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Abstract

Prototypal analysis is introduced to overcome two shortcoming of archetypal analysis: its
sensitivity two outliers and its non-locality, which reduces its applicability as a learning
tool. Same as archetypal analysis, prototypal analysis finds prototypes through convex
combination of the data points and approximates the data through convex combination
of the archetypes, but it adds a penalty for using prototypes distant from the data points
for their reconstruction. Prototypal analysis can be extended via kernel embedding to
probability distributions, since the convexity of the prototypes makes them interpretable
as mixtures. Finally, prototypal regression is developed, a robust supervised procedure
which allows the use of distributions as either features or labels.

Keywords: Archetypal Analysis, Prototype Analysis, Distribution Regression, Repro-
ducing Kernel Hilbert Space, Kernel Embedding

1. Introduction

Archetypal analysis, an unsupervised learning method introduced by Cutler and Breiman
(1994), approximates a set of data points by convex combinations of archetypes, which are
themselves convex combinations of the original data. At the cost of introducing convexity
constraints into the optimization, archetypal analysis achieves interpretability, as a convex
combination can be thought of as a weighted sum of its components —not so a general
linear combination, where components can be subtracted as well as added. This extra
computational cost can be handled efficiently, as several studies have shown (Bauckhage
and Thurau, 2009; Mgrup and Hansen, 2012; Chen et al., 2014).

Archetypal analysis has been applied in physics (Stone and Cutler, 1996; Stone, 2002;
Chan et al., 2003), biology (Huggins et al., 2007; Romer et al., 2012; Thggersen et al., 2013),
psychology (Thurau and Drachen, 2011; Drachen et al., 2012, 2016; Sifa and Bauckhage,
2013), marketing (Li et al., 2003; DEsposito et al., 2006), performance analysis (Porzio et al.,
2006, 2008; Eugster, 2012; Seiler and Wohlrabe, 2013) and computer vision (Marinetti et al.,
2006; Thurau and Bauckhage, 2009; Cheema et al., 2011; Asbach et al., 2013; Xiong et al.,
2013).

Despite the many positive features of archetypal analysis, one can point out two signif-
icant drawbacks. One is its sensitivity to outliers: since the data is approximated by its
projection on the convex hull of the archetypes, adding a point outside of the boundary of
the data impacts the archetypes to a large degree. Another drawback of the methodology
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is its non-locality: data points are approximated as convex combinations of archetypes that
may be very far away. For many learning tools, such as regression, such representation is
of little use.

This paper introduces prototypal analysis as a robust alternative to archetypal analysis
without these drawbacks. Prototypal analysis preserves interpretability, as it finds proto-
types via convex combinations of the data and reconstructs the data as convex combinations
of the prototypes. The difference between archetypal and prototypal analysis is that the
former allows arbitrary convex combination of archetypes for representing the data, while
the later penalizes the use of prototypes far away from a data point to represent it. Tech-
nically, this is achieved by adding a L; penalty term on the reconstructing coefficients for
each point, with weights that depend on the distance between the point and the prototype
under consideration. As a consequence, a point far away from the majority of the data
would contribute little to the reconstruction and will not be chosen as a prototype.

The locality of the reconstruction by prototypes makes them useful for key learning
tasks such as regression. Given training data on predictors and responses, regression con-
cerns inferring the response for new instances of the predictors. We introduce prototypal
regression as a new regression method with the advantage of interpretability and robust-
ness. Prototypal regression uses convex combinations to extract prototypes from both the
predictors and the response. The regression relationship is built with pairs of one prototype
from the predictor and one prototype from the response, i.e. prototypal regression maps
each prototype from the predictor to one prototype from the response and extends to all
values of the predictors via local convex combinations. Here convexity is the source of in-
terpretability and, combined with locality, of robustness, as an outlier will only affect the
predictions in its immediate neighborhood.

