1. What is a stochastic process. Stochastic means random. Process is evolution. A
stochastic process is some thing that evolves randomly over time. Diffusion process refers
to processes that evolve continuously (no discontinuities or jumps)

2. Time can be continuous or discrete. A stochastic process in discrete time is a
random sequence. There is (2,3, P) and a map £ :  — X the space of sequences.{ =
{X;}. Or simply a measure p on X. In the continuous case X' is the space of functions.
A stochastic process in continuous time is a random function £ = z(¢,w) defined on some
(Q,%, P) or a measure on X = Fla,b]. For studying diffusion processes Fla,b] = C|a, b].

3. Brownian motion on [0,7] is the canonical diffusion process. (2,3, P) What do
we want of £(t,w)? For every n, with zp =0and 0 =ty < --- <t, <T

Pt @), .. E(tn,w)) € A :Afn(tl,xl,...,tn,xn)dxl---dxn

where

_ U (g —21)% :
falti, @1, o, an) = CeXP[—§ Z ﬁ] =1Ip(tj—1J, xj-1,15, ;)
J J—

and to=2g=0and 0 <ty <---<t, <T.

1 (z —y)?

p(s,x,t,y) = \/ﬁ eXp[—m]

Remark: To be consistent
/fn<t1, L1y ,tj,fllj, . .tn, .’En)dfllj = fn_1<t1, T1y--- ,tj_l,fllj_l, tj_|_1,{13j_|_1, .. .tn,flln)

Reduces to
/p(s, x, t,y)p(t,y, u, 2))dy = p(s, z,u, 2)

4. Does it exist? The question is equivalent to is there a measure p on C[0, 7] such
that for all n and for all 0 < tg < --- < t, <T,

Pt @), .. E(tn,w)) € A :/Af(tl,xl,...,tn,xn)darl---dxn

4.1. Theorem (Kolmogorov). If a consistent family {f,} satisfies for some a > 0,
£ > 0 and constant C

/|£C1 — $2|Bf2(t1,5€1,t2,xz)dmd&?z < Clty — to| '

for 0 <ty <ty <T, then p exists and is unique.
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Remark. For BM with 8 =4,a =1 and C' = 3 works.
/ |$(t1) — l‘(t2>|4f2(t1.1‘1, t2,$2>d$1d1’2 = /x4p(t2 — tl, l’)dl’ = 3|t1 - t2|2

Proof of theorem. Let us take 7' = 1 and divide the interval into n = 2N sub intervals
with end points z&. On the space = RZ of sequences (5% ) there is a measure P such
that

PlE(t1,w), -, E(tn,w)) € A] = /A (b @1, st ) - - - d

C[0,1] with () =
N j_ g+l
N AN AN |-
z(5%) for 0 < j < 2% and interpolates linearly over intervals [5%, %x]. For some § > 0
we will show that

if {t } are diadics. For every N, consider the map &y (t,w) : 2 —

ZP[Sgp Ent1(t,w) = En(tw)] =27V < o0
N

which is enough. By Borel-Cantelli lemma £(¢,w) = limy_, 0 En (¢, w) will exist uniformly
in ¢ for almost all w. This defines the limit £(¢) as a map into C[0, 1] and the image is .
We note that
2j +1 1. j+1
sup  [En(t,w) = Envt1(tw)| = [Evti (g w) — 5 (5, w) + v (55— w)ll
Lr<t<iy 2 2 2 2
- — 2

2j +1 2j 2j +1 2j +2
< maXHﬁNH(W) - §N+1<W)|’ Envr1(Sx N1 — v S SN 1 )l

p[ sup 1En (8 w) — Engr (t,w)| > 2—(N+1)5] <2. o(N+1)B6  o—=(N+1)(1+a) |

J+1
S <t<Zi:

P[sup [En(t,w) = Enpa(t,w)| > 27N < 2N g g(VHLES g~ (NHD+e) . ¢
0<t<1
_ o~ (N+1)(a—B5)

Choose § < %

4.2. Garsia-Rodemick-Rumsey theorem.

Let f be continuous on [0, T].Let ¢ and p be continuous, even nonnegative functions
on R, with ¥(0) = p(0) = 0 that are strictly increasing on R*. ¢ (z) — oo as |z| — oo.

