
PRECONDITIONING OF OPTIMAL TRANSPORT∗1

MAX KUANG† AND ESTEBAN G. TABAK†2

Abstract. A preconditioning procedure is developed for the L2 and more general optimal3
transport problems. The procedure is based on a family of affine map pairs which transforms the4
original measures into two new measures that are closer to each other, while preserving the optimality5
of solutions. It is proved that the preconditioning procedure minimizes the remaining transportation6
cost among all admissible affine maps. The procedure can be used on both continuous measures and7
finite sample sets from distributions. In numerical examples, the procedure is applied to multivariate8
normal distributions and to a two-dimensional shape transform problem.9
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1. Introduction. The original optimal transport problem, proposed by Monge12

in 1781 [14], asks how to move a pile of soil between two locations with minimal cost.13

Giving the cost c(x, y) of moving a unit mass from point x to point y, one seeks the14

map y = T (x) that minimizes its integral. After normalizing the two piles so that15

each has total mass one and can be regarded as a probability measure, the problem16

adopts the form17

(1) min
T]µ=ν

∫
c(x, T (x))dµ(x),18

where µ and ν are the original and target measures, and T]µ denotes the push forward19

measure of µ by the map T .20

In the 20th century, Kantorovich [10] relaxed Monge’s definition, allowing the21

movement of soil from one location to multiple destinations and vice versa. Denoting22

the mass moved from x to y by π(x, y), we can rewrite the minimization problem as23

(2) min
π

∫
c(x, y)π(x, y)dxdy24

among couplings π(x, y) satisfying the marginal constraints25 ∫
π(x, y)dy = µ(x)26 ∫
π(x, y)dx = ν(y).27

28

Since the second half of the 20th century, mathematical properties of the optimal29

transport solution have been studied extensively, as well as applications in many30

different areas (see for instance [16, 12, 3, 7, 8, 4], or [20] for a comprehensive list.).31

Since closed-form solutions of the multi-dimensional optimal transport problems are32

relatively rare, a number of numerical algorithms have been proposed. We reference33

below some recent representatives of the different approaches taken:34

PDE methods: Benamou and Brenier [2] introduced a computational fluid approach35

to solve the problem with continuous distributions µ1,2, exploiting the struc-36

ture of the interpolant of the optimal map to solve the PDE corresponding37

to the optimization problem in the dual variables.38
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2 M. KUANG AND E. G. TABAK

Adaptive Linear Programming: Oberman and Ruan [15] discretized the given39

continuous distributions and solved the resulting linear programming problem40

in an adaptive way that exploits the sparse nature of the solution (the fact41

that the optimal plan has support on a map.)42

Entropy Regularization: The discrete version of optimal transport is the earth43

mover’s problem in image processing [17], a linear programming problem44

widely used to measure the distance between images and in networks. Recent45

development on entropy regularization [18] introduced effective algorithms to46

solve regularized versions of these problems.47

Data-driven Formulations: Data-driven formulations take as input not the distri-48

butions µ1,2 but sample sets from both. Methodologies proposed include a49

fluid-flow-like algorithm [19], an adaptive linear programming approach [5],50

and a procedure based on approximating the interpolant in a feature-space51

[11].52

In this paper, we introduce a novel procedure to precondition the input probability53

measures or samples thereof, so that the resulting measures or sample sets are closer54

to each other while preserving the optimality of solutions. The procedure and its55

properties are discussed for both L2 and more general cost functions induced by an56

inner product.57

In theoretical applications, the preconditioning procedure is used to give alterna-58

tive derivations of a lower bound for the total transportation cost and of the optimal59

map between multivariate normal distributions. For practical applications, we use60

the procedure on sample sets to get preconditioned sets, which are then given as61

input to optimal transport algorithms to calculate the optimal map. Inverting the62

the preconditioning map pairs used, we recover the optimal map between the original63

distributions.64

2. Optimal Transport. Let µ and ν be two probability measures on the same65

sample space X . Optimal transport asks how to optimally move the mass from µ to66

ν, given a function c(x, y) represents the cost of moving a unit of mass from point67

x to point y. Monge’s formulation seeks a map y = T (x) that minimizes the total68

transportation cost:69

(3) min
T]µ=ν

Eµc(X,T (X)),70

where T]µ represents the pushforward measure of µ through the map T .71

A transfer plan π(x, y) is the law of a coupling (X,Y ) between the two measures72

