a personalized

nutritional plan [5], or as input to another system that recommends recipes or

meal plans with nutritional constraints, with the aim of reducing the number of

BG impact excursions above the determined threshold.

Building on a simple approach, the intricacies of the relationships identified

by ACA could also be analyzed more flexibly, for example being interpreted by

a rule-based expert system to find target levels of macronutrient consumption

that would minimize BG impact for an individual, within a set of constraints.

While we do not go all the way to translating ACA output into a decision

support system in this paper, we introduce these concepts to provide context

for the evaluation and discussion that follow. There are many possibilities for

how the output of a method like ACA could be interpreted within a decision

support system, and we aim to explore the properties of the algorithm for use

in such a task.

Notably, there are other approaches for personalized decision support in

health. For example, a growing body of research in health-focused recommender
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systems aims to help individuals choose healthy meals by suggesting meals that

are likely to be desirable, but fall within a set of health constraints [35, 36].

While these systems also rely on data and ML for personalization, recommender

system algorithms are intended to learn user preferences, not health constraints.

In nutrition, personal preference and health can often be in tension, and in these

systems, the constraints for what makes a healthy meal are not personalized

[35, 36]. ACA would be complementary to these approaches, and could be

applied alongside a health-focused recommender system to learn personalized

macronutrient constraints within a recommender system that aims to suggest

desirable meals.

2.8. Uncertainty Estimates

We used several bootstrapping algorithms to estimate uncertainty of the

regressions. Specifically, we used bootstrap to estimate distributions of regres-

sion coefficients, allowing us to quantify the variability of the estimate. Given

this distribution we can calculate quantities that characterize the uncertainty;

here we focus on confidence intervals over the range of input values. Often,

bootstrapping is accomplished by drawing multiple samples with replacement

from the data set and computing the estimate for that resampled data [37].

Empirical confidence intervals can be calculated from the distribution of es-

timates. In addition, ACA is stochastic, with a random initial state, so we

can estimate the variability through repeated calculations with the same subset

but different starting states. We experimented with both methods for boot-

strapping ACA, and the results were nearly identical. We opted for the typical

approach of bootstrapping via multiple subsamples so that we could apply the

same bootstrapping procedure for both methods, because linear regression is

not stochastic.

A second question is the size of the bootstrap samples. A common approach

is for each bootstrap sample to have the same number of data points as the origi-

nal data set. Because data sets for some of the users were quite small, there were

advantages to using larger bootstrap samples. For example, bootstrap samples
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may have very few unique data points. This negatively impacts the performance

of the model, and poses challenges for aggregating variance estimates across the

complete range of feature values. Larger bootstrap samples can improve model

performance, and help ensure that estimates cover the full range of independent

variable values; of course bootstrap ensembles cannot represent the tails of dis-

tributions that are not observed in the data, and can underestimate variance.

We experimented with the original size of the dataset, 100, and 500 data points,

and found that a bootstrap sample size of 500 performed well for both ACA

and regression.

A third question is how many bootstrap iterations to run. 100 iterations

has been suggested as a minimum for variance estimations, but it depends on

the situation [37]. We inspected the change in variance across all iterations

after each subsequent bootstrap iteration to look for convergence. We experi-

mented with up to 200 iterations and found that 100 iterations were sufficient

for variance to converge.

All analysis was performed in MATLAB 2016b (9.1). Additional plots and

descriptive statistics were produced in R v3.3.2 with tidyverse v1.1.1.

2.9. Experimental Design

We estimated ACA and linear regression on the data sets for each user, as

well as data subsets by meal type (breakfast, lunch, and dinner). To estimate

confidence intervals, we performed a bootstrap with 100 iterations, based on

the procedure described in section 2.8. Each bootstrap sample had 500 data

points, and the same samples were used to fit ACA and linear regression. 95%

confidence intervals were determined empirically from the aggregated bootstrap

output.

We then produced a series of plots for each user and closely inspected the

plots for the two users introduced in section 2.1. Each plot included an indi-

vidual covariate (zl) on the horizontal axis, with BG impact x on the vertical

axis, the actual data points, and average fit of ACA and linear regression with

confidence intervals. With each of the 5 features for the overall data sets and
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the 3 meal-type subsets across two users, there were a total of 40 plots. See

Figure 5 in the Results for an example.

2.10. Evaluation

To compare the performance of the two models we calculated the root mean

squared error (RMSE) of the data fit for both ACA and linear regression.

