1. What is a stochastic process. Stochastic means random. Process is evolution. A stochastic process is some thing that evolves randomly over time. Diffusion process refers to processes that evolve continuously (no discontinuities or jumps)
2. Time can be continuous or discrete. A stochastic process in discrete time is a random sequence. There is (Ω, Σ, P) and a map $\xi: \Omega \rightarrow \mathcal{X}$ the space of sequences. $\xi=$ $\left\{X_{j}\right\}$. Or simply a measure μ on \mathcal{X}. In the continuous case \mathcal{X} is the space of functions. A stochastic process in continuous time is a random function $\xi=x(t, \omega)$ defined on some (Ω, Σ, P) or a measure on $\mathcal{X}=\mathcal{F}[a, b]$. For studying diffusion processes $\mathcal{F}[a, b]=C[a, b]$.
3. Brownian motion on $[0, T]$ is the canonical diffusion process. (Ω, Σ, P) What do we want of $\xi(t, \omega)$? For every n, with $x_{0}=0$ and $0=t_{0}<\cdots<t_{n} \leq T$

$$
P\left[\left(\xi\left(t_{1}, \omega\right), \ldots, \xi\left(t_{n}, \omega\right)\right) \in A\right]=\int_{A} f_{n}\left(t_{1}, x_{1}, \ldots, t_{n}, x_{n}\right) d x_{1} \cdots d x_{n}
$$

where

$$
f_{n}\left(t_{1}, x_{1}, \ldots t_{n}, x_{n}\right)=c \exp \left[-\frac{1}{2} \sum \frac{\left(x_{j}-x_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right]=\Pi p\left(t_{j-1} j, x_{j-1}, t_{j}, x_{j}\right)
$$

and $t_{0}=x_{0}=0$ and $0<t_{0}<\cdots<t_{n} \leq T$.

$$
p(s, x, t, y)=\frac{1}{\sqrt{2 \pi(t-s)}} \exp \left[-\frac{(x-y)^{2}}{2(t-s)}\right]
$$

Remark: To be consistent

$$
\int f_{n}\left(t_{1}, x_{1}, \ldots, t_{j}, x_{j}, \ldots t_{n}, x_{n}\right) d x_{j}=f_{n-1}\left(t_{1}, x_{1}, \ldots, t_{j-1}, x_{j-1}, t_{j+1}, x_{j+1}, \ldots t_{n}, x_{n}\right)
$$

Reduces to

$$
\left.\int p(s, x, t, y) p(t, y, u, z)\right) d y=p(s, x, u, z)
$$

4. Does it exist? The question is equivalent to is there a measure μ on $C[0, T]$ such that for all n and for all $0<t_{0}<\cdots<t_{n} \leq T$,

$$
P\left[\left(\xi\left(t_{1}, \omega\right), \ldots, \xi\left(t_{n}, \omega\right)\right) \in A\right]=\int_{A} f\left(t_{1}, x_{1}, \ldots, t_{n}, x_{n}\right) d x_{1} \cdots d x_{n}
$$

4.1. Theorem (Kolmogorov). If a consistent family $\left\{f_{n}\right\}$ satisfies for some $\alpha>0$, $\beta>0$ and constant C

$$
\int\left|x_{1}-x_{2}\right|^{\beta} f_{2}\left(t_{1}, x_{1}, t_{2}, x_{2}\right) d x_{1} d x_{2} \leq C\left|t_{1}-t_{2}\right|^{1+\alpha}
$$

for $0 \leq t_{1}<t_{2} \leq T$, then μ exists and is unique.

Remark. For BM with $\beta=4, \alpha=1$ and $C=3$ works.

$$
\int\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|^{4} f_{2}\left(t_{1} \cdot x_{1}, t_{2}, x_{2}\right) d x_{1} d x_{2}=\int x^{4} p\left(t_{2}-t_{1}, x\right) d x=3\left|t_{1}-t_{2}\right|^{2}
$$