Kernel methods and reproducing kernel Hilbert space (RKHS) are widely used in ma-
chine learning to extend algorithms where only inner products among data points are re-
quired (Schoélkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Hofmann et al.,
2008). This is the case of archetypal analysis, which can therefore be extended via kernels
(Mgrup and Hansen, 2012). Examples of application can be found in time series clustering
(Bauckhage and Manshaei, 2014), behavior analysis (Sifa et al., 2014) and image processing
(Zhao et al., 2015; Zhao and Zhao, 2016). Prototypal analysis and prototypal regression
can be kernelized as well, enabling in particular the use of probability distributions as ei-
ther features or outputs, in lieu of the more conventional discrete or real-valued scalars
and vectors. This extension is particularly well suited for archetypal and prototypal anal-
ysis, as their underlying convex combinations correspond to mixtures of distributions. We
adopt kernel embedding (also known as kernel mean embedding) to extend archetypal anal-
ysis, prototypal analysis and prototypal regression to handle distributional data. Kernel
embedding maps probability distributions or their samples into a RKHS. Using the inner
products of the RKHS, one can find archetypes and prototypes of distributions and also
perform regression in this infinite dimensional setting. More generally, kernel embedding
enables prototypal analysis to deal with a blend of categorical, numerical and distributional
data.

In prior work, Muandet et al. (2012) extends support vector machine to support mea-
sure machine for classification of distributions using the kernel embedding induced inner
product. Szabé et al. (2015, 2016) performs a similar extension for kernel ridge regression.



PROTOTYPAL ANALYSIS AND PROTOTYPAL REGRESSION

Péczos et al. (2013) regresses numbers from distributions through a kernel-kernel estima-
tor, which involves one kernel for density estimation and another for kernel smoothing,
using the distance between the distributions to weight the response variables. Oliva et al.
(2013) introduces a distribution to distribution regression model via orthogonal series den-
sity estimation on the response distributions and kernel density estimation on the predictor
distributions and the new input.

The rest of this paper is organized as follows: section 2 briefly reviews archetypal analysis
and empirically shows that it is not robust to outliers and that, as it concentrates on the
boundary of the data, it does not resolve the underlying space well. Section 3 introduces
prototypal analysis as a robust unsupervised method to find prototypes and build data-
driven barycentric coordinates system without these two drawbacks. Section 4 introduces
simple and multiple prototypal regression —the latter applicable to features of different
nature that cannot naturally be regarded as components of a vector. Section 5 extends
archetypal and prototypal analysis and prototypal regression via kernels and applies it to
the analysis of distributional data.

2. Archetypal Analysis

Archetypal analysis approximates data points by convex combination of “archetypes”, which
are themselves convex combinations of the data points (see Cutler and Breiman, 1994).
Given a data set {x;}" ;, one seeks archetypes of the form

wi=> byxi, Y by=1, by >0, je[lk (1)
=1 =1

and approximates each data point through
k k
X; ~ Zajiuja Zaji =1, a; >0, ie[l,n] (2)
j=1 J=1

by solving the following optimization problem:
2
n

k n
min g X; — g aj; g brixy|| . 3
a;i>0,b;;>0 ' 7 J )
=1

i=1 j=1
Yr_y aji=1
27:1 byj=1

As archetypal analysis minimizes the distance between the data and the convex hull of
the archetypes, it tends to choose as archetypes extreme points among the data in order to
enlarge this convex hull. In particular, when the data includes outliers, these are typically
chosen as archetypes, as illustrated in Figure 1. As the number k of archetypes grows,
they sit on the boundary of the convex hull of the data, not resolving its interior, as shown
in Figure 2. Also, when k is sufficiently large (typically when k > d + 1, where d is the
dimension of the space x of features), the a;; are not uniquely defined.
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Algorithm 1 Archetypal Analysis

Input: Data {z;}? ;, k: number of archetypes.
Output: Archetypes {uj}?:1 and approximation {Z;}" ; to data by their convex combi-
nation.