RMSE for the overall model:√√√√ 1

m

m∑
i=1

|x̄(z
(i)
1 , ..., z

(i)
L )− x(i)|2

RMSE for the marginals:√√√√ 1

m

1

L

L∑
l=1

m∑
i=1

|x̄(z
(i)
l )− x(i)|2

In addition, we qualitatively inspected the plots for evidence of non-linear

relationships, and examined the situations where the two models agreed and

disagreed. To quantify non-linear relationships, we heuristically evaluated the

plots to tally the number of data sets where the average fit line of ACA had

more than a 10-degree bend.

To quantify differences in the uncertainty calculations between the two meth-

ods, and to assess the coherence and usefulness of the confidence intervals, we

calculated the percentage of data points falling within the confidence interval

across all data sets.

3. Results

3.1. Evaluation

As shown in Table 2, the RMSE for the full ACA model was significantly

lower—by a factor of ∼ 7—than for linear regression with a standard deviation

similarly lower by a factor of ∼ 3.

However, as shown in Table 3 examining the marginal output that considers

one feature at a time, linear regression outperforms ACA in RMSE by 2 to 7

mg/dl for breakfast, lunch, and dinner meals, while ACA slightly outperforms

16



Table 2: Root mean squared error (RMSE) for ACA and linear regression, for the full model
with all covariates.

ACA Linear regression
4.36 ± 3.40 29.15 ± 10.02

linear regression for analysis when all meals are pooled together. The expla-

nation: ACA, being a complex nonlinear regression, is more data-hungry than

linear regression, and because it underperforms linear regression for a single

meal but outperforms for three meals, it needs at most three times the data to

have a lower RMSE than linear regression.

Table 3: Root mean squared error (RMSE) for ACA and linear regression, for the marginal
model considering one covariate at a time.

Meal type ACA Linear regression
breakfast 28.81 ± 16.2 26.27 ± 14.3
lunch 35.06 ± 18.0 32.62 ± 16.0
dinner 40.21 ± 26.1 33.60 ± 20.3
overall 37.21 ± 21.3 37.44 ± 21.4

The difference between ACA and the marginalized ACA — that ACA itself

produces very accurate representations of the data while the marginalization is

substantially less accurate — has important implications. First, this difference

shows that there is substantial correlation between the covariates; this is not

surprising because individual meals are combinations of food items, which in

turn have combinations of macronutrients, suggesting that the macronutrients

in a meal are not independent of each other. Second, it is clear that because of

the systematic relationships between covariates, there is predictive information

that we are not using to help people make decisions. The problem of course,

is that the full portrait of how these covariates influence glycemic impact is a

complex mathematical object. And to be useful in practice there is an imposed

tradeoff that is not about algorithmic accuracy, but about human factors: we

need the algorithm to be accurate but we must balance accuracy against the

ability to use the output of the algorithm to make decisions. And this leads us

to the third implication of the difference between the ACA and its marginalized
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form: we must find a way to exploit this yet-unused predictive information in a

way that also allows for useful decision-making.

3.1.1. Non-linear relationships

In some situations, ACA did identify non-linear relationships between macronu-

trients and BG impact, as shown in Figure 5. Because of the regularization built

into ACA, most of the identified trends were linear, but some were non-linear.

Non-linear relationships may be expected in some situations because of the com-

plexity of BG dynamics. Linear regression, of course, would by definition never

be able to find a non-linear relationship.

Figure 5: Comparison of ACA and linear regression for user A and the relationship between
carbohydrates and BG impact, across all meals. In this case, ACA identifies a non-linear
relationship, while linear regression does not.

3.1.2. Outliers and Errors

When inspecting the plots, we found that some data sets had outliers that

were clearly errors. For example, User A’s data had two meals recorded with

50 grams of fiber. These data points are clearly errors not only because they

are visibly separated from the rest of the data, but also because 50 grams was
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the default value for nutrient assessments by RDs, and 50 grams of fiber is an

infeasible amount to eat in one sitting. The recommended amount of fiber is 38

grams per day for men, and 95% of adults don’t manage to eat the recommended

amount of fiber; 50 grams of fiber would be over 3 cups of lentils. As shown

in Figure 6, linear regression is unable to ignore the outliers, and continues the

downward trend beyond what is reasonable. ACA, on the other hand, also finds

a slight downward trend in the non-outlier data, but evens out to be flat—

showing no relationship—over the sparsely populated region before the outliers.

The ACA is a more robust estimator [38] than linear regression.