Proof of theorem. Let us take $T=1$ and divide the interval into $n=2^{N}$ sub intervals with end points $\frac{j}{2^{N}}$. On the space $\Omega=R^{Z}$ of sequences $x\left(\frac{j}{2^{N}}\right)$ there is a measure P such that

$$
P\left[\left(\xi\left(t_{1}, \omega\right), \ldots, \xi\left(t_{n}, \omega\right)\right) \in A\right]=\int_{A} f\left(t_{1}, x_{1}, \ldots, t_{n}, x_{n}\right) d x_{1} \cdots d x_{n}
$$

if $\left\{t_{j}\right\}$ are diadics. For every N, consider the map $\xi_{N}(t, \omega): \Omega \rightarrow C[0,1]$ with $\xi_{N}\left(\frac{j}{2^{N}}\right)=$ $x\left(\frac{j}{2^{N}}\right)$ for $0 \leq j \leq 2^{N}$ and interpolates linearly over intervals $\left[\frac{j}{2^{N}}, \frac{j+1}{2^{N}}\right]$. For some $\delta>0$ we will show that

$$
\sum_{N} P\left[\sup _{t}\left|\xi_{N+1}(t, \omega)-\xi_{N}(t, \omega)\right| \geq 2^{-N \delta}\right]<\infty
$$

which is enough. By Borel-Cantelli lemma $\xi(t, \omega)=\lim _{N \rightarrow \infty} \xi_{N}(t, \omega)$ will exist uniformly in t for almost all ω. This defines the limit $\xi(t)$ as a map into $C[0,1]$ and the image is μ. We note that

$$
\begin{array}{r}
\sup _{\frac{j}{2^{N}} \leq t \leq \frac{j+1}{2^{N}}}\left|\xi_{N}(t, \omega)-\xi_{N+1}(t, \omega)\right|=\left|\xi_{N+1}\left(\frac{2 j+1}{2^{N+1}}, \omega\right)-\frac{1}{2}\left[\xi_{N}\left(\frac{j}{2^{N}}, \omega\right)+\xi_{N}\left(\frac{j+1}{2^{N}}, \omega\right)\right]\right| \\
\leq \max \left[\left|\xi_{N+1}\left(\frac{2 j+1}{2^{N+1}}\right)-\xi_{N+1}\left(\frac{2 j}{2^{N+1}}\right)\right|, \left\lvert\, \xi_{N+1}\left(\frac{2 j+1}{2^{N+1}}-\xi_{N+1}\left(\frac{2 j+2}{2^{N+1}}\right)\right]\right.\right. \\
P\left[\sup _{\frac{j}{2^{N}} \leq t \leq \frac{j+1}{2^{N}}}\left|\xi_{N}(t, \omega)-\xi_{N+1}(t, \omega)\right| \geq 2^{-(N+1) \delta}\right] \leq 2 \cdot 2^{(N+1) \beta \delta} \cdot 2^{-(N+1)(1+\alpha)} \cdot C \\
P\left[\sup _{0 \leq t \leq 1}\left|\xi_{N}(t, \omega)-\xi_{N+1}(t, \omega)\right| \geq 2^{-(N+1) \delta}\right] \leq 2^{N} \cdot 2 \cdot 2^{(N+1) \beta \delta} \cdot 2^{-(N+1)(1+\alpha)} \cdot C \\
=2^{-(N+1)(\alpha-\beta \delta)}
\end{array}
$$

Choose $\delta<\frac{\alpha}{\beta}$.

4.2. Garsia-Rodemick-Rumsey theorem.

Let f be continuous on $[0, T]$. Let ψ and p be continuous, even nonnegative functions on R, with $\psi(0)=p(0)=0$ that are strictly increasing on $R^{+} . \psi(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Assume

$$
\int_{0}^{T} \int_{0}^{T} \psi\left(\frac{|f(t)-f(s)|}{p(t-s)}\right) d t d s=B<\infty
$$

Then

$$
|f(t)-f(s)| \leq 8 \int_{0}^{|t-s|} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) d u
$$

With $\psi(x)=|x|^{m}$ and $p(u)=|u|^{a}$ for Brownian motion we can get up to Holder $\frac{1}{2}-\delta$ with suitable choices of m and $a . E[B]<\infty$ if

$$
\frac{m}{2}-a m+a-1>-1
$$

or

$$
a(1-m)+\frac{m}{2}>0
$$

or

$$
a<\frac{m}{2(m-1)}
$$

We get Holder with $\alpha=a-\frac{2}{m}$. Large m gets α close to $\frac{1}{2}$.
Proof of GRR inequality. Scales correctly. f on $[a, b]$ satisfies.

$$
\int_{a}^{b} \int_{a}^{b} \psi\left(\frac{|f(t)-f(s)|}{p(t-s)}\right) d t d s=B
$$