µ and ν. For any measurable set E ⊂ X ,73

π(E ×X ) = µ(E), π(X × E) = ν(E).74

Denoting the family of all transfer plans by Π(µ, ν), Kantorovich’s relaxation of the75

optimal transport problem is76

(4) min
π∈Π(µ,ν)

Eπc(X,Y ).77

Since the maps Y = T (X) represent a subset of all couplings between µ and ν, the78

feasible domain for (3) lies within the one for (4).79

While there are many results on the general optimal transport problem, a par-80

ticularly well-studied and useful case is the L2 optimal transport on RN , in which µ81

and ν are probability measures on RN and the cost function c(x, y) is given by the82
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squared Euclidean distance ‖x − y‖2. In this case, with moderate requirements, one83

can prove that the solution to Kantorovich’s relaxation (4) is unique and agrees with84

the solution to Monge’s problem (3). In other words, the unique optimal coupling85

(X,Y ) corresponds to a map Y = T (X). Moreover, this optimal map is the gradient86

of a convex potential φ, so we have the following statement:87

Theorem 1. For Kantorovich’s relaxation (4) with the L2 cost function and ab-88

solute continuous measures µ and ν, the optimal coupling (X,Y ) is a map Y = T (X),89

where T : RN → R is defined by90

(5) T (x) = ∇φ(x)91

where φ(x) is convex and T]µ = ν.92

While this characterization of the solution is attractively simple, closed-form solutions93

of the L2 optimal transport on RN are rare for N > 1. The difficulties of deriving94

closed-form solutions boosted research to solve the optimal transport problem numer-95

ically. An incomplete list of formulations and methods can be found in section 1.96

The goal of this paper is not to provide a complete numerical recipe to solve L297

optimal transport problems, but to introduce a practical preconditioning procedure.98

This procedure transforms the original measures µ and ν into two new measures, so99

that the optimal transport problems between the new measures is easier to solve,100

while the optimality of solutions is preserved by the transformation. The procedure101

extends beyond L2 to any cost function induced by an inner product.102

3. Admissible Map Pairs. The basic framework of the preconditioning proce-103

dure is as follows:104

X ∼ µ Y=G−1(T (F (X)))−−−−−−−−−−−−→ Y ∼ νyX̃=F (X)

yỸ=G(Y )

X̃ ∼ µ̃ Ỹ=T (X̃)−−−−−−−−−→ Ỹ ∼ ν̃

105

Suppose that we transform µ and ν into two new measures µ̃ and ν̃ via some106

invertible maps F and G and that the solution to the new L2 optimal transport107

problem between µ̃ and ν̃ is given by Ỹ = T (X̃). Then the map108

(6) Y = G−1(T (F (X)))109

pushes forward µ into ν. We call the pair of invertible maps (F,G) an admissible map110

pair if the resulting map (6) is optimal for the original problem between µ and ν.111

There are several simple admissible map pairs.112

Definition 2 (Translation Pairs). Given two vectors m1,m2 in RN , a Transla-113

tion Pair (F,G) is defined by114

(7) F (X) = X −m1, G(Y ) = Y −m2.115

If Ỹ = T (X̃) is an optimal map, then T = ∇φ for some convex function φ, which116

implies that117

(8) Y = m2 + T (X −m1) = ∇ [m2X + φ(X −m1)] ,118
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4 M. KUANG AND E. G. TABAK

so Y = B−1(T (A(X))) is indeed the optimal map between µ and ν. Thus translation119

pairs are admissible map pairs.120

Among all translation pairs, we can minimize the total transportation cost in the121

new problem:122

E‖X̃ − Ỹ ‖2 = E‖X −m1 − Y +m2‖2123

= E‖X − EX − Y + EY ‖2 + ‖EX −m1 − EY +m2‖2124

≥ E‖X − EX − Y + EY ‖2125126

This shows that the transportation cost between X̃ and Ỹ is minimized when EX −127

EY = m1 −m2. In particular, we can adopt m1 = EX and m2 = EY , which gives128

both measures a zero mean. We call the corresponding translation pair the mean129

translation pair.130

Definition 3 (Scaling Pairs). Given two nonzero numbers α, β in R, the Scaling131