Figure 6: Comparison of ACA and linear regression for user A, and the relationship between
fiber and BG impact, across all meals. ACA shows no trend leading out to the outlier data
points with 50 grams of fiber, while linear regression continues a downward trend beyond what
is reasonable.

3.1.3. Uncertainty

One of the most drastic differences between ACA and linear regression was

in the size and variability of the confidence intervals. Confidence intervals for

ACA were broad, and varied in their width across data sets. In some instances,

19



ACA would have a relatively narrow confidence interval, suggesting a higher

degree of certainty in the identified trend. In other situations, though, ACA

has broad confidence intervals, encapsulating most of the data sets, suggesting

a low degree of confidence in the identified trend. On the other hand, the less

flexible linear regression typically had narrow confidence intervals, regardless

of the plausibility of the trend identified. See Figure 7 for a comparison of

uncertainty between two data subsets for the same user.

Figure 7: Comparison of ACA and linear regression for user B. On the left is the relationship
between carbohydrates and BG impact for lunch meals. On the right is the relationship
between fat and BG impact at dinner for the same user. On the left, ACA has wide confidence
intervals, indicating uncertainty about the true relationship, while confidence intervals are
narrower on the right. In contrast, linear regression has narrow confidence intervals in both
figures.

In general, the confidence intervals were much wider and more expressive

with ACA. As shown in Table 4, more of the actual data points—by factors

ranging from 2 to 16 with an average of 6—fell within the confidence intervals

for ACA than with linear regression.

4. Discussion

In this study, we explored the use of a method based on optimal transport

theory to analyze patient-generated data. As compared to linear regression, we

found that attributable components analysis (ACA) was able to identify non-

linear relationships, was more robust to outliers, and offered more representative

and accurate uncertainty estimates. These characteristics make ACA a good

candidate to be used in the wild for decision support systems. For example,
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Table 4: Percent of data points within the 95% confidence interval for attributable components
analysis (ACA) and linear regression.

N ACA Linear Regression
User A
Breakfast 13 84.62% 10.77%
Lunch 10 28.00% 2.00%
Dinner 23 58.26% 7.83%
All meals 58 15.17% 7.59%
User B
Breakfast 16 96.25% 6.25%
Lunch 19 52.63% 8.42%
Dinner 44 32.27% 11.36%
All meals 88 22.05% 12.05%
All Users (Mean ± SD)
Breakfast 23 ± 16 62% ± 21% 11% ± 8%
Lunch 21 ± 14 47% ± 21% 8% ± 6%
Dinner 24 ± 15 47% ± 22% 10% ± 7%
All meals 82 ± 63 25% ± 12% 12% ± 7%

model output could be used in a tool to help clinicians deliver personalized

coaching to patients with T2D, to automatically generate meal plans, or in a

smartphone application that delivers personalized nutritional recommendations

directly to patients.

Unlike post hoc data analysis, when datasets can be cleaned, curated, and

processed, algorithms used in decision support systems need to run automat-

ically without direct oversight using data with all their imperfections. Given

the constraints of real self-monitoring data, the marginalized ACA preformed

well. But it is important to understand the modeling workflow we develop here,

and its advantages and evaluation. We compared a simple regression, linear

regression, to a complex nonlinear regression that was then simplified after the

fact. It seems that, given enough data, it is more productive to begin with a

model capable of representing the structures in the data and have the features

necessary for useful decision-making, and then simplifying the model output as

is required for practical decision support. Non-linear regressions are not always

required or useful, and often a linear or logistic regression—as a sophisticated

use of a simple tool—will be a better choice due to the needs of the application,
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e.g., [39]. Here we had substantial gains from basing the analysis in a more

flexible tool, but also saw some drawbacks, all of which are noted below.

Nonlinear relationships in data and decision support. The ACA

was able to identify non-linear relationships, which is important because of

the complexity of BG dynamics and other systems in health. Importantly,

ACA is also regularized to prevent overfitting, and the majority of relationships

identified were linear. As discussed in 2.7, one approach to make regression

output useful for decision support is to use a clinically meaningful threshold for

BG impact to identify ranges of values to expect higher or lower BG impacts.

Because ACA is non-linear, it can identify multiple ranges, but with linear

regression, this approach would only identify 1 high and 1 low impact range.

Distinct ranges may be more clinically meaningful.