2
a0 agmin 3 b~ > Z by
a;j;>0,b;;>0 i=1 7=1
ari+-+ag;=1
bij+tbn;=1
3: Uj bljxl + -+ bnjxn
4: end for
5. fori=1,--- ,n do
6: T; < apuy + -+ apug
7: end for
8: return {u]‘}?:l, {#i}iy
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Figure 1: Archetypal analysis on two dimensional data with 4 archetypes. Data of the right
figure contains one more outlier than the left figure. The archetypes are visualized using
the '+’ sign. Adding one outlier fundamentally changes the location of the archetypes. In
addition, the reconstruction of many data-points in terms of the archetypes is not unique.

3. Prototypal Analysis

Like archetypal analysis, prototypal analysis finds prototypes {uj};?:las convex combina-
tions of the data points {x;}!';, and approximates the latter as convex combinations of
the former, as in (1, 2). The difference lies in that, when reconstructing each data point,
prototypal analysis is biased toward using prototypes near that point. To this end, it adds
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Figure 2: Archetypal analysis on two dimensional data with 3, 4, 5, 6, 7 and 8 archetypes.

The archetypes are visualized using the '+’ sign. As the number of archetypes grows, they
cover just the perimeter of the convex hull of the data.

a penalty term on the distance between points and prototypes, replacing the objective
function in (3) by

2
n k n n k n 2
min E X; — Qi Z blsz + A E E Qi || X — Z blel ) (4)
a;j;>0,b;;>0 =1 =1 =1 i=1 j=1 =1
S aji=1

Sl by=1

where A > 0 is a tuning parameter. In the penalty term, a;;, the weight of the j-th archetype
in the reconstruction of x;, is multiplied by [|x; — > ., bljxl||2, the square of distance be-
tween data point x; and the j-th prototype u; = > ', bj;x;. Hence the closer x; is to
the j-th prototype, the more weight this prototype will be assigned in the reconstruction.
Compared with archetypal analysis, which tends to use extreme points as archetypes, pro-
totypal analysis has prototypes that resemble the original data. Hence it is less sensitive to
outliers. Figure 3 shows the prototypes corresponding to the same data of Figure 1. In this
case, adding one outlier does not change the archetypes significantly. In the computational
procedure we use to minimize (4), we alternate between minimizing over the a and b, which
is also the procedure of choice in archetypal analysis (Cutler and Breiman, 1994).
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Algorithm 2 Prototypal Analysis

Input: Data {z;}}",, number of prototypes k, penalty coefficient \.
Output: Prototypes {u; };“ 1 and reconstruction of data by archetypes {@:}

1: (aji), (bj) < argmin Z X; — ZaﬂZbl]xl —1—)\22%2 X; — Zbl]Xl
7=1

a;i>0by;>0 5 ==
ait+-tag;=1
b1]+ +bnj—1

for j=1,--- ,k do

uj < b1jX1 + -+ by
end for
fori=1,---,ndo

Ti < apug + -+ agiug
end for

return {u]-}?:p {@i},

Prototypal analysis can be viewed as a mixture of archetypal analysis and k-means
clustering. When A goes to infinity, only the penalty term remains in prototypal analysis,
and the problem reduces to

min a;
a;j;20,b;;>0 ; ]Zl 7
1 a4i=1
Z?:l le:1
which is equivalent to K-means clustering, with the prototypes u; = »_ ;" bj;x; playing the
role of barycenters. To see this equivalence, notice two facts about the solution to (5):

Xi — Z bl]Xl 5 (5)

1. For each observation x;, the only nonzero aj; corresponds to the closest u;, for which
aji =1.

2. For each prototype uj, the only nonzero b;; correspond to those [ such that u; is the
closest prototype to x;. Moreover, these b;; all have the same value, as the barycenter
of a set of points is the minimizer of the sum of the square distances to them.