$t^{\prime}=\frac{t-a}{b-a}$ and $s^{\prime}=\frac{s-a}{b-a}$

$$
\begin{aligned}
B & =(b-a)^{2} \int_{0}^{1} \int_{0}^{1} \psi\left(\frac{\left|f\left(a+(b-a) t^{\prime}\right)-f\left(a+(b-a) s^{\prime}\right)\right|}{p\left((b-a)\left(t^{\prime}-s^{\prime}\right)\right)}\right) d t^{\prime} d s^{\prime} \\
& =(b-a)^{2} \int_{0}^{1} \int_{0}^{1} \psi\left(\frac{\left|f^{\prime}(t)-f^{\prime}(s)\right|}{p^{\prime}(t-s)}\right) d t d s
\end{aligned}
$$

with $f^{\prime}(t)=f(a+(b-a) t)$ and $p^{\prime}(t)=p((b-a) t)$.

$$
\begin{aligned}
|f(b)-f(a)| & =\left|f^{\prime}(1)-f^{\prime}(0)\right| \\
& \leq 8 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{(b-a)^{2} u^{2}}\right) p((b-a) d u) \\
& =8 \int_{0}^{|b-a|} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
\end{aligned}
$$

Let $I(t)=\int_{0}^{1} \psi\left(\frac{|f(t)-f(s)|}{p(t-s)}\right) d s$. There is t_{0} such that $I\left(t_{0}\right) \leq B$. With this t_{0} we will show that

$$
\left|f\left(t_{0}\right)-f(0)\right| \leq 4 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

and

$$
\left|f\left(t_{0}\right)-f(1)\right| \leq 4 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

so that

$$
|f(1)-f(0)| \leq 8 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

we will now pick

$$
t_{0}>u_{1}>t_{1}>\cdots \cdots>u_{n}>t_{n} \cdots
$$

recursively as follows. Let $d_{n}=p\left(t_{n-1}\right)$ and pick u_{n} such that $p\left(u_{n}\right)=\frac{d_{n}}{2}$. Then $\int_{0}^{u_{n}} I(t) d t \leq B$ and

$$
\int_{0}^{u_{n}} \psi\left(\frac{\mid f\left(t_{n-1}-f(s) \mid\right.}{p\left(t_{n-1}-s\right)}\right) d s \leq I\left(t_{n-1}\right)
$$

Now t_{n} is chosen from $\left[0, u_{n}\right]$ such that $I\left(t_{n}\right) \leq \frac{2 B}{u_{n}}$ and

$$
\psi\left(\frac{\mid f\left(t_{n-1}-f\left(t_{n}\right) \mid\right.}{p\left(t_{n-1}-t_{n}\right)}\right) \leq \frac{2 I\left(t_{n-1}\right)}{u_{n}}
$$

Since $\frac{2 I\left(t_{n-1}\right)}{u_{n}} \leq \frac{4 B}{u_{n-1} u_{n}} \leq \frac{4 B}{u_{n}^{2}}$, we have

$$
\left|f\left(t_{n}\right)-f\left(t_{n-1}\right)\right| \leq \psi^{-1}\left(\frac{4 B}{u_{n}^{2}}\right) p\left(t_{n-1}-t_{n}\right) \leq \psi^{-1}\left(\frac{4 B}{u_{n}^{2}}\right) p\left(t_{n-1}\right)
$$

and

$$
p\left(t_{n-1}\right)=2 p\left(u_{n}\right)=4\left[p\left(u_{n}\right)-\frac{p\left(u_{n}\right)}{2}\right] \leq 4\left[p\left(u_{n}\right)-p\left(u_{n+1}\right]\right.
$$

Then

$$
\left|f\left(t_{n}\right)-f\left(t_{n-1}\right)\right| \leq 4 \psi^{-1}\left(\frac{4 B}{u_{n}^{2}}\right)\left[p\left(u_{n}\right)-p\left(u_{n+1}\right)\right] \leq 4 \int_{u_{n+1}}^{u_{n}} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

Sum over n.

$$
\left|f\left(t_{0}\right)-f(0)\right| \leq 4 \int_{0}^{t_{0}} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u) \leq 4 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

In a similar fashion, replacing $f(t)$ by $f(1-t)$,

$$
\left|f\left(t_{0}\right)-f(1)\right| \leq 4 \int_{0}^{1-t_{0}} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u) \leq 4 \int_{0}^{1} \psi^{-1}\left(\frac{4 B}{u^{2}}\right) p(d u)
$$

4.3. View in terms of weak convergence. Let μ_{N} be the measure on $C[0,1]$ induced by the random polygon. If we have a weak limit μ along a sub sequence that will do it.