Pair (F,G) is defined by:132

(9) F (X) = αX, G(Y ) = βY.133

Clearly if Ỹ = T (X̃) = ∇φ(X̃) is an optimal map,134

(10) Y =
1

β
T (αX)135

is also an optimal map. So all the scaling pairs are admissible map pairs. In particular,136

one can choose137

α =
1√

E‖X‖2
, β =

1√
E‖Y ‖2

,138

so that139

E‖X̃‖2 = E‖Ỹ ‖2 = 1.140

We call this specific scaling pair the normalizing scaling pair.141

Next we discuss general linear admissible map pairs. We will think of X as row142

vectors, so the matrices representing linear transformations act on X on the right.143

Theorem 4. Let F (X) = XA and G(Y ) = Y B, where A,B ∈ RN×N are invert-144

ible matrices. Denote by Ỹ = T (X̃) the optimal map from µ̃ to ν̃. If B = (AT )−1,145

the induced map between µ and ν is also optimal.146

Proof. The induced map can be written as147

Y = T (XA)B−1 = T (XA)AT148

Let T (X) = ∇φ(X) and ψ(X) = φ(XA) we have149

(11) Yi =

N∑
j=1

φj(XA)(AT )ij =
∂

∂Xi
φ(XA) ⇒ Y = ∇ψ(X).150

Since ψ is also a convex function, the induced map Y = T (XA)B−1 is also an optimal151

map.152
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Remark 5. Another way to understand this theorem is to consider map pairs153

(F,G) that do not alter the inner product. In fact, the theorem holds if, for any154

x, y ∈ RN ,155

(12) xyT = F (x)G(y)T .156

This observation implies that the same result holds for more general cost functions:157

as long as the metric d(x, y) is induced by an inner product 〈x, y〉, we only need the158

pair F and G to be adjoint operators to guarantee they form an admissible map pair.159

The above theorem gives us a family of new admissible map pairs.160

Definition 6 (Linear Pairs). Let A be an invertible matrix in RN×N , the linear161

pair (F,G) is defined by:162

(13) F (X) = XA, G(Y ) = Y (AT )−1
163

We first give some examples of common linear pairs,164

Definition 7 (Orthogonal Pairs). For any orthogonal matrix A,165

(14) F (X) = XA, G(Y ) = Y A166

is called a orthogonal map pair.167

For orthogonal pairs, we have (AT )−1 = A. This means that performing the168

same orthogonal linear transformation on both measures preserves the optimality of169

solutions. The interpretation of this result is straightforward, as an orthogonal map170

yields a distance-preserving coordinate change which does not alter the cost function.171

Definition 8 (Stretching Pairs). For any unit vector d and scalar α, we can172

stretch X by a factor of α along d, and at the same time stretch Y by a factor of 1/α173

along the same direction:174

(15)
F (X) = X − (XdT )d+ α(XdT )d = X(I + (α− 1)dT d)
G(Y ) = Y − (Y dT )d+ 1/α(XdT )d = X(I + (1/α− 1)dT d)

175

We call such map pairs stretching pairs.176

It can be verified this is indeed a linear pair, and thus an admissible map pair.177

Composing translation and linear pairs, one obtains a more general class of affine178

pairs. Among all affine pairs, we seek the optimal one for our preconditioning proce-179

dure. We first state a linear algebra result:180

Theorem 9. For any two positive-definite matrices Σ1 and Σ2 in RN×N , there181

exists an invertible matrix A ∈ RN×N such that182

(16) D = ATΣ1A = A−1Σ2(AT )−1
183

where D is a diagonal matrix with entries satisfying184

(17) d1 ≥ d2 ≥ · · · ≥ dN > 0.185

In addition, D is unique.186

Proof. We first prove the existence of A. Since Σ
1/2
1 is invertible, we can replace187

A by a matrix B satisfying188

B = Σ
1/2
1 A189
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6 M. KUANG AND E. G. TABAK

and190

D = BTB = B−1Σ
1/2
1 Σ2Σ

1/2
1 (BT )−1.191

Because Σ
1/2
1 Σ2Σ

1/2
1 is positive definite, it admits an eigenvalue decomposition of the192

form193

(18) Σ
1/2
1 Σ2Σ

1/2
1 = QΛQT ,194

with Q orthogonal and Λ diagonal with sorted, positive diagonal entries. Setting195

