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Abstract

Statistical Archetypal Analysis (SAA) is introduced for the dimensional reduc-
tion of a collection of probability distributions known via samples. Applications
include medical diagnosis from clinical data in the form of distributions (such as
distributions of blood pressure or heart rates from different patients), the analy-
sis of climate data such as temperature or wind speed at different locations, and
the study of bifurcations in stochastic dynamical systems. Distributions can be
embedded into a Hilbert space with a suitable metric, and then analyzed simi-
larly to feature vectors in Euclidean space. However, most dimensional reduc-
tion techniques –such as Principal Component Analysis– are not interpretable
for distributions, as neither the components nor the reconstruction of input data
by components are themselves distributions. To obtain an interpretable result,
Archetypal Analysis (AA) is extended to distributions, requiring the compo-
nents to be mixtures of the input distributions and approximating the input
distributions by mixtures of components.

Keywords: archetypal analysis, dimension reduction, energy distance, kernel
embedding, principal component analysis

1. Introduction1

Finite collections of probability distributions appear naturally in a variety of2

settings, often as conditional distributions ρ(x|z) where z adopts a discrete set3

of values. For instance, x may represent a collection of clinical variables such4

as body temperature, blood pressure and cholesterol level, and z may stand for5

covariates such as sex, age group or medical treatment. In an example that this6

paper analyzes in some detail, x is the atmospheric temperature measured at7

ground level and z stands for the station where the measurements are performed.8

It is therefore a natural extension of data analysis to use as either labels9

or features, probability distributions instead of the more conventional discrete-10

valued variables, continuum scalars or vectors. Thus one might want to predict11
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not the temperature at a particular location and time but its probability distri-12

bution, or cluster populations for medical purposes according to the probability13

distributions of a group of clinical variables.14

A basic quantity that permeates data analysis is the distance between data15

points. There are several statistical distances in the literature that measure16

the dissimilarity between two probability distributions. Some are based on ana-17

logues of the Euclidean distance, some on information theory, some on optimal18

transport. Typically, each sheds a different light on what makes two distri-19

butions different. In this article, we use the energy distance as a measure of20

dissimilarity among distributions, as it is easy to evaluate efficiently from sam-21

ple points and can be derived from an inner product, thus rendering accessible22

many data analysis tools.23

We study the problem of dimensional reduction of sets of distributions. Af-24

ter being equipped with a metric and embedded into a Hilbert space, distri-25

butions can be analyzed similarly to conventional feature vectors. However,26

there is a gap between the dimensional reduction of distributions and vectors:27

interpretability. Traditional dimension reduction techniques, such as principal28

components analysis, lack interpretability when applied to probability distribu-29

tions, as the projection of each distribution onto the low dimensional subspace30

found is almost surely not a probability distribution: even though probability31

distributions can be embedded into a Hilbert space, almost all elements in this32

space are not probability distributions, since these are constrained by positivity33

and normalization.34

To overcome this difficulty in interpretation, we use the tools of archetypal35

analysis. Archetypal analysis finds a small number of “archetypes” that are36

convex combinations of the original data points, and approximates the origi-37

nal data points again via convex combinations of these archetypes. A convex38

combination can be interpreted as a mixture of probability distributions, so39

the archetypes found by archetypal analysis are mixtures of the original dis-40

tributions and the original distributions are approximated within the family of41

mixtures of the archetypes.42

This paper is arranged as follows: Section 2 gives a review of archetypal anal-43

ysis, of the algorithms for archetypal analysis in the general case and specifically44

for energy distance. Section 3 reviews reproducing kernel Hilbert space, energy45

distance, describes how distributions equipped with the energy distance can be46

embedded into a Hilbert space, and describes algorithms to evaluate the energy47

distance from samples. Section 4 introduces statistical archetypal analysis for48

the dimensional reduction of probability distributions and includes applications49

with numerical experiment.50

2. Archetypal Analysis51

Archetypal analysis approximates data points by convex combination of pro-52

totypes, where these prototypes, denoted “archetypes”, are themselves convex53

combinations of the data points.54
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Archetypal analysis was introduced in [1] –see also [2]– as a dimensional55

reduction method alternative to principal components analysis (PCA), yielding56

more interpretable results. It originated in the study of a dataset consisting of57