Uniform tightness. Need K_{ϵ} compact set in $C[0,1]$ such that

$$
\sup _{N}\left[\mu_{N}\left(K^{c}\right)\right] \leq \epsilon
$$

Fix $N .0 \leq j \leq k \leq N$. Kolmogorov's inequality.

Let $\left\{X_{i}\right\}$ be mutually independent and have mean 0 and finite variance. Then with $S_{n}=X_{1}+\cdots+X_{n}$

$$
P\left[\sup _{1 \leq j \leq n}\left|S_{j}\right| \geq \ell\right] \leq \frac{1}{\ell^{2}} E\left[S_{n}^{2}\right]
$$

Let $B_{r}=\left\{\left|S_{1}, \ldots,\left|S_{r-1}\right|<\ell,\left|S_{r}\right| \geq \ell\right\}\right.$

$$
\int_{B_{r}}\left|S_{n}\right|^{2} d P=\int_{B_{r}}\left[\left(S_{r}\right)^{2}+2 S_{r}\left(S_{n}-S_{r}\right)+\left(S_{n}-S_{r}\right)^{2}\right] d P \geq \ell^{2} P\left(B_{r}\right)
$$

You can sum over r and since B_{r} are disjoint

$$
\ell^{2} P\left[\cup_{r} B_{r}\right] \leq \sum_{r} \int_{B_{r}}\left|S_{n}\right|^{2} d P \leq \int\left|S_{n}\right|^{2} d P
$$

This is enough to provide the following estimate for a potential approximation

$$
P\left[\sup _{0 \leq h \leq \delta}|x(t+h)-x(t)| \geq \epsilon\right] \leq \frac{C \delta}{\epsilon^{2}}
$$

By Ascoli-Arzela theorem we need to estimate the modulus of continuity. Since $\xi(0)=0$, uniform boundedness will follow from uniform estimates on the modulus of continuity. Let $\delta>0$ be given. Divide the interval [0,1] into $\frac{1}{\delta}$ overlapping subintervals of length 2δ. If we control the oscillation in all the subintervals of length 2δ then since any interval of length δ is contained in one of the $\frac{1}{\delta}$ intervals of length 2δ the modulus of continuity at δ is controlled.

But there are $\frac{2}{h}$ such intervals are needed to estimate the modulus of continuity. The estimate misses the mark. Need

$$
P\left[\sup _{s: t \leq s \leq t+\delta}|x(s)-x(t)| \geq \epsilon\right] \leq \frac{c(\delta)}{\epsilon^{2}}
$$

with $c(\delta)=o(\delta)$. Note that $\xi(t)$ has independent increments and $E\left[(\xi(t)-\xi(s))^{2}\right]=|t-s|$.

Martingales and Doob's inequality.

(Ω, Σ, P) is a probability space, $\Sigma_{n} \subset \Sigma$. \uparrow. A martingale is a sequence $\left\{X_{n}\right\}$ such that X_{n} is Σ_{n} measurable, $\in L_{1}$ and

$$
E\left[X_{n} \mid \Sigma_{n-1}\right]=X_{n-1}
$$

or $X_{n}=Y_{1}+\cdots+Y_{n}, Y_{j}$ is Σ_{j} measurable and $E\left[Y_{n} \mid \Sigma_{n-1}\right]=0$.
If X_{n} is a martingale with respect to $\left(\Omega, \Sigma_{n}, P\right)$,

$$
E\left[\left|X_{n}\right| \mid \Sigma_{n-1}\right] \geq\left|X_{n-1}\right|
$$

It is enough to note that

$$
E[\max \{X, Y\} \mid \Sigma] \geq \max \{E[X \mid \Sigma], E[Y \mid \Sigma]\}
$$

Let as before

$$
B_{r}=\left\{\sup _{j<r}\left|X_{1}+\cdots X_{j}\right|<\ell,\left|X_{1}+\cdots X_{r}\right| \geq \ell\right]
$$

If $\xi_{n}=\max \left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}$, then

$$
\ell \int_{\xi_{n} \geq \ell} d P \leq \sum_{r} \int_{B_{r}}\left|X_{r}\right| d P \leq \sum_{r} \int_{B_{r}}\left|X_{n}\right| d P=\int_{\xi_{n} \geq \ell}\left|X_{n}\right| d P
$$