B = QΛ1/4, we have196

BTB = Λ1/2
197

and198

B−1Σ
1/2
1 Σ2Σ

1/2
1 (BT )−1 = Λ−1/4QTQΛQTQΛ−1/4 = Λ1/2.199

Thus the conditions of the theorem are satisfied with200

(19) D = Λ1/2, A = Σ
−1/2
1 QΛ1/4.201

To prove the uniqueness of D, suppose that there are D1, A1 and D2, A2 such that202

D1 = AT1 Σ1A1 = A−1
1 Σ2(AT1 )−1

203

D2 = AT2 Σ1A2 = A−1
2 Σ2(AT2 )−1.204205

Then206

D2
1 = A−1

1 Σ2Σ1A1207

D2
2 = A−1

2 Σ2Σ1A2,208209

implying that D2
1 , Σ2Σ1 and D2

2 are similar to each other. Since D1 and D2 are210

positive diagonal matrices with sorted entries, they must be identical, which proves211

the uniqueness of D.212

Using the theorem above, we can define the following optimal linear pair :213

Definition 10 (Optimal Linear Pair). Assume that µ and ν are mean-zero mea-214

sures with covariance matrices Σ1 and Σ2, and let A be a N ×N matrix that satisfies215

(16). We define the optimal linear pair (F,G) through:216

(20) F (X) = XA, G(Y ) = Y (AT )−1.217

(Notice that the matrix A can be constructed following (18) and (19) in the proof of218

Theorem 9.)219

This pair has the following useful properties:220

Property 11. The resulting random variables X̃, Ỹ derived from the optimal221

linear pair have the same diagonal covariance matrix D:222

EX̃T X̃ = ATΣ1A = D(21)223

EỸ T Ỹ = A−1Σ2(AT )−1 = D.(22)224225
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PRECONDITIONING OF OPTIMAL TRANSPORT 7

Property 12. Among all possible linear pairs X ′ = XC, Y ′ = Y (CT )−1 given226

by an invertible matrix C, the optimal linear pair minimizes E‖X ′ − Y ′‖2. In other227

words, for any invertible matrix C:228

(23) E‖X ′ − Y ′‖2 ≥ E‖X̃ − Ỹ ‖2.229

Proof. For any matrix C, we have:230

E‖X ′ − Y ′‖2 = EX ′X ′T + EY ′Y ′T − 2EX ′Y ′T231

= EXCCTXT + EY (CT )−1C−1Y T − 2EXY T232

= E tr(CTXTXC) + E tr(C−1Y TY (CT )−1)− 2EXY T233

= tr(CTΣ1C) + tr(C−1Σ2(CT )−1)− 2EXY T .234235

On the other hand, (16) is equivalent to236

Σ1 = (AT )−1DA−1, Σ2 = ADAT .237

In terms of S = A−1C,238

E‖X ′ − Y ′‖2 = tr(STDS) + tr(S−1D(ST )−1)− 2EXY T239

= tr(SSTD) + tr((SST )−1D)− 2EXY T .240241

Writing S = (s1, s2, · · · , sN )T and (ST )−1 = (z1, z2, · · · , zN )T , we have242

E‖X ′ − Y ′‖2 =

N∑
i=1

dis
T
i si +

N∑
i=1

diz
T
i zi − 2EXY T243

=

N∑
i=1

di(s
T
i si + zTi zi)− 2EXY T244

≥
N∑
i=1

di(2s
T
i zi)− 2EXY T245

= 2

N∑
i=1

di − 2EXY T246

= E‖X̃ − Ỹ ‖2.247248

Notice that we have the equal sign when S = I, which means that C = A. Thus249

E‖X ′ − Y ′‖2 ≥ 2

N∑
i=1

di − 2EXY T = E‖X̃ − Ỹ ‖2.250

Composing the mean translation pair and the optimal linear pair one obtains the251

optimal affine pair. It follows from the properties above that the optimal affine pair252

not only gives the two distributions zero means and transforms the covariance matrices253

into diagonal matrices, but also minimizes the distance between µ̃ and ν̃ among all254

affine pairs.255
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4. Admissible Map Pairs For General Cost Functions. In Theorem 4, we256

introduced a class of affine maps that preserves the optimally of solutions for L2 cost.257

As mentioned in the remark, similar results hold for more general cost functions. For258

cost functions induced by an inner product, we have the following generalization of259

Theorem 4:260

Theorem 13. Let 〈·, ·〉 be an inner product in RN . For the optimal transport261

problem with cost262

(24) c(x, y) = 〈x− y, x− y〉,263

we have (F,G) is an admissible map pair if F and G are adjoint operators with respect264

to inner product 〈·, ·〉.265

Proof. It follows from the fact that c(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, y〉, where only
the last term depends on the actual coupling between X and Y , that

argminE [c(X,Y )] = argmaxE [〈X,Y 〉] .