6 head dimensions for 200 soldiers, with the goal of designing face masks for the58

Swiss Army. For this dataset, PCA found principal components that did not59

resemble a head shape. To have patterns resembling “pure types” in the data,60

each entry in the dataset was approximated by a mixture of the patterns. To61

make patterns resemble the data, each pattern itself was a mixture of the data62

points.63

For a data matrix X = (x1,x2, · · · ,xn) representing n observations, each of
dimension m, Archetypal Analysis seeks k � n m-dimensional archetypes Z =
(z1, z2, · · · , zk), such that each xi can be approximated by a convex combination
of the zk:

xi ≈ a1iz1 + a2iz2 + · · ·+ akizk, aji ≥ 0,
∑
j

aji = 1,

where the zj themselves are convex combinations of the data:

zj = b1jx1 + b2jx2 + · · ·+ bnjxn, bij ≥ 0,
∑
i

bij = 1.

After setting a number of archetypes k, the coefficients a and b arise from the
optimization problem

min
aji,blj

n∑
i=1

∥∥∥∥∥∥xi −
k∑
j=1

aji

n∑
l=1

bljxl

∥∥∥∥∥∥
2

, (1)

with constraints

aji ≥ 0,
∑
j

aji = 1, bij ≥ 0,
∑
i

bij = 1,

or, in terms of the matrices A = (aji)k×n and B = (blj)n×k,

min
A,B
‖X −XBA‖2F (2)

under the same constraints, with ‖·‖F denoting the Frobenius norm64

‖M‖F =

(
p∑
i=1

q∑
j=1

|mij |2
) 1

2

. Alternatively, this can be written as:

A,B = argmin tr [(In −BA)ᵀG(In −BA)] , (3)

where G = XᵀX is the Gram matrix of data. This restatement is particularly65

convenient, as it will allow us to formulate the problem in terms of inner products66

among the data points instead of the points themselves, which in our problem67

are distributions. Thus we need a norm for distributions that derive from an68

inner product, for which we will adopt the energy distance.69
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3. Energy Distance70

The energy distance is a metric defined on probability measures ([3, 4]),71

which we will use to measure dissimilarity among probability distributions.72

Definition 1 (Energy Distance). For probability measures µ, ν on Rd, random
vectors X,X ′ ∼ µ(x), Y, Y ′ ∼ ν(y), E‖X‖ <∞, E‖Y ‖ <∞, the energy distance
between µ and ν, D(µ, ν), is defined by

D2(µ, ν) = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖, (4)

where ‖ · ‖ is the Euclidean norm on Rd, and X, X ′, Y and Y ′ are pairwise73

independent.74

The energy distance as defined above is a metric on distributions ([5], [6]).
It can be viewed as the metric induced by kernel embedding ([7]) with kernel

k(x, y) = ‖x− x0‖+ ‖y − y0‖ − ‖x− y‖, (5)

where x0 is a fixed value in Rd, whose choice does not affect the induced metric.
The kernel induces an inner product between distributions P and Q:

〈P,Q〉 = EX,Y k(X,Y ) (6)

where X ∼ P , Y ∼ Q, with X and Y independent. The corresponding square-
distance is given by

γ2k(P,Q) = 〈P, P 〉+ 〈Q,Q〉 − 2〈P,Q〉
= EXX′k(X,X ′) + EY Y ′k(Y, Y ′)− 2EXY k(X,Y ),

(7)

where the random vectors X,X ′ ∼ P (x), Y, Y ′ ∼ Q(y) are pairwise independent
(conditions for kernels to yield a metric can be found in [5, 8]). In terms of the
kernel in (5),

γ2k(µ, ν) = 2E‖X − x0‖ − E‖X −X ′‖+ 2E‖Y − x0‖ − E‖Y − Y ′‖

−2E‖X − x0‖ − 2E‖Y − x0‖+ 2E‖X − Y ‖ = D2(µ, ν).