4. Prototypal Regression

Given a set of predictor-response pairs (x;,y;), regression is the task estimating the response
yo corresponding to a new value xq of the predictor. Performing prototypal analysis on the
{xi} yields the prototypes {u;} and a rule that approximates xg as a convex combination of
a local subset of the {u;}. Hence introducing prototypes {v;} in y-space that approximate
the images of the {u;}, one can estimate yo as the corresponding convex combination of
the {’Uj}.

4.1 Simple Prototypal Regression

Simple prototypal regression estimates the response y from a single predictor x, where both
predictor and response can be vectorial, using prototypes of both x and y. The prototypes
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Figure 3: Prototypal analysis on two dimensional data with 4 prototypes and penalty 0.05.
The data of the right figure contains one more outlier than the left figure, but this affects
the location of the prototypes only minimally. The prototypes are visualized using '+’ signs.

of x come directly from prototypal analysis, i.e. solving (4), while the choice of prototypes
of y takes the regression into account. Denoting by u; the prototypes of x and by v; the
prototypes of y, the prototype pair (u;, v;) defines the regression function f via

f(x0) = a1ovi + -+ + aroVi. (6)

where a,o is the barycentric coordinates of x( in prototypal analysis:

k 2 k
min %o =Y ajouy|| A ajollxo —uyll*. (7)
30Z . i
i1 ajo=1 7= 7=

Given the weights {a;;} for reconstructing x; in terms of the {u;}, the prototypes v; are
obtained by minimizing the squared errors of (6) on (x;,y;), i.e.

2
k n

n n
V=D cgyi c= agmin 3 llyi— ) a5} ayi|| (®)
ap=t =1

i=1 j=1 =1
g cig=1

Figure 5 illustrates simple prototypal regression, kernel regression, regression tree and k
nearest-neighbor regression on a one-dimensional synthetic data set.
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Figure 4: Prototypal analysis on two dimensional data with penalty 0.05. The number &
of prototypes is set to 3, 4, 5, 6, 7 and 8. The prototypes are visualized using '+’ signs.
Unlike archetypes, as the number of prototypes grows, they populate all data-rich areas.

4.2 Multiple Prototypal Regression

Multiple prototypal regression estimates the response y using m predictors {x(l)}l";1 (again,
both the response and each of the predictors can be vectorial.) As in simple prototypal
regression, it finds prototypes for x(!) and y and builds the regression function on prototypes.

The prototypes of x(!) still come from direct prototypal analysis, i.e. solving (4) for each
{XEZ)}?:l. Each predictor has k; prototypes and penalty coefficient \;, these need not be the
same across predictors. When finding prototypes for y, we weight the prototypes of each
x() by an importance coefficient. Denoting by ug-l) the prototypes of x() and by vg-l) the
prototypes of y corresponding to the I-th predictor, the regression function f in multiple
prototypal regression is given by

m 1
P l l
f(xo) =) 7 a§0)V§ ) (9)
=1 j=1
where ag-l) are the barycentric coordinates of x(") in prototypal analysis as in (7).
The importance coefficients 7; in (9) are non-negative and add up to one. Both the
importance coefficients and the prototypes of y are obtained by minimizing the squared
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Algorithm 3 Simple Prototypal Regression - Fitting

Input: Predictor data {x;}},, response data {y;}",, number of prototypes k, penalty
coefficient \.
Output: Prototypes {u]}k_1 and {v]}k’_1 for predictor and response respectively.

1: (aj), (bj) < argmin Z X; — ZaﬂZmbl +)\ZZaﬂ X; — Zbl]xl
7j=1

a;j;>0,b;;>0 i=1 i=1 j=1
ayi+tag;=1
b1+ tbpi=1

2: for j=1,--- k do
3: u; bljxl —+ .. +bann
4: end for

2

5 (cjj) = argmin Z Yi — Zaji chj}’l

Clj+ +an—1 N

for j=1,---,k do

Vj & C15¥1 + -+ Cnjyn
end for

return {u; }é?:p {v; }§:1

Algorithm 4 Simple Prototypal Regression - Prediction

Input: Value xq of the predictor, prototypes {uj}g?:l and {Vj};?:l for predictor and re-
sponse respectively, penalty coefficient A.
Output: Predicted yg.