Assume / / ( f())|)dtds—B<OO

£ = F(5) <8 / R (j—B)du
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With ¢(z) = |z|™ and p(u) = |u|* for Brownian motion we can get up to Holder 3 — §
with suitable choices of m and a. E[B] < oo if

%—am+a—1>—1

or "
a(l—m)+5>0

or
m

S om-1)

We get Holder with @ = a — % Large m gets a close to %

Proof of GRR inequality. Scales correctly. f on [a, b] satisfies.

RC

R R e e e
=(b—a) // <|f/t, f/)(8>|)dtds

with f/(t) = f(a+ (b—a)t) and p'(t) = p((b — a)t).

£(0) = fa)| = [/(1) = £(0)]
! 4B
< 8/0 Pt (m)p((b — a)du)

- 8/O|b_al w‘lﬁ—f)p(dw

Let I(t fo (M) ds. There is ty such that I(tg) < B. With this ¢, we will show

p(t—s)
that

)= 101 <4 [ o7 (42 )otau)
and

)= 101 <4 [0 (42 )ptau)
so that



we will now pick

to>uy >t >0 > Uy >ty
recursively as follows. Let d, = p(t,—1) and pick u, such that p(u,) = %. Then
Jo " I(t)dt < B and
o (1 (a1 — f(8)|)
ds < I(t,—
/0 77[J( p(tn—l _3) N ( 1>
Now t,, is chosen from [0, u,] such that I(t¢,) < % and
w(‘f(tn—l - f(tn)|) S 2I<tn—1)
p(tn—l - tn) Un
Since QI(Z”‘l) < - ‘fu < i—?, we have
_. (4B . (4B
) = Stw0)] < 07 (03 Jottacs = 1) < 07 (35 )it
and ()
blun
p(tn—1) = 2p(u,) = 4[p(un> T } < 4[p(un) — p(tny1]
Then
_. (4B Un (4B
) = £twe)] < 407 (35 tan) —plaminll <4 [ 07 (3 Jotaw
n Un41

Sum over n.

st = s <4 [ (42 Yoiaw <4 [0 (2 Yot

In a similar fashion, replacing f(¢) by f(1 —1t),

=t [ o ()i <1 [ o (4 )ota)

4.3. View in terms of weak convergence. Let pn be the measure on C[0, 1] induced by the
random polygon. If we have a weak limit p along a sub sequence that will do it.

Uniform tightness. Need K. compact set in C10, 1] such that

supljun (K°)] < e
N

Fix N. 0 < j <k < N. Kolmogorov’s inequality.
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Let {X;} be mutually independent and have mean 0 and finite variance. Then with
Sn:X1+"'+Xn

Pl sup |55 > 4] < E[SQ]

1<j<n

Let B, = {|S1,...,|Sr—1]| < £,]S:| > ¢}

/ 15, |2dP = / [(S0)2 + 28,(Sn — S0) + (Sy, — 8,)2]dP > 2 P(B,)
B, B

ks

You can sum over r and since B, are disjoint

?P|U,B,] < Z/ 1S,|2dP < /|Sn|2dP
T B

This is enough to provide the following estimate for a potential approximation

o)
Pl sup |z(t+h) —x(t)] > ¢ < —
0<h<s €

By Ascoli-Arzela theorem we need to estimate the modulus of continuity. Since £(0) = 0,
uniform boundedness will follow from uniform estimates on the modulus of continuity. Let
d > 0 be given. Divide the interval [0, 1] into % overlapping subintervals of length 2. If
we control the oscillation in all the subintervals of length 2§ then since any interval of
length ¢ is contained in one of the % intervals of length 26 the modulus of continuity at
is controlled.