Lemma. Let X and Y be two nonnegative random variables such that

$$
P[X \geq \ell] \leq \frac{1}{\ell} \int_{X \geq \ell} Y d P
$$

Then for $p>1$,

$$
E\left[X^{p}\right] \leq\left(\frac{p}{p-1}\right)^{P} E\left[Y^{p}\right]
$$

Proof. Let $F(t)=P[X \geq t]$ and $G(t)=P[Y \geq t]$

$$
\begin{aligned}
E\left[X^{p}\right] & =-\int_{0}^{\infty} t^{p} d F(t) \\
& =p \int_{0}^{\infty} F(t) t^{p-1} d t \\
& =p \int_{0}^{\infty} \int \mathbf{1}_{X \geq t} Y t^{p-2} d P d t \\
& =p \iint_{0}^{X} t^{p-2} Y d t d P \\
& =\frac{p}{p-1} \int X^{p-1} Y d P \\
& \leq \frac{p}{p-1}\left\|X^{p-1}\right\|_{p^{*}}\|Y\|_{p} \\
& =\frac{p}{p-1}\|X\|_{p}^{1-\frac{1}{p}}\|Y\|_{p}
\end{aligned}
$$

Now we can improve the estimate on martingales

$$
P\left[\sup _{1 \leq j \leq n}\left|X_{j}\right| \geq \ell\right] \leq \frac{1}{\ell^{4}}\left(\frac{4}{3}\right)^{4} E\left[S_{n}^{4}\right]
$$

One can ask in general if we have a Markov process with transition probability $p(t, x, d y)$ on some R^{d} when can we say that the Markov process with transition probability p can be realized in the space of continuous functions.

Let

$$
h(t, \epsilon)=\sup _{x} p\left(t, x B(x, \epsilon)^{c}\right)=\sup _{x} P[|x(t)-x(0)| \geq \epsilon \mid x(0)=x]
$$

If for every $\epsilon>0$

$$
\lim _{t \rightarrow 0} \frac{h(t, \epsilon)}{t}=0
$$

then the process can be realized in $C\left[[0, T] ; R^{d}\right]$. We saw before that it is enough to show that

$$
h^{*}(t, \epsilon)=P\left[\sup _{0 \leq s \leq t}|x(s)-x(0)| \geq \epsilon\right]
$$

satisfies

$$
\lim _{t \rightarrow 0} \frac{h^{*}(t, \epsilon)}{t}=0
$$

Lemma.

$$
h^{*}(t, 2 \epsilon) \leq \frac{h(t, \epsilon)}{1-h(t, \epsilon)}
$$

We will let the time in $x(\cdot)$ vary over a grid of equally spaced points and get estimates to hold uniformly as the grid size goes to 0 .

Let $X_{1}, \ldots X_{n}$ be random variables such that for $1 \leq i<j \leq n$

$$
\sup _{1 \leq i<j \leq n} P\left[\left|X_{j}-X_{i}\right| \geq \epsilon \mid X_{1}, \ldots, X_{i}\right] \leq \delta
$$

a.e. Then

$$
P\left[\sup _{1 \leq i<j \leq n}\left|X_{j}-X_{i}\right| \geq 4 \epsilon\right] \leq \frac{\delta}{1-\delta}
$$

It is enough to show that

$$
P\left[\sup _{1 \leq i \leq n}\left|X_{i}-X_{1}\right| \geq 2 \epsilon\right] \leq \frac{\delta}{1-\delta}
$$

Let

$$
B=\left\{\sup _{1 \leq j \leq n}\left|X_{j}-X_{1}\right| \geq \epsilon\right\}
$$

is the disjoint union over $r=1, \ldots, n$ of

$$
\begin{gathered}
B_{r}=\left\{\sup _{1 \leq j \leq r-1}\left|X_{j}-X_{1}\right|<2 \epsilon,\left|X_{r}-X_{1}\right| \geq 2 \epsilon\right\} \\
B=\left[B \cap\left\{\left|X_{n}-X_{1}\right|<\epsilon\right\}\right] \cup\left[B \cap\left\{\left|X_{n}-X_{1}\right| \geq \epsilon\right\}\right] \\
P\left[B \cap\left\{\left|X_{n}-X_{1}\right| \geq \epsilon\right\}\right] \leq P\left[\left|X_{n}-X_{1}\right| \geq \epsilon\right] \leq \delta \\
P\left[B_{r} \cap\left\{\left|X_{n}-X_{1}\right|<\epsilon\right\}\right] \leq P\left[B_{r} \cap\left\{\left|X_{n}-X_{r}\right| \geq \epsilon\right\}\right] \leq \delta P\left[B_{r}\right]
\end{gathered}
$$