A number of distances for distributions is available in the literature of statis-75

tics, probability and information theory, such as the Kullback-Leibler divergence76

([9, 10]) and the p-Wasserstein metric between two probability measures µ(x)77

and ν(x) on a metric space (M,d) ([11]). We chose the energy distance be-78

cause it can be estimated efficiently from samples and it embeds the probability79

measures into a Hilbert space, which facilitates further analysis.80

3.1. Estimating the Energy Distance from Data81

In calculating the energy distance between two distributions µ and ν given
independent random vectors X ∼ µ, Y ∼ ν and their i.i.d. copies X ′, Y ′,

D(µ, ν) =
√

2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖,
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one needs to evaluate three expectations: E‖X−Y ‖, E‖X−X ′‖ and E‖Y −Y ′‖.82

If we only have samples of µ and ν, these expectation can be approximated by83

their empirical means.84

Specifically, when we have samples {xi}nX
i=1 of µ and {yj}nY

j=1 of ν, we can
estimate the energy distance between µ and ν by the energy distance between
their corresponding empirical distributions µ̂ and ν̂:

D(µ̂, ν̂) =

√
2E‖X̂ − Ŷ ‖ − E‖X̂ − X̂ ′‖ − E‖Ŷ − Ŷ ′‖. (8)

In the equations above,

E‖X̂ − Ŷ ‖ =
1

nXnY

i=nX ,j=nY∑
i,j=1

‖xi − yj‖ (9)

is the empirical mean of E‖X − Y ‖. For X̂ ′, we use the same samples available
for X,

E‖X̂ − X̂ ′‖ =
1

nXnX

i=nX ,i
′=nX∑

i,i′=1

‖xi − xi′‖. (10)

Similarly,

E‖Ŷ − Ŷ ′‖ =
1

nY nY

j=nY ,j=nY∑
j,j′=1

‖yj − yj′‖. (11)

According to the formulations above for estimating energy distance from85

samples, if we have nX sample points for µ and nY sample points for ν, the86

time complexity of estimating their energy distance is O(nXnY + n2X + n2Y ).87

The corresponding inner product between distributions µ and ν, given inde-
pendent random vectors X ∼ µ, Y ∼ ν and X ′, Y ′, is

〈µ, ν〉 = E‖X − x0‖+ E‖Y − x0‖ − E‖X − Y ‖, (12)

where x0 is a fixed point. Similarly, calculation of this inner product involves
three expectations: E‖X−x0‖, E‖Y −x0‖, E‖X−Y ‖. When µ and ν are known
via their samples {xi}nX

i=1 and {yj}nY
j=1, their inner product (µ, ν) is estimated

by
〈µ̂, ν̂〉 = E‖X̂ − x0‖+ E‖Ŷ − x0‖ − E‖X̂ − Ŷ ‖, (13)

where

E‖X̂ − x0‖ =
1

nX

nX∑
i=1

‖xi − x0‖, (14)

E‖Ŷ − x0‖ =
1

nY

nY∑
j=1

‖yj − x0‖, (15)

E‖X̂ − Ŷ ‖ =
1

nXnY

i=nX ,j=nY∑
i,j=1

‖xi − yj‖, (16)
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Algorithm 1 Generic algorithm for estimating the energy distance