Robust estimation. ACA was more robust to outliers and erroneous data

points than linear regression [38]. Data accuracy is a central concern in assessing

the quality of electronic health data [12, 13], especially for patient-generated

health data, when patients are directly entering data points [40]. While rule-

based or statistical methods can be used to detect and remove outliers, analytic

approaches that are robust to outliers, like ACA, are still advantageous.

Uncertainty quantification. ACA offered broader and more representa-

tive and accurate uncertainty estimates than linear regression [41]. It’s impor-

tant to represent and consider the confidence of the model for a given patient’s

data set. Uncertainty is intrinsic to the practice of medicine. If a model is

going to be used for clinical decision support, representing the uncertainty can

help clinicians appropriately weight the information against everything else they

know about the patient [17, 18]. For patient-facing application, the certainty

can help prioritize what is and is not shared with users.

Reducing model flexibility for interpretability and decision-making.

Linear regression is rather interpretable, especially in one dimension. A non-

linear regression like ACA, which models a distribution function that estimates

glycemic response, is far less interpretable in its raw form; it often requires

mathematical sophistication to interpret and is difficult to visualize due to the
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high-dimensional nature of the model. While the full ACA model with all

covariates outperformed linear regression, the quality of the fit dropped sub-

stantially when considering one covariate at a time in the marginal model given

the data constraints. We focused on the marginal relationship between each

covariate and glycemic impact because interpretability and actionability for de-

cision support was a key objective: simultaneously making changes to multiple

macronutrients is challenging for individuals to implement because of the cog-

nitive burden and because behavior change is often grounded on incremental,

achievable adjustments.

The poorer performance of the marginal model points to a tradeoff between

accuracy and interpretability in machine learning tasks [42]. In this context,

there is substantial information shared between covariates that is lost through

marginalization. While the full model may be too complex for tractable interpre-

tation, future work could explore marginalizing out fewer covariates, to examine

the relationship between two covariates H in relation to the quantity of inter-

est x̄, as opposed to a single covariate, as presented here. Three-dimensional

surfaces can still be visualized and interpreted without adding unnecessary com-

plexity, suggesting that this is a feasible direction for future work. In addition,

such an approach could be employed alongside univariate marginalization when

pre-hoc analysis suggests that two covariates share a great deal of information.

At the same time, there is a need for richer and more detailed model outputs

in clinical characterization [43], and future work could also explore ways to im-

prove the interpretability of the full model with all covariates for use for decision

support while still aligning with what clinician and patients need from a human

factors standpoint.

Another important limitation is that ACA identifies patterns of association,

but does not necessarily identify causal relationships in the data [44]. Future

work could apply causal inference methodologies as an alternate path to increas-

ing confidence that following a recommendation derived from the analysis will

lead to improved BG impact for an individual.

Data limitations and machine learning. ACA, like all nonlinear regres-
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sions such deep learning or Gaussian process models, is more data-hungry than

linear regression. Meaning, the ACA requires more data to become as accurate

as linear regression. Then, given enough data, the nonlinear regressions are gen-

erally more accurate or able to represent data than linear or other more rigid

and simple regressions. The flexibility of nonlinear regressions may not always

be beneficial, depending on the application, but here the real question is of the

limiting effect of data availability. For example, while nonlinear regressions re-

quire more data than their more rigid counter-parts, not all methods have an

equal hunger for data. And here, because of the nature of our experiment, we

have a window into how hungry ACA is compared to linear regression: ACA un-

derperforms linear regression for a single meal but outperforms for three meals

for most patients, meaning it needs at most three times the data to have a lower

RMSE than linear regression. This is important because the whole point of per-

sonalized analysis of the BG impact of nutrition is to use an individual’s data

to estimate a model and provide decision support. Moreover, because health

states change, models must be re-estimated periodically—potentially every 3-6

weeks—and so to be impactful, the model must perform with self-monitoring

data collected on the order of weeks. Given its lower RMSE than ACA in the

marginal case, linear regression could still be useful for decision support, as its

results are similarly interpretable. However, for the reasons discussed above,

augmentations would be necessary. For example, to improve robustness to out-

liers or apply statistical approaches like anomaly detection to remove possibly

erroneous data points. In addition, linear regression would benefit from im-

proved uncertainty estimates, or it would be difficult to determine when signals

are clinically meaningful or actionable. For these reasons, devising methods to

boost the impact of finite yet personal self-management data will be crucial.