It follows that

$$
P[B] \leq \delta+\delta P[B]
$$

and therefore $P(B) \leq \frac{\delta}{1-\delta}$.
The generator $L f=\lim _{t \rightarrow 0} \frac{T_{t} f-f}{t}$ is local.

Kolmogorov's backward and forward equations.

Assume
$\frac{1}{t} \int_{|y-x| \geq \epsilon} p(t, x, d y)=0$ locally uniformly in x.
$\frac{1}{t} \int_{|y-x| \leq \epsilon}(y-x) p(t, x, d y)=b(x)$ locally uniformly in x.
$\frac{1}{t} \int_{|y-x| \leq \epsilon}(y-x) \otimes(y-x) p(t, x, d y)=a(x)$ locally uniformly in x.

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int[f(y)-f(x)] p(h, x, d y)=(L f)(x)=\frac{1}{2} \sum a_{i, j}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)+\sum b_{j}(x) \frac{\partial f}{\partial x_{j}}(x)
$$

locally uniformly in x.
Suppose for $t>0, p(t, x, y)$ is smooth in (t, x). Then for fixed y and $t>0$, as a function of t, x

$$
\frac{\partial p}{\partial t}=\lim _{h \rightarrow 0} \frac{1}{h}[p(t+h, x, y)-p(t, x, y)]=\lim _{h \rightarrow 0} \frac{1}{h} \int p(h, x, z)[p(t, z, y)-p(t, x, y)] d y=L p
$$

For fixed x as a function of t and y it will satisfy the forward equation

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \sum \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left[a_{i, j}(y) p(t, x, y)\right]-\sum \frac{\partial}{\partial y_{j}}\left[b_{j}(y) p(t, x, y)\right]
$$

It will be a weak solution.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \iint[f(x) p(h, x, y) d x & -f(y)] g(y) d y \\
& =\lim _{h \rightarrow 0} \iint f(x) g(y) p(h, x, y) d y-\int f(y) g(y) d y \\
& =\lim _{h \rightarrow 0}\left[\iint f(x) g(y) p(h, x, y) d y-\int f(x) g(x) d x\right] \\
& =\lim _{h \rightarrow 0} \iint f(x)[g(y) p(h, x, y)-g(x)] d y d x \\
& =<f, L g>=<L^{*} f, g>
\end{aligned}
$$

How do you describe a stochastic process. Discrete time. Successive conditionals. Continuos time successive infinitesimal conditionals.

$$
\begin{gathered}
\lim _{h \rightarrow 0} \int(f(y)-f(x(t))) \mu_{t, \omega, h}(d y)=\left[L_{t, \omega} f\right](x(t)) \\
L_{t, \omega} f=\frac{1}{2} \sum a_{i, j}(t, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x(t))+\sum b_{j}(t, \omega) \frac{\partial f}{\partial x_{j}}(x(t))
\end{gathered}
$$

Infinitely divisible. What is the tangent space to probability distributions on R^{d}. Infinitely divisible distributions. Levy-Khinchine theorem.
$D(t, \omega)$, Depends as $D(t, x(t))$ Markov. $D(x(t))$. Time homogeneous. D is Gaussian $N(a(t, \omega), b(t, \omega))$ contuous paths. $N(a(t, x(t)), b(t, x(t)))$ Markov. $\quad[a(t), b(t) x(t)+c(t)]$ Gauss-Markov process.