Input: Samples xi, yj of X,Y respectively.
Output: Empirical estimation of E‖X − Y ‖.
1: procedure Energy({xi}, {yj})
2: sum = 0
3: for all xi do
4: for all yj do
5: sum = sum + ‖xi − yj‖
6: end for
7: end for
8: return sum

nXnY

9: end procedure

and the time complexity of estimating this inner product is O(nXnY ). If we88

have n sample points for both µ and ν, the time complexity is O(n2).89

Notice that estimating the energy distance and the corresponding inner prod-90

uct from n sample points of both distributions have time complexities O(n2),91

which becomes computationally expensive when using a large number of sample92

points. In the following section, a fast algorithm for energy distance between93

one-dimensional distributions is introduced, making the application of energy94

distance much more efficient.95

3.2. Fast Algorithm in One Dimension96

According to (9), (10), (11), (14), (15) and (16), both the data-based com-
putations of energy distance (8) and corresponding inner product (13) have the
same complexity of evaluating

E‖X̂ − Ŷ ‖ =
1

nXnY

nX∑
i=1

nY∑
j=1

‖xi − yj‖, (17)

where the (xi, yj) are (nX , nY ) samples of (X, Y ). Generally, the time com-97

plexity of evaluating (17) is O(n2) via Algorithm 1, which simply takes the98

arithmetic mean of ‖xi − yj‖.99

100

In one-dimensional space, however, the fact that ‖ · ‖ = | · | enables us to use
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the identity |x− y| = 1x−y>0(x− y)− 1x−y≤0(x− y) to obtain

E‖X̂ − Ŷ ‖

=
1

nXnY

nX∑
i=1

nY∑
j=1

|xi − yj |

=
1

nXnY

nX∑
i=1

nY∑
j=1

1{xi−yj>0}(xi − yj)− 1{xi−yj≤0}(xi − yj)

=
1

nX

nX∑
i=1

#{j|yj < xi} −#{j|yj ≥ xi}
nY

xi +
1

nY

nY∑
j=1

#{i|xi ≤ yj} −#{i|xi > yj}
nX

yj ,

where #{· · · } denote the number of elements in a set.101

If {xi}nX
i=1 and {yj}nY

j=1 are sorted arrays, the latter expression can be calcu-102

lated in the linear time O(nX + nY ), since each of #{j|yj < xi}, #{j|yj ≥ xi},103

#{i|xi ≤ yj} and #{i|xi > yj} can be calculated in linear time by merging104

{xi}nX
i=1 and {yj}nY

j=1 into one sorted array (Algorithm 2.)105

If given unsorted samples, we need to sort them before applying Algorithm106

2. Feasible sorting algorithms are quick sort, which has an O(n log n) average107

complexity and an O(n2) worst case complexity, heap sort and merge sort, which108

have an O(n log n) worst case complexity. Therefore even for unsorted samples,109

the complexity of estimating the energy distance can be bounded by O(n log n).110

4. Statistical Archetypal Analysis111

4.1. Dimensional Reduction112

In this section, we study the dimensional reduction of probability distri-113

butions, mapping a collection of distributions to a low-dimensional space with114

minimal loss of information. Probability distributions have infinite dimension;115

when they are known via samples, they can be said to have a dimensionality of116

the order of the number of samples points. Our dimensional reduction on this117

high-dimensional dataset consists of two steps: we embed the distributions into118

an Euclidean space, and then use dimensional reduction methods developed for119

Euclidean spaces.120

Probability distributions equipped with the energy distance form a convex121

subset of a Hilbert space. Therefore a collection of N distributions µi can be122

naturally embedded into an N -dimensional Euclidean space, since every finite123

dimension subspace of a Hilbert space is isometric to an Euclidean space.124

Assume that xi ∈ RN , i ∈ [1, 2, · · · , N ], are points in RN such that ‖xi −
xj‖ = D(µi, µj) where D(·) is the energy distance (In other words, xi is the im-
age of µi under the embedding into an Euclidean space.) Principal Components
Analysis (PCA) solves the following optimization problem for centered xi:

min
zj ,aji

N∑
i=1

∥∥∥∥∥∥xi −
K∑
j=1

ajizj

∥∥∥∥∥∥
2

(18)
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Algorithm 2 Fast algorithm for estimating the energy distance in 1D