2
1: (aj) ¢+ argmin ||xg — Zaju] + )\Za] %0 — uj?
a; >0 j=1 j=1
ar+-+ap=1

2: 5’0 S~ a1vy+ -+ apvy
3: return yg

@

errors of (9) on the data: denoting by aj, (l

the weight of u; @

) for reconstructing x;”,

2
k; n
l ! ) !
=Yl erm g Ylvi=3 a3 d) Y
o) m>0 =1 j=1  h=1
cglj)-k —1—053-—1
Tit+ o+ Tm=1

Here the optimization is carried out through the alternate minimization over the b and .

4.3 Applications
4.3.1 IrIs FLOWERS

We apply multiple prototypal regression to the data set for classification of Iris into species
introduced by Fisher (1936). This includes three Iris species with four features for each
flower: sepal length, sepal width, petal length and petal width. In this example, we treat
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Figure 5: 100 pairs x;, y; are sampled from a Gaussian conditional distribution with condi-
tional mean § = sin(x) — 23 (the black curve), z ~ U[0,1], y = 7 +¢,e ~ N(0,0.1). The red
curves arise from regression. Top left panel: prototypal regression with 6 prototypes and
penalty 0.01 (The prototypes of z; and y; are visualized using '+’ signs.) Top right panel:
kernel regression with Epanechnikov kernel with (half) window width A = 0.15. Lower left
panel: regression tree. Lower right panel: 10-nearest-neighbor regression.

the sepal and petal dimensions as two two-dimensional predictors and one-hot encode the
three species as (1,0,0), (0,1,0) and (0,0,1). Multiple prototypal regression predicts a
probability vector given the sepal and petal features. The species with highest probability
is then adopted as predicted label.

10
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Algorithm 5 Multiple Prototypal Regression - Fitting

Input: Predictor data {xgl) P ,{xgm) ", response data {y;};",, number of proto-
types k1, -, km, penalty coefficient A1, -+, \p,.
Output: Prototypes {u }] 1 ,{ugm)} for predictors and {v }51 e ,{v](-m) };‘?’:”1
for response, importance coefficients 71, -+ , 7,.
1: forl=1,---,mdo
. 0 (l)
2 (ag;), (by;) )
n k; n n k n 2
. ! l H_( ! ! H_(
arg min Z xg ) _ Z ag.i) bé}xg) + N Z Z ag-i) x,g ) _ Z bgw).xgl)
al) >0 >0 i=1 =1  h=1 i=1 j=1 h=1
(DJr +a(l) 1
b(”+ +b§fj) 1
3 for , k; do
4 (” - b() D)
5 end for
6: end for )
!
7: (cgj).),(n) < argmin Z Vi — anaﬂ Zch]yh
b( ) ,71>0 i=1 j=
§lj)+ =1
T+ +Tm=1
8 forl=1,--- ,mdo
9: for j=1,---,k do
10: (l) — cgj)y Tt cgyn
11: end for
12: end for
13: return{u }J 1,"‘,{ }j 1,{v }J E ,{ }j LT Tm

There are 150 samples in the Iris data set with 50 samples for each species. Using
stratified sampling, we randomly split the samples into a training set of 105 samples and a
test set of 45 samples. By grid search with cross validation on the training data, we pick
the number of prototypes to be 11 and the penalty coefficient to be 0.1 for both features.
The accuracy scores on the training and testing sets are shown in Table 1.

The Iris data set and the prototypes of the sepal and petal dimensions are shown in
Figure 6. Figure 6 suggests the petal dimensions are more informative than the sepal’s for
the classification task. This agrees with the importance coefficients of prototypal regression,
which are 3 x 10~7 and 0.9999997 for the sepal and petal dimensions respectively. Figure
7 shows the responses of this classification problem and the prototypes of the responses
corresponding to the petal dimensions.