Since this applies to both the original and the preconditioned problems, their optimal266

solutions satisfy267

(X∗, Y ∗) = argmax [E〈X,Y 〉] and (X̃∗, Ỹ ∗) = argmax[E〈X̃, Ỹ 〉].268

But if F and G are adjoint,269

〈X̃, Ỹ 〉 = 〈F (X), G(Y )〉 = 〈X,Y 〉,270

so271

(X̃∗, Ỹ ∗) = (F (X∗), G(Y ∗)),272

proving the conclusion.273

Any inner product on RN can be written in terms of the standard vector multi-274

plication, through the introduction of a positive definite kernel matrix K:275

(25) 〈x, y〉 = xKyT ,276

so stating that the linear operators F (X) = XA,G(Y ) = Y B are adjoint is equivalent277

to278

(26) AKBT = K.279

We can also derive the optimal linear pair for general cost functions. Here we only280

state without proof the core linear algebra theorem.281

Theorem 14. Let Σ1, Σ2 and K be positive-definite matrices in RN×N . There282

exist invertible matrices A,B ∈ RN×N such that283

(27) AKBT = K284

and285

(28) D = K1/2ATΣ1AK
1/2 = K1/2BTΣ2BK

1/2
286

where D is a unique diagonal matrix with entries satisfying287

(29) d1 ≥ d2 ≥ · · · ≥ dN > 0.288
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Matrices constructed so as to satisfy the above theorem give the optimal linear pairs289

with respect to the corresponding cost. Notice that in this case the resulting measures290

no longer have diagonal covariance matrices:291

(30) EX̃T X̃ = EỸ T Ỹ = K−1/2DK−1/2.292

5. Preconditioning Procedure and Its Applications. We go back to the293

L2 cost case and introduce the full preconditioning procedure using all the admissible294

map pairs discussed in section 3.295

Definition 15 (Preconditioning Procedure). For two random variables X and296

Y with probability measures µ and ν, let297

m1 = EX, m2 = EY,(31)298

Σ1 = E
[
(X −m1)T (X −m1)

]
, Σ2 = E

[
(Y −m2)T (Y −m2)

]
.(32)299

We construct two matrices A and D that satisfy (16), and apply the preconditioning300

procedure:301

(33) X̃ = (X −m1)A, Ỹ = (Y −m2)(AT )−1.302

If the optimal map between µ̃ and ν̃ is Ỹ = T (X̃), the optimal map between X ∼ µ303

and Y ∼ ν is304

(34) Y = [m2 + T ((X −m1)A)AT ].305

This preconditioning procedure moves the two given measures into new measures306

with zero mean and the same diagonal covariance matrix. An extra step that one307

can add to the preconditioning procedure uses the scaling pairs to normalize both308

measures so that they have total variance one. In the numerical experiments for this309

article we do not perform this extra step.310

One straightforward theoretical application of the procedure is a simple derivation311

of the optimal map between multivariate normal distributions. If X ∼ N(m1,Σ1) and312

Y ∼ N(m2,Σ2), the X̃ and Ỹ resulting from the application of the preconditioning313

procedure have the same distribution N(0, D). Since the optimal coupling between314

identical measures is the identity map, the optimal map between N(m1,Σ1) and315

N(m2,Σ2) is316

(35) Y = m2 + (X −m1)AAT = m2 + (X −m1)Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 ,317

a result that agrees with the one found in [9] through different means.318

This procedure also gives an alternative proof to the following lower bound intro-319

duced in [6]:320

Theorem 16. Suppose (X,Y ) is the optimal coupling between µ and ν. Let m1 =321

EX and m2 = EY and Σ1,2 be their respective covariance matrices. Denoting the322

nuclear norm of a matrix M by ‖M‖∗, we have the following lower bound for the total323

transportation cost:324

(36) E‖X − Y ‖2 ≥ ‖m1 −m2‖2 + ‖Σ1‖∗ + ‖Σ2‖∗ − 2‖Σ1/2
1 Σ

1/2
2 ‖∗.325

Proof. This bound follows directly from the estimation in the proof of Property 12.326