Input: Sorted samples xi, yj of 1D random variable X,Y respectively
Output: Empirical estimation of E‖X − Y ‖
1: procedure FastEnergy({xi}, {yj})
2: sumX = 0, sumY = 0, i = 1, j = 1
3: while i ≤ nX and j ≤ nY do
4: if xi ≤ yj then

5: sumX = sumX + (j−1)−[nY −(j−1)]
nY

xi
6: i = i+ 1
7: else
8: sumY = sumY + (i−1)−[nX−(i−1)]

nX
yj

9: j = j + 1
10: end if
11: end while
12: if i > nX then

13: sumY = sumY +
nY∑
k=j

yk

14: else

15: sumX = sumX +
nX∑
k=i

xk

16: end if
17: return sumX/nX + sumY /nY
18: end procedure

under the constraints that the zj are orthonormal vectors. Thus PCA maps125

each data point to the closest point in the vector space spanned by the zj . Here126

K is the dimension of the low dimensional space sought, and
∑K
j=1 ajizj is the127

image of xi under this dimensional reduction.128

PCA and other mainstream dimensional reduction techniques are not ap-129

propriate for probability distributions from two perspectives: 1) the zj in (18)130

is generally not a probability distribution, neither are almost all points in the131

space spanned by the zj . 2) the coefficients aji for each xi in (18) may be nega-132

tive, so they cannot clearly express how each zj contributes to the representation133

of xi. We will use instead archetypal analysis for the dimensional reduction of134

distributions, which does not suffer from this lack of interpretability.135

4.2. Statistical Archetypal Analysis136

As seen in Section 2, archetypal analysis has a formulation similar to (18),
except that it requires the optimization of

min
zj ,aji

N∑
i=1

∥∥∥∥∥∥xi −
K∑
j=1

ajizj

∥∥∥∥∥∥
2

(19)
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under the constraints that aji > 0,
K∑
j=1

aji = 1, and each zj is a convex combi-137

nation of the xi, i.e. zj =
N∑
l=1

bljxl, with blj > 0,
N∑
l=1

blj = 1.138

Switching from vectors xi, zj to distributions µi, νj and using energy distance
instead of Euclidean distance, statistical archetypal analysis adopts the form

min
νj ,aji

N∑
i=1

∥∥∥∥∥∥µi −
K∑
j=1

ajiνj

∥∥∥∥∥∥
2

, νj =

N∑
l=1

bljµl, (20)

with the same constraints over the a and b, which now adopt the natural inter-139

pretation that the νj are mixtures of the µi and the latter are well-approximated140

by mixtures of the νj . ‖·‖ in (20) is the energy distance, but can naturally be141

extended to any metric induced by kernel embedding as discussed in Section 3.142

Since the energy distance, that we shall use for the norm in (20), derives
from an inner product, statistical archetypal analysis can be rewritten as in (3):

argmin
A,B

tr [(In −BA)ᵀG(In −BA)] , (21)

where each column of A represents one archetype as a convex combination of
the original distributions, and each column of B contains the coefficients for the
approximate reconstruction of each original distribution from the archetypes.
G is the Gram matrix of pairwise inner products among the distributions,

Gij = Ek(Xi,Xj)

for independent Xi ∼ µi and Xj ∼ µj and kernel k.143

When each µi is known via samples {y(i)m }Mi
m=1 of size Mi, we can replace µi144

by its empirical distribution at data points y
(i)
m with weights 1

Mi
. In this setting,145

νj becomes an empirical distribution concentrated at the union of the y
(l)
m over146

l = 1, 2, · · · , N , with weights
blj
Ml

for all m. The resulting number of samples of147

νj appears large, since it contains the support of every empirical distribution148