11



WU AND TABAK

Algorithm 6 Multiple Prototypal Regression - Prediction

Input: Values xg = (x(()l),--- ,X(()m)> of the predictors, prototypes
{uﬁl)};?lzl,--- ,{ug-m)}fgl for predictors and {v§1)}§1:1,--- ,{vgm)}fgl for response,
importance coefficients 71, - - - , 7y,, penalty coefficients A1, -« -, Ap,.

Output: Predicted yg.

1: for{=1,--- ,m do

ki 2 ki
2: (ag»l)) < argmin x(()l) — Z ag-l)ugl) + A Z ag-l) Hx(()l) — ug-l) H2
>0 j=1 j=1
a(ll)—&—---—{—a;cl):l
3: end for

m k;

N 0. (1

4: yo < ZT[Z(IE)V;)
=1 j=1

5: return yg

training score | test score
prototypal regression 0.96 1.00

Table 1: Accuracy score on Iris flowers data set.

5. Kernels and Extension to Probability Distributions

5.1 Prototypal Learning with Kernels

Archetypal analysis, prototypal analysis and prototypal regression involve the data only
through the pairwise inner products

(xi, %), (Y, ¥5)) (11)

as follows from expanding the squared norms in formulations (3), (4), (8) and (10). Hence
we can extend all three to reproducing kernel Hilbert spaces. Choosing a symmetric and
positive semidefinite kernel function K, the map from x; to h(x;) = K(-,x;) yields the inner
product

(h(xi), h(x))) = K(xi, %), (12)

which replaced in (12) in (3), (4), (8) or (10), extends archetypal analysis, prototypal
analysis and prototypal regression to a (potentially infinite-dimensional) reproducing kernel
Hilbert space.

5.2 Prototypal Learning on Distributions through Kernel Embedding

Probability distributions or samples thereof can also be mapped to a reproducing kernel
Hilbert space via kernel embedding (see Berlinet and Thomas-Agnan, 2004; Gretton et al.,
2006; Smola et al., 2007; Sriperumbudur et al., 2010; Sejdinovic et al., 2012; Muandet et al.,
2017). With a symmetric, positive semidefinite kernel function K (-,-) on X x X, the kernel

12
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Figure 6: Sepal dimensions and petal dimensions of Iris flowers and their prototypes.
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Figure 7: Species of Iris flowers and prototypes corresponding to petal dimensions. This plot
of the three-dimensional object (Py, P2, P3) is represented here in barycentric coordinates,
where the three vertices of the triangle correspond to the three species.

embedding g maps a probability measure p(-) on X to a reproducing kernel Hilbert space

through

monmnzéKumwmx

13
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with induced inner product given by

(g(pa (), 9(p2(+))) = - K (21, z2)dp (z1)dp(w2). (14)

Kernel embedding does not necessarily yield an injective map; Sriperumbudur et al.
(2010) give several criteria for whether a kernel induces an injective embedding for distribu-
tions on R? and T?. Some commonly used kernels on R? for injective kernel embeddings are
listed in Table 2. The Gaussian, Laplacian and Bsg,11-spline kernels are shown to induce
injective embeddings in Sriperumbudur et al. (2010). The energy distance kernel induces
an embedding well-defined on distributions with finite first moment. The energy distance
Dgp (Székely and Rizzo, 2013; Rizzo and Székely, 2016):

D2 (1 (), pra)) =2 /

|1 = @2 dpa (@1)dpz(22) — / |x1 = @a| dpy (w1)dpn (22)
XxX

XXX

- / o1 — wall dpia(ay)dpia )
XxX

is proved in Klebanov (2002) to yield a metric, implying that the energy distance kernel
induces an injective embedding.