But there are % such intervals are needed to estimate the modulus of continuity. The
estimate misses the mark. Need

P[ sup |z(s)—z(t)| >¢€ <
s:t<s<t+0d

c(9)
2

with ¢(6) = o(d). Note that £(¢) has independent increments and E[(£(t) —£&(s))?] = |t —s].
Martingales and Doob’s inequality.

(Q,%, P) is a probability space, 3, C . T. A martingale is a sequence {X,} such that
X, is 2J,, measurable, € L1 and

E[Xn|2n—l] — Xn—l

or X, =Y1+---4Y,, Y;is ¥, measurable and E[Y,|X,,_1] = 0.

If X, is a martingale with respect to (2, %,,, P),
Bl Xn||En-1] = | Xn]
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It is enough to note that
E[max{X,Y}|X] > max { E[X Y], E[Y|Z]}

Let as before

B, :{Sup|X1+"'Xj| <£7|X1+"'X7"| ZE]
j<r

If &, = max{|X4],...,|X,|}, then

/ dP<Z/ |X|dP<Z/ |X\dP/ | X,,|dP
En >0

Lemma. Let X and Y be two nonnegative random variables such that

P[X>z]§1/ YdP
X>0

Then for p > 1,
p

[Xp] < (p—l

)" ElY7]
Proof. Let F(t) = P[X >t] and G(t) = P[Y > t]

B[X7] = — / " war()
= p/ooo F(t)tP~tdt

=p / / 1x>YtP 2dPdt
—p// tP=2Y dtdP

= —1 XP~lydp
p_

p _

< EHXP Hlp= 1Y 1]
P 1-1

= HHXHp " Yy

Now we can improve the estimate on martingales

1 4
Pl sup |X;| >/ < £—4(—)4E[5ﬁ]
1<j<n

w

One can ask in general if we have a Markov process with transition probability p(t, x, dy)
on some R? when can we say that the Markov process with transition probability p can
be realized in the space of continuous functions.
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Let
h@ﬁ)qup@wB@&V)zquWdﬂ—wmﬂZemm)Zﬂ

If for every € > 0

lim At €)
t—0 ¢

=0

then the process can be realized in C[[0, T]; RY]. We saw before that it is enough to show
that
B (t,) = P sup |a(s) — 2(0)] > ¢

0<s<t
satisfies B (s
lim (t,¢) =0
t—0 t
Lemma. Wt o)
€
h*(t,2¢) < ——1 72
(.2 < 720, 0

We will let the time in z(-) vary over a grid of equally spaced points and get estimates
to hold uniformly as the grid size goes to 0.
Let X1,...X,, be random variables such that for 1 <i < j <n

Ssup P[|X]—XZ|Z€|X1,,XZ]§5

1<i<j<n
a.e. Then 5
Pl sup |X; —X;|>4e] < ——
1<i<j<n 1-6
It is enough to show that
0
Pl sup |X; —X;|>2¢ < —
1<i<n 1—-90
Let
B={sup |[X;—X1|>¢€}
1<j<n
is the disjoint union over r =1,...,n of
B.={ sup |X;—Xi|<2¢]|X, —X1] > 2¢}
1<j<r—1

B=[Bn{|X, - Xi|<e]U[BN{|X,— X1| > ¢}]
PBN{|Xn—X1| > €}] S P[X, — X1| > <0

P[B, n{|X,, — X1| < €}| < P[B, N{|X, — X,| > €}] <0P[B,]
It follows that
P[B] <6+ 0P[B]
and therefore P(B) < %.

The generator Lf = lim;_,q % is local.



Kolmogorov’s backward and forward equations.

Assume
% f|y_x|>ep(t, x,dy) = 0 locally uniformly in z.
2 |y_m|<6(y — z)p(t, x,dy) = b(z) locally uniformly in z.

h |y_m|<6(y — ) ® (y — x)p(t, x,dy) = a(z) locally uniformly in x.

1
tin & [170) = @z ) = (£1)) = 3 i) Lo+ ) 2 (o

locally uniformly in z.