Human-centered data collection limitations. The data available for

analysis in realistic settings represents a limitation. T2D self-monitoring data is

effortful for individuals to collect, and data sets are often small. As discussed in

the feature selection section, BG readings before and two hours after each meal

don’t fully capture fluctuations in BG. Continuous glucose monitors (CGM)
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could provide more granular and accurate data for machine learning, but are

not standard care for T2D, making them prohibitively expensive for most pa-

tients. Still, prior research has demonstrated the feasibility of similar data sets

to make accurate prediction of BG values [7]. In the future, self-monitoring

and other data sources from more individuals could be combined to find pat-

terns of individuals with similar characteristics who share similar BG dynamics,

for example by utilizing microbiome or electronic health record data [4]. No-

tably, while researchers have been successful in predicting blood glucose and

making nutrition recommendations to improve BG control, their models relied

on extensive, and complete data about each individual [4]. Personalized nutri-

tion recommendations from self-monitoring data would be considerably more

scalable for a large population.

In conclusion, this work presents initial progress in applying machinery from

optimal transport theory to address important problems in machine learning

with patient-generated health data.
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Appendix A. Attributable Components Analysis

Appendix A.1. Modes of variability

Given a set of m observations {(xi, zi)}mi=1 of the variable of interest x and

the L covariates zl, we seek to estimate the conditional mean x̄(z). We will

assume throughout that x assumes real values; this is a reasonable assumption

given that x represents glycemic impact that we define here as the difference

between two real numbers, pre- and postprandial blood glucose measurements.

If we instead specified x as a vector, the j’th component of their mean is the

mean of the j’th component, so there is no loss of generality in considering one

dimension of x at a time. In this application, x only has one dimension. We

will leave the specification of the allowable variable types for each covariate zl

temporarily open.

The conditional mean can be characterized as the minimizer of the variance:

x̄(z) = arg min
f

∑
i

∥∥xi − f(zi)
∥∥2 (A.1)

over a proposed family of functions f(z). We would like our specification of this

family of functions to satisfy some properties:

1. The family should be big enough to accurately represent complex depen-

dencies of x̄ on z = (z1, . . . , zL), while at the same time constrained so as

not to overfit the data.

2. The procedure should be applicable to covariates zl of quite arbitrary type.

3. It should be interpretable, in the sense that one should be able to compute

with ease the marginal dependence on f on some subset of the zl, averaging

over the others.

4. Performing the minimization in (A.1) should be computationally effective.

The choice made in [22] is to approximate the multivariable function f(z) by

the superposition of d products of functions V (l)k of the individual covariates

zl:
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f(z) ≈
d∑
k=1

L∏
l=1

V (l)k (zl) . (A.2)

This can be thought as an extension of the low-rank factorization of matrices

Aji ≈
d∑
k=1

uki v
k
j

from matrix entries considered as functions of the row and column, to tensors of

arbitrary order and variables of arbitrary type. Two explicit examples with real

covariates but functions V (l)k pre-assigned except for a global multiplicative

factor are the power series

f(z) ≈
∑
k

ak

L∏
l=1

zl
skl , z ∈ RL, skl ∈ N

and the Fourier series

f(z) ≈
∑
k

ake
i
∑

l ξ
k
l zl , zl 2π-periodic, ξkl ∈ Z.

In the context of low rank factorization, particularly when it is re-arranged

so that both the
{
uk
}

and
{
vk
}

are orthogonal sets of vectors (i.e. principal

component analysis), each k represents a component of variability, typically

sorted by the fraction of total variability that each component explains. In

Fourier analysis, a linear case, one speaks of Fourier modes. Because we are

not anchored to a particular functional form for the f ’s we will refer to each

product
∏L
l=1 V (l)k (zl) as a mode of variability of x̄(z), and think of it as

a pattern of dependence on z to be extracted from the data that explains a

significant fraction of the variability of x.

Under the proposal in (A.2), the conditional expectation problem in (A.1)

reduces to

min
V

L =
∑
i

(
xi −

d∑
k=1

L∏
l=1

V (l)k(zil )

)2

(A.3)

over the degrees of freedom available in the specification of the functions V (l)k(z).

We discuss next how to specify these functions.
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Appendix A.2. Hard and soft assignments (coping with missing values), grids
and prototypes

If the zl are categorical variables, such as the rows and columns in low-rank

matrix factorization, we can assign an integer j ∈ [1, m(l)] to each of the values

they can adopt. Then each V (l) is fully described by a matrix with components

V (l)kj = V (l)k(j), and we can write

V (l)k(zil ) =
∑
j

α(l)jiV (l)kj , (A.4)

where α(l)ji = 1 when zil = j and α(l)ji = 0 otherwise.