µi. However, since the solution of (19) is sparse, most entries in blj are zero, so149

we only need to keep those data points y
(l)
m for νj where blj is non-zero.150

Statistical archetypal analysis overcomes the two difficulties in interpreta-151

tion when applying dimension reduction on probability distribution. Archetypes152

{νi}ki=1 found by archetypal analysis, which are mixtures of the {µi}ni=1, are all153

probability distributions. The low-dimensional space used to capture informa-154

tion of the dataset of distributions in this case is the convex hull of all archetypes,155

i.e. the family of mixtures of all archetypes. Each coefficient aji in (19) stands156

for the contribution of the jth archetype νj to µi.157

4.3. Numerical Examples158

4.3.1. Synthetic Data159

In our first example, we simulate 100 probability distributions {µi}100i=1, each160

a Gaussian mixture µi = λiN (−6, 2) + (1− λi)N (6, 1), where each λi is drawn161

9



independently from the uniform distribution in [0, 1].162

Figure 1: Archetypes of synthetic data for k=2. The curves are the found archetypes and the
shadows are the two components N (−6, 2) and N (6, 1) in the mixture family respectively.

We set number of archetypes k to 2 and perform archetypal analysis on the163

synthetic data. The two archetypes found are shown and compared to N (−6, 2)164

and N (6, 1), the two components in the mixture family, in Figure 1. Both of165

them are close to the components except at the center and tail part. This is due166

to the definition of archetypes, which is a mixture of input distributions. Unless167

we have exactly these two components as input, the archetypes will always have168

a heavier tail.169

4.3.2. Temperature Data170

We work with ground temperature data from United States Climate Refer-171

ence Network (USCRN) Quality Controlled Datasets ([dataset][12], [13], [14]).172

The temperature data are measured hourly in 43 cities across the United States.173

We operate on data from which the diurnal and seasonal signal has been removed174

using the optimal-transport based methodology in [15]. In addition, this dataset175

has missing values, which are filled using a low rank approximation to the data176

matrix. Figure 2 shows the 43 cities on the map with Table 1 a complete list of177

the cities.178
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Figure 2: Locations on the map where the data were collected.

Table 1: Locations on the map where the data were collected

Index City Index City Index City
1 Boulder 16 KY-Bowling Green 31 MN-Goodridge
2 Montrose 17 IL-Champaing 32 OR-John Day
3 Dinosaur 18 TX-Palestine 33 WA-Darrington
4 Nunn 19 AZ-Tucson 34 WV-Elkins
5 LaJunta 20 MT-Wolf Point 35 IA-Des Moines
6 Lander 21 NH-Durham 36 NV-Mercury
7 ManhattanKs 22 RI-Kingston 37 NY-Ithaca
8 Socorro 23 NC-Asheville 38 ON-Egbert
9 Stillwater 24 AK-Barrow 39 TN-Crossville
10 Monahans 25 ME-Old Town 40 VA-Cape Charles
11 Edinburg 26 NE-Lincoln 41 WI-Necedah
12 Lafayette 27 SD-Sioux Falls 42 AL-Selma
13 Newton 28 CA-Redding 43 FL-Titusville
14 MsNewton 29 ID-Murphy
15 SC-Blackville 30 KY-Versailles

We choose alternatively K = 3, 5 as the number of archetypes. For K = 3,
the resulting archetypes are shown in Figure 3; the corresponding mixtures are
as follows:

Archetype 1: 0.66875×MN-Goodridge

+ 0.01916×NY-Ithaca + 0.31209×WV-Elkins,

Archetype 2: 0.22233× Edinburg + 0.77767× Lafayette,

Archetype 3: 0.01292×VA-Cape Charles + 0.98707×WA-Darrington.