Suppose for t > 0, p(t, z,y) is smooth in (¢,z). Then for fixed y and ¢ > 0, as a function
of t,x

1 .1
a hi% h[ (t—l—h,.’lﬁ,y) —p(t,x,y)] - }lbli%ﬁ /p(h,a:, Z)[p<t7z7y) —p(t,x,y)]dy - Lp

For fixed z as a function of ¢ and y it will satisfy the forward equation

op 1 0?
§:§Zﬁ[am p(tz,y)] Za p(t,z,y)]

It will be a weak solution.
%13%// p(h,z,y)dz — f(y)lg(y)dy
Y p—
Zgg//f()()hwydyl/f

= 1im//f(w)[g(wp(h,w,y)—g(w>]dydw
=< f,Lg>=< L*f, g >

How do you describe a stochastic process. Discrete time. Successive conditionals.
Continuos time successive infinitesimal conditionals.

lim [ (f(y) = f(2()))pt,0,n(dy) = [Lew fl(2(1))

h—0

82
Liof =< Zamtw 89381'] -l-Zb t,w) Ba: (z(t))

Infinitely divisible. What is the tangent space to probability distributions on R¢. Infinitely
divisible distributions. Levy-Khinchine theorem.
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D(t,w), Depends as D(t,z(t)) Markov. D(x(t
N(a(t,w),b(t,w)) contuous paths. N(a(t,z(t)),b(
Gauss-Markov process.

How to rigorously connect the infinitesimal characteristics with the measure?

)). Time homogeneous. D is Gaussian
t,z(t))) Markov. [a(t),b(t)x(t) + c(t)]

P[Xn c A|En_1] = I/n(Xl, RN Xn—17 A)
Bl (Xa) = F(Xn1)[Saor] = / W) = F (X Wa(Xi, s Xy, dy)
E{f(Xn) P (Xa) — ga(Xu,.. .,Xn_1>|zn_1] 0

Zn = f(Xn) - f(XO) - Zgj(Xh - '7Xj—1)
j=1
is a martingale.

f(y) B
/m‘zn—lyn<X1, T 7Xn—1,dy) - hn<X17 ce ,Xn—l)

F(X) T 1

Ly =

f(X()) ]1;[1 hj(Xl, ey Xj_1>
is a martingale.

Continuous versions.

is a martingale

is a martingale
One way to model is

x(t+h)=2a(t)+b(t,w)h+ Zp

Zy, is a mean 0 Gaussian with dispersion ha(t, w), modeled by o(t,w)[B(t+h) — B(t)].
with oo™ = a.

dz(t) = b(t,w)dt + o(t,w)dB(t)

In the Markov case
dz(t) = b(t, z(t))dt + o(t, z(t))dB(t)
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Does
4n:zmy+[;u4@m&+é(ﬂam@mB@)

make sense?
What regularity does B(-) have. We saw it was Holder with exponent o < 5. It is

NOT Holder 1. Divide [0, 1] into n equal parts {t;}. %\/#1) are independent standard
Jg— -1

Gaussians and

C—sup\x \\/t—s>sup 2(t;) = 2t 1) = sup[|Ui], ..., |Ulx)

Vit =t

When n is large sup; |U;| of n Gaussians is very large with high probability. Therefore
C = o0.
x(t) is definitely not diffrentiable. Is it of BV so we can justify the integral? It is not.

B[ ((alt) — alt-0)F] = Ylts — tj-a) = T
Variance of
[(t;) — 2(t;-1)]* = El[z(t;) — 2(t;-)]"] = [Ela(t;) — x(t;—1)]*)°
=3(t; —tj—1)" — (t; — tj—1)°
= 2(t; —tj—1)*

The sum tends to 0 as the partition is refined. The quadratic variation is 7" and can not
be of BV in any intervals. With some extra work one can show

im swp | S0 i a2 ot =0

n—oo 0<t<T 5 2n 2”
J: 2n <t
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