Since L is quadratic in each V (l), one can perform the minimization of (A.1)

through an alternating direction methodology, minimizing L alternatively over

each V (l), which yields the updating rule

V (l)j =

∑
i∈Ij

xi
∏
b6=l

V (b)zib


∑
i∈Ij

∏
b6=l

V (b)zib

T ∏
b6=l

V (b)zib



−1

, (A.5)

where

Ij =
{
i : zil = j

}
.

We can extend the applicability of (A.4) to situations where the value of zl in

some or all observations are not known with certainty. Then α(l)ji is no longer

a binary variable with values zero or one, but represents instead the probability

that zil adopts the value j. This soft assignment satisfies

∀i, α(l)ji ≥ 0,
∑
j

α(l)ji = 1. (A.6)

This allows us a means of naturally accommodating both measurement uncer-

tainty and one pathway for coping with missing data within a covariate, zl.

In the event that the covariates, zl, are real, we can extend (A.4, A.6) by

adopting a grid; here we adopt a grid zg(l)
j and define V (l)kj = V (l)k

(
zg(l)

j
)
.

Then, performing a piecewise linear interpolation, one can assign to each obser-

vation zil values of α(l)i such that

zil =
∑
j

α(l)jizg(l)
j
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and write again

V (l)k
(
zil
)

=
∑
j

α(l)jiV (l)kj .

Here the α satisfy, in addition to (A.6), the condition that at most two α(l)ji

differ from zero for each value of i, the ones corresponding to the two grid points

surrounding zil .

Finally, the formulation in (A.4, A.6) can be further extended to any type of

covariate zl that admits a norm, via prototypal analysis [45]. In this case the grid

zg(l)
j is replaced by the prototypes yjl , which are optimal convex combinations

of the zil ,

yjl =
∑
i

β(l)jiz
i
l , β(l)ji ≥ 0,

∑
i

β(l)ji = 1,

where α(l) and β(l) solve the following minimization problem:

α(l), β(l) = arg min
∑
i

∥∥∥∥∥∥zil −
∑
j

α(l)jiy
j
l

∥∥∥∥∥∥
2

+ λ
∑
i,j

‖zil − y
j
l ‖

2α(l)ji , (A.7)

yjl =
∑
i

β(l)jiz
i
l , α(l)ji ≥ 0, β(l)ji ≥ 0,

∑
j

α(l)ji =
∑
i

β(l)ji = 1.

The interpretation is the following: in archetypal analysis [46], we seek points

yjl within the convex hull of the zil such that the latter can be well approximated

by convex combinations of the former. What the prototypes add is the penal-

ization term with strength λ, which favors expression for the zil that are local,

i.e. involve only nearby yjl , as with the piecewise linear expansions adapted to

a grid.

Appendix A.3. Smoothness and bounded variability

As the grids zg(l)
j become finer or the number of prototypes yjl grows to

permit a more accurate representation of the V (l)(zl), the risk of overfitting the

data also increases. To avoid this, one can enforce smoothness on V (l)(zl), for

instance by penalizing the squared norm of a finite difference approximation to

its gradient. A general form for such a penalization term P is

P = V (l)k
′
ClV (l)k,
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where the matrix Cl encodes the specific penalization used, such as the squared

norms of first or second derivatives. A similar term can be used for categorical

variables, encoding into Cl their variance, to bound the amount of variability

that they can explain. Then the full problem adopts the form

min
V

∑
i

xi −∑
k

∏
l∈L

∑
j

α(l)jiV (l)kj

2

+

L∑
l=1

λl
∑
k

 ∏
b∈L,b6=l

‖V (b)k‖2
V (l)k

′
ClV (l)k. (A.8)

The inclusion of the products of squares of the norms of the V (b)k as pre-

factors to the penalty terms follows from the need to make the objective function

invariant under re-scalings of the V (l)k that preserve their product. Without

these, the penalty terms could be made arbitrarily small by rescaling each V (l)

while preserving their product, assigning large amplitudes to those V (l) that

can explain little or no variability, and can therefore be taken as constants so

that the corresponding V (l)k
′
ClV (l)k vanishes.

Notice that the objective function in (A.8) is still quadratic in each V (l),

and so can be solved through an alternative direction methodology that finds

the optimal matrix V (l) explicitly given the current values of the V (b) for b 6= l.
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