Replacing the integrals in (13) and (14) by the corresponding empirical means gives the
kernel embedding and induced inner product for samples of distributions. Given samples
{x;}_, of u, the kernel embedding for the empirical distribution f is

) = g(a() =Y K (), (15)
1=1

and given samples {Xl(»l) SR {X§2) w2, of p1 and po, the induced inner product of the

empirical distributions i1 and fio is

ny n2

(i (), (i) = S 3 K(an, ). (16)

i1=112=1

In general, the time complexity of evaluating the inner product is O(ning). For the Gaus-
sian kernel, the time complexity for the inner product can be reduced to O(ny + ng) via
the fast Gauss transform (Greengard and Strain, 1991) or improved fast Gauss transform
(Yang et al., 2003). For the energy distance kernel on sorted samples of one-dimensional
distributions, the time complexity of evaluating the inner product is O(ny + ng), as shown
in Appendix A.

We can extend archetypal analysis, prototypal analysis and prototypal regression to dis-
tributions with the inner products induced by kernel embedding. In archetypal/prototypal
analysis, the archetypes/prototypes are mixtures of the input distributions and their mix-
tures are used to reconstruct the input distributions. In prototypal regression, we can have
distributions as predictors, responses or both. In multiple prototypal regression, we can
blend numerical, categorical and distributional predictors.
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kernel K(z,y)
2

Gaussian e~ ollz—yll
Laplacian e—olle=vl

d
Boy,+1-spline H Bont1(zi — i)

i=1
energy distance [|lz]| + |yl — [z — y]|

Table 2: Some commonly used kernels on R? for injective kernel embeddings. For Ba,1-
spline, By, 11(x) = *§2n+2)1[_1 11(x), where the symbol *§2n+2) represents the (2n + 2)-fold
272

convolution.

5.3 Applications
5.3.1 SMARTPHONE-BASED HUMAN ACTIVITIES RECOGNITION DATA SET

The smartphone-based human activities recognition data set in Anguita et al. (2013) and
Reyes-Ortiz et al. (2016) contains activity data collected by smartphone’s inertial sensors. In
their experiments, 30 volunteers conducted 6 activities: walking, walking upstairs, walking
downstairs, sitting, standing and laying while wearing a wrist-mounted smartphone. The
data set contains raw and processed data. The raw data are the triaxial signals from
the accelerometer and the gyroscope of smartphones at a constant rate of 50Hz for each
activity. The processed data include statistics, such as the mean, standard deviation and
auto correlation of the raw signals, and other data, such as the magnitude and the fast
Fourier transform of the raw signals.

Anguita et al. (2013) and Reyes-Ortiz et al. (2016) use the processed data to classify the
activities. We use the raw data instead, i.e. the triaxial signals from the accelerometer and
gyroscope. Each trial in the raw data set contains two three-dimensional time series of the
accelerometer and the gyroscope respectively and a label of the activity. We divide the data
set into a training data set of 772 trials and a test data set of 84 trials. Multiple prototypal
regression is applied for this classification task. The samples of triaxial signals from the
accelerometer and the gyroscope are the two predictors in multiple prototypal regression
and energy distance kernel is used for kernel embedding. The labels are binarized via one-
hot encoding. The number of prototypes is set to be 70 and the penalty coefficient is set to
be 1. We achieve a 97.62% accuracy on the testing subset. The confusion matrix for the
test data is shown in Table 3, the importance coefficients are listed in Table 4.