Since327

‖Σ1‖∗ = tr(Σ1), ‖Σ2‖∗ = tr(Σ2), ‖Σ1/2
1 Σ

1/2
2 ‖∗ =

N∑
i=1

di,328
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applying the optimal affine pair to general random variables X and Y , we have329

E‖X − Y ‖2 = ‖m1 −m2‖2 + ‖Σ1‖∗ + ‖Σ2‖∗ − 2‖Σ1/2
1 Σ

1/2
2 ‖∗ + E‖X̃ − Ỹ ‖2.330

Since clearly E‖X̃ − Ỹ ‖2 is non-negative, we derive the lower bound (36) along with331

the condition for the bound to be sharp.332

A more general application of this procedure is to precondition measures and333

datasets before applying any numerical optimal transport algorithm. The new prob-334

lem is generally easier to solve, as it has a smaller transportation cost than the original335

one.336

In practice, instead of continuous probability measures in closed form, one of-337

ten has only sample points drawn from otherwise unknown distributions. Applying338

the procedure of this article to precondition a problem posed in terms of samples339

is straightforward, since the preconditioning maps act on the random variables, and340

hence on the sample points. The only difference is that, instead of the true mean val-341

ues and covariance matrices, one uses estimates, such as their empirical counterparts,342

to define the preconditioning maps.343

6. Numerical Experiments. Our first example concerns optimal transport344

problems between two-dimentional normal distributions. Consider µ and ν defined345

by346

(37) µ = N

(
[1, 1],

(
2 0
0 1

))
, ν = N

(
[−1, 0],

(
1 −1
−1 2

))
.347

We generate N = 200 data points {xi}200
i=1 and {yi}200

i=1 from each distribution. The348

distributions and sample sets are shown in figures Figure 1a and Figure 1b.349

We then perform the preconditioning procedure on both the distributions and the350

sample sets. Notice that the two versions should give slightly different results, because351

in the sample-based version empirical statistics are used instead of the true ones.352

The results are shown in Figure 1c and Figure 1d. The preconditioning procedure353

for continuous measures by definition makes µ̃ = ν̃. On the other hand, the two354

preconditioned sample sets are consistent with the preconditioned measures.355

In the second example, we test the preconditioning procedure on more complicated356

distributions. We define both µ and ν to be Gaussian mixtures:357

(38)
µ = 1

2N

(
[2,−1],

(
1/4 0
0 1/4

))
+ 1

2N

(
[2,−3],

(
1/2 1/4
1/4 1/4

))
ν = 2

3N

(
[2, 1],

(
3 −1
−1 2

))
+ 1

3N

(
[−2, 1],

(
2 1
1 2

))358

In Figure 2c and Figure 2d the preconditioned datasets have the same diagonal co-359

variance matrix and are closer to each other than in the original datasets. As in the360

first example, the preconditioned sample sets are consistent with the corresponding361

preconditioned measures. This shows numerically that the preconditioning procedure362

on sample sets is consistent with the procedure on continuous measures.363

In the third example, we apply the preconditioning procedure along with the364

sample-based numerical optimal transport algorithm introduced in [11], which takes365

sample sets as input and compares and transfers them through feature functions.366

This iterative algorithm approaches the optimal map by gradually approximating367

the McCann interpolant [13] and updating the local transfer maps. We apply the368
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Fig. 1: Preconditioning on the two Gaussian distributions µ and ν defined in (37).
Sample sets {xi} and {yi} are sampled from µ and ν respectively, each with sample
size 200. In (c)(d), the preconditioned measures µ̃ and ν̃ are derived from µ and ν by
the preconditioning procedure. {x̃i} and {ỹi} are transferred from the original sample
sets with maps defined by their empirical mean values and covariance matrices.

preconditioning procedure and give the preconditioned sample sets to the algorithm.369

Then we take the optimal map from the algorithm’s output and transform it to solve370

the original problem. The preconditioning procedure is crucial on two grounds: not371

only does the algorithm perform better on the preconditioned sample sets, which are372

closer to each other that the original ones, but feature selection becomes easier, as373

the same features describe the two distributions at similar levels of precision.374