The main difference between these three archetypes is how much they are spread.179
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The first archetype has the heaviest tail among the three while the last archetype180

has the largest peak at center. The second archetype also has a marked asym-181

metry.182

Figure 4 shows the plane spanned by these three archetypes. The bottom183

left cross is the first archetype, the bottom right cross is the second archetype184

and the top cross is the third archetype, which consists almost exclusively of the185

distribution at WA-Darrington. Each point represents the best approximation186

within the convex hull to its corresponding distribution for one city.187

The approximation of distributions at each station by mixtures of archetypes188

are shown in Figures 5–9. We can see that, except for the distribution at189

Titusville, FL, the distributions at all 43 stations can be well approximated by190

mixtures of just three archetypes. These results indicate strongly that there is191

a low dimension structure underlying this dataset.192

Figure 3: Archetypes of temperature data for k=3.

For K = 5, the archetypes are shown in Figure 10; the corresponding mix-
tures are:

Archetype 1: 0.07329×AK-Barrow + 0.71803×NH-Durham

+ 0.20867× RI-Kingston,

Archetype 2: 0.68181×Dinosaur + 0.31819× Lafayette,

Archetype 3: 0.09892× Edinburg + 0.90108× FL-Titusville,

Archetype 4: 0.44146×MN-Goodridge + 0.41827×MT-Wolf Point

+ 0.14027×ManhattanKs,

Archetype 5: 0.01306×VA-Cape Charles + 0.98694×WA-Darrington.

When the number of archetypes K is increased from 3 to 5, the archetypes193

found for K = 3 are not the same as for K = 5: only the last archetypes194

for K = 3 and K = 5 are close. This is due to the fact that in archetypal195

analysis, when the number of archetypes is increased, the shape of convex hull196

of archetypes changes so as to be as close to the data points as possible.197

The approximation to the original distributions by mixtures of archetypes198

are shown in Figures 11–15. In this example, we find that when the number of199
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Figure 4: Convex hull spanned by archetypes of temperature data for k=3. A cross stands
for one archetype and a point for the distribution at each city.

archetypes is increased to 5, the mixtures of archetypes offer an almost perfect200

approximation to the distributions for all the 43 cities.201

5. Conclusions202

This article develops statistical archetypal analysis for dimension reduction203

of probability distributions. Archetypal analysis constrains the archetypes –204

analogues of principal components– to convex combinations of the data, and205

approximates the data as convex combinations of these archetypes, hence pro-206

viding an interpretable fit for distributions, with patterns that can be interpreted207

as mixtures of distributions.208

In order to perform archetypal analysis on distributions, one needs a metric209

and a linear structure. A natural way to introduce these is through an embed-210

ding of the distributions into a Hilbert space, for which we have used the energy211

distance (one of the many choices provided by the theory of reproducing kernel212

Hilbert spaces for distributions.)213

As a proof of concept, statistical archetypal analysis was applied to both214

synthetic and temperature data. Statistical archetypal analysis recovers the215

components of a mixture family used to generate synthetic data, and reveals a216
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Figure 5: Reconstruction of distribution at each city by 3 archetypes. The original distribu-
tions are depicted as shadows; their approximation by mixtures of archetypes as solid curves.

low dimensional structure in the distributions of temperature data across the217

United States.218
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Figure 10: Archetypes of temperature data for k=5.
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Figure 11: Reconstruction of distribution at each city by 5 archetypes. The original dis-
tributions are depicted as shadows; their approximation by mixtures of archetypes as solid
curves.
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Figure 12: Reconstruction of distribution at each city by 5 archetypes. The original dis-
tributions are depicted as shadows; their approximation by mixtures of archetypes as solid
curves.
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Figure 13: Reconstruction of distribution at each city by 5 archetypes. The original dis-
tributions are depicted as shadows; their approximation by mixtures of archetypes as solid
curves.
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Figure 14: Reconstruction of distribution at each city by 5 archetypes. The original dis-
tributions are depicted as shadows; their approximation by mixtures of archetypes as solid
curves.
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Figure 15: Reconstruction of distribution at each city by 5 archetypes. The original dis-
tributions are depicted as shadows; their approximation by mixtures of archetypes as solid
curves.
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