5.3.2 EPA OUTDOOR AIR QUALITY DATA SET

The EPA Outdoor Air Quality Data (US Environmental Protection Agency, 2017) col-
lects pollutant and meteorological data at outdoor monitors across the United States,
Puerto Rico, and the U. S. Virgin Islands. This data set contains hourly data of crite-
ria gases (Ozone, SO, CO and NOs), toxics and precursors (HAPs, VOCs, NONOxNOy
and lead), particulates (PM2.5 FRM/FEM Mass, PM2.5 non FRM/FEM Mass, PM10 Mass
and PM2.5 Speciation) and meteorological data (winds, temperature, barometric pressure,
relative humidity and dew point).
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walk | upstairs | downstairs | sit | stand | lay
walk 12 0 0 0 0 0
upstairs 1 17 0 0 0 0
downstairs 0 0 18 0 0 0
sit 0 0 0 11 1 0
stand 0 0 0 0 12 0
lay 0 0 0 0 0 12

Table 3: Confusion matrix of multiply prototypal regression on smartphone-based human
activities recognition data set. The rows are the actual classes and the columns are the
predicted classes.

accelerometer | gyroscope
importance coefficients 0.44 0.56

Table 4: Importance coefficients of multiply prototypal regression on smartphone-based
human activities recognition data set.

We use multiple prototypal regression to estimate the distributions of the nitrogen diox-
ide (NOg2) density from the geophysical locations (the latitude and longitude of the stations)
and the distributions of the meteorological data. The meteorological data that we use are
the one-dimensional distribution of wind speed, the one-dimensional distribution of wind
direction and one-dimensional distribution of outdoor temperature. The training data set
contains the data collected in the year 2016 at 200 stations and the test data set contains
the data collected in the same year 2016 at 23 other stations. We use the energy distance
kernel for embedding. The number of prototypes is set to 40 and the penalty coefficient to
0.1. The importance coeflicients are listed in Table 5 and the out-of-sample predictions are
illustrated in Figure 8.

location | temperature | wind direction | wind speed
importance coefficients 0.23 0.40 0.13 0.24

Table 5: Importance coefficients of multiply prototypal regression on EPA outdoor air
quality data set.

6. Conclusions

We have proposed and developed prototypal analysis and regression, two robust extensions
of archetypal analysis. In addition, we have shown how these methodologies can be extended
via kernel embedding to handle learning problems where the data points are probability
distributions known through samples. Here the interpretability associated with the convex
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Figure 8: Out-of-sample prediction of NOs density distribution. The black curves are the
true NOs distributions at each station and the red curves are the predicted NO; distributions
by multiple prototypal regression.

combinations involved is clearest, as these combinations can be interpreted as mixtures of
distributions.

Prototypal analysis adds to the objective function of archetypal analysis a term that
penalizes the use of distant prototypes for the reconstruction of data points. It can be
regarded of as an interpolation between archetypal analysis —corresponding to a zero value
of the penalization parameter A— and k-means, which arises as A — oo. This adds robustness
to outliers and a sense of locality, which becomes particularly useful when the methodology
is used for regression.

We illustrate through real-life examples the applicability of the procedure, particularly
to scenarios that blend numerical and distributional features or that have probability dis-
tributions as labels to predict.
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Appendix A. Energy Distance Kernel of One-Dimensional Distributions

The energy distance kernel on distributions p,v can be estimated using their samples
{x;}7=,, {y;}:2, through the empirical mean:

kep(p,v) = — > il + — >yl = —— > D> e -yl (17)
Ng “— Ny “— NgNy “— “—
=1 7j=1 =1 j=1

The time complexity of (17) is O(ngzny).

For one-dimensional distributions, the time complexity of (17) can be reduced to the
linear O(ny + n,) when the samples {z;}72,,{y;}., are sorted, as illustrated in Algorithm
7. The intuition behind is that each term in %, Z?il |z; — y;|| can be expanded into

|z; — yJH = lzi>yj (75 — yj) - 1x¢§yj (w5 — yj) = (1x¢>yj - lftiéyj)mi + (1Ii§yj - 1Ii>yj)ij
yielding
Nng Ny Nax Ny Ty Ny
D) ST ol Lo FURRETINS! A ol | T 1>] b (8)
=1 j=1 =1 7j=1 7j=1 Li=1

Equation (18) implies that we only need to count how many y;’s are smaller than each x;
and how many z;’s are smaller than each y;. If the samples are sorted, this counting can
be done in linear time.
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