We choose a two-dimensional shape transform problem to test the algorithm. The375

problem involves finding the optimal transport between two geometrical objects, which376

can be described in probabilistic terms by introducing a uniform distribution within377

the support of each. For demonstration, consider the specific task of transforming an378
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(c) µ̃ and {x̃i}
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(d) ν̃ and {ỹi}
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Fig. 2: The distributions µ and ν are the Gaussian mixtures defined in (38). {xi} and
{yi} are derived in the same way as in figure Figure 1. In (c)(d), the two precondi-
tioned sample sets {x̃i} and {ỹi} are transferred from the original datasets through
maps defined in terms of their empirical mean values and covariance matrices.

ellipse into a ring (Figure 3a), described by:379

(39)
Ω2 = {(x, y)

∣∣1 ≤ 3(x− 5)2 + 2(y + 1)2 − (x− 5)(y + 1) ≤ 9)}
Ω1 = {(x, y)

∣∣(x− 1)2 + 10y2 ≤ 1)}380

Both sample sets are drawn from uniform distributions within each region, with381

the sample size set to 1000 points per sample set.382

This is a challenging optimal transport problem, since a) the locations and sizes383

of the two regions are different; b) the topological structure of the two regions are384

different, as one is simply connected and the other is not; c) both regions have sharp385

boundaries, which makes the solution singular; and d) since both shapes are eccentric,386

the optimal map between them is not essentially one dimensional as in the transfor-387
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mation between a circle and a circular ring.388

(a) Ω1 and Ω2
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(c) preconditioned Ω2
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(d) t = 0 (e) t = 1/5 (f) t = 2/5 (g) t = 3/5 (h) t = 4/5 (i) t = 1

Fig. 3: Shape transformation problem. The two regions Ω1 and Ω2 are shown in (a),
and their preconditioned images in (b)(c). (d)-(i) illustrate the McCann Interpolation
of the optimal map, at times shown in the titles. All computation are carried out on
sample sets drawn from the corresponding region. For the plots, we estimate the
density function p(x) for each sample set and display the area with p(x) > ε, where ε
is a small constant. The density functions are estimated by kernel density estimator
with optimal kernel parameters.

The preconditioned regions are shown in Figure 3b and Figure 3c, they share the389

same mean and diagonal covariance matrix. The two preconditioned regions are much390

closer to each other, the blue one distinguished by its hole and a slightly smaller radius.391

Using the sample-based algorithm on the preconditioned sample sets, we find the392

optimal map T between the two preconditioned regions. Reversing the preconditioning393

step, the map can then be transformed back to the optimal map between Ω1 and Ω2.394

The map and its McCann interpolation are shown in the second row of Figure 3.395

Without the preconditioning step, the procedure would have produced much poorer396

results and at a much higher computational expense.397

7. Conclusions and Future Works. This paper describes a family of affine398

map pairs that preserves the optimality of transport solutions, and finds an optimal399

one among them that minimizes the remaining transportation cost. The procedure400

extends from the L2-cost to more general cost functions induced by an inner product.401

Based on these map pairs, we propose a preconditioning procedure which maps input402

measures or datasets to preconditioned ones while preserving the optimality of the403

solutions.404

The procedure is efficient, easy to implement and it can significantly reduce the405

difficulty of the problem in many scenarios. Using this procedure one can directly solve406

the optimal transport problem between multivariate normal distributions. We tested407

the procedure both as a stand-alone method and along with a sample-based optimal408

transport algorithm. The procedure in all cases successfully preconditioned the input409

measures and datasets, making them more regular and closer to their counterparts.410

For future works, one natural extension is to consider non-linear admissible map411
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pairs, which can potentially reduce further the total transportation cost and solve412

directly a wider class of optimal transport problems. If the family of admissible413

map pairs is rich enough, one can potentially construct a practical optimal transport414

algorithm from these map pairs alone.415

Another possible extension is to the barycenter problem [1]:416

(40) min
πk∈Π(µk,ν),ν

K∑
k=1

wk

∫
c(x, y)dπk(x, y),417

where µ1, µ2, · · · , µK are K different measures with positive weights w1, w2, · · · , wK .418

Instead of the two measures of the regular optimal transport problem, we would like419

to map K measures simultaneously while preserving the optimality of the solution.420

The simplest of such maps is the set of translations that give all measures the same421

zero mean.422
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