How to rigorously connect the infinitesimal characteristics with the measure?

$$
\begin{gathered}
P\left[X_{n} \in A \mid \Sigma_{n-1}\right]=\nu_{n}\left(X_{1}, \ldots, X_{n-1}, A\right) \\
E\left[f\left(X_{n}\right)-f\left(X_{n-1}\right) \mid \Sigma_{n-1}\right]=\int\left[f(y)-f\left(X_{n-1}\right)\right] \nu_{n}\left(X_{1}, \ldots, X_{n-1}, d y\right) \\
E\left[f\left(X_{n}\right)-f\left(X_{n-1}\right)-g_{n}\left(X_{1}, \ldots, X_{n-1}\right) \mid \Sigma_{n-1}\right]=0 \\
Z_{n}=f\left(X_{n}\right)-f\left(X_{0}\right)-\sum_{j=1}^{n} g_{j}\left(X_{1}, \ldots, X_{j-1}\right)
\end{gathered}
$$

is a martingale.

$$
\begin{gathered}
\left.\int \frac{f(y)}{f\left(X_{n-1}\right)} \right\rvert\, \Sigma_{n-1} \nu_{n}\left(X_{1}, \ldots, X_{n-1}, d y\right)=h_{n}\left(X_{1}, \ldots, X_{n-1}\right) \\
Z_{n}=\frac{f\left(X_{n}\right)}{f\left(X_{0}\right)} \prod_{j=1}^{n} \frac{1}{h_{j}\left(X_{1}, \ldots, X_{j-1}\right)}
\end{gathered}
$$

is a martingale.
Continuous versions.

$$
f(x(t))-f(x(0))-\int_{0}^{t}\left(L_{s, \omega} f\right)(x(s)) d s
$$

is a martingale

$$
\frac{f(x(t))}{f(x(0))} \exp \left[-\int_{0}^{t} \frac{\left(L_{s, \omega} f\right)(x(s))}{f(x(s))} d s\right]
$$

is a martingale
One way to model is

$$
x(t+h)=x(t)+b(t, \omega) h+Z_{h}
$$

Z_{h} is a mean 0 Gaussian with dispersion $h a(t, \omega)$, modeled by $\sigma(t, \omega)[B(t+h)-B(t)]$. with $\sigma \sigma^{*}=a$.

$$
d z(t)=b(t, \omega) d t+\sigma(t, \omega) d B(t)
$$

In the Markov case

$$
d z(t)=b(t, z(t)) d t+\sigma(t, z(t)) d B(t)
$$

Does

$$
z(t)=z(0)+\int_{0}^{t} b(z(s)) d s+\int_{0}^{t} \sigma(s, x(s)) d B(s)
$$

make sense?
What regularity does $B(\cdot)$ have. We saw it was Holder with exponent $\alpha<\frac{1}{2}$. It is NOT Holder $\frac{1}{2}$. Divide $[0,1]$ into n equal parts $\left\{t_{j}\right\} \cdot \frac{x\left(t_{j}\right)-x\left(t_{j-1}\right)}{\sqrt{t_{j}-t_{j-1}}}$ are independent standard Gaussians and

$$
C=\sup _{s, t}|x(t)-x(s)| \sqrt{\mid t-s} \geq \sup _{j} \frac{\left|x\left(t_{j}\right)-x\left(t_{j-1}\right)\right|}{\sqrt{\mid t_{j}-t_{j-1}}}=\sup \left[\left|U_{1}\right|, \ldots,|U|_{n}\right]
$$

When n is large $\sup _{j}\left|U_{j}\right|$ of n Gaussians is very large with high probability. Therefore $C=\infty$.
$x(t)$ is definitely not diffrentiable. Is it of BV so we can justify the integral? It is not.

$$
E\left[\sum_{j}\left[\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right]^{2}\right]=\sum\left[t_{j}-t_{j-1}\right]=T\right.
$$

Variance of

$$
\begin{aligned}
{\left[x\left(t_{j}\right)-x\left(t_{j-1}\right)\right]^{2} } & =E\left[\left[x\left(t_{j}\right)-x\left(t_{j-1}\right)\right]^{4}\right]-\left[E\left[x\left(t_{j}\right)-x\left(t_{j-1}\right)\right]^{2}\right]^{2} \\
& =3\left(t_{j}-t_{j-1}\right)^{2}-\left(t_{j}-t_{j-1}\right)^{2} \\
& =2\left(t_{j}-t_{j-1}\right)^{2}
\end{aligned}
$$

The sum tends to 0 as the partition is refined. The quadratic variation is T and can not be of BV in any intervals. With some extra work one can show

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T} \left\lvert\, \sum_{j: \frac{j}{2^{n} \leq t}}\left[\left.x\left(\frac{j+1}{2^{n}}-x\left(\frac{j}{2^{n}}\right)\right]^{2}-t \right\rvert\,=0\right.\right.
$$

a.e.

