
1. What is a stochastic process. Stochastic means random. Process is evolution. A
stochastic process is some thing that evolves randomly over time. Diffusion process refers
to processes that evolve continuously (no discontinuities or jumps)

2. Time can be continuous or discrete. A stochastic process in discrete time is a
random sequence. There is (Ω,Σ, P ) and a map ξ : Ω → X the space of sequences.ξ =
{Xj}. Or simply a measure µ on X . In the continuous case X is the space of functions.
A stochastic process in continuous time is a random function ξ = x(t, ω) defined on some
(Ω,Σ, P ) or a measure on X = F [a, b]. For studying diffusion processes F [a, b] = C[a, b].

3. Brownian motion on [0, T ] is the canonical diffusion process. (Ω,Σ, P ) What do
we want of ξ(t, ω)? For every n, with x0 = 0 and 0 = t0 < · · · < tn ≤ T

P [(ξ(t1, ω), . . . , ξ(tn, ω)) ∈ A] =

∫

A

fn(t1, x1, . . . , tn, xn)dx1 · · ·dxn

where

fn(t1, x1, . . . tn, xn) = c exp[−1

2

∑ (xj − xj−1)
2

tj − tj−1
] = Πp(tj−1j, xj−1, tj, xj)

and t0 = x0 = 0 and 0 < t0 < · · · < tn ≤ T .

p(s, x, t, y) =
1

√

2π(t− s)
exp[−(x− y)2

2(t− s)
]

Remark: To be consistent
∫

fn(t1, x1, . . . , tj, xj, . . . tn, xn)dxj = fn−1(t1, x1, . . . , tj−1, xj−1, tj+1, xj+1, . . . tn, xn)

Reduces to
∫

p(s, x, t, y)p(t, y, u, z))dy = p(s, x, u, z)

4. Does it exist? The question is equivalent to is there a measure µ on C[0, T ] such
that for all n and for all 0 < t0 < · · · < tn ≤ T ,

P [(ξ(t1, ω), . . . , ξ(tn, ω)) ∈ A] =

∫

A

f(t1, x1, . . . , tn, xn)dx1 · · ·dxn

4.1. Theorem (Kolmogorov). If a consistent family {fn} satisfies for some α > 0,
β > 0 and constant C

∫

|x1 − x2|βf2(t1, x1, t2, x2)dx1dx2 ≤ C|t1 − t2|1+α

for 0 ≤ t1 < t2 ≤ T , then µ exists and is unique.
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Remark. For BM with β = 4, α = 1 and C = 3 works.

∫

|x(t1)− x(t2)|4f2(t1.x1, t2, x2)dx1dx2 =

∫

x4p(t2 − t1, x)dx = 3|t1 − t2|2

Proof of theorem. Let us take T = 1 and divide the interval into n = 2N sub intervals
with end points j

2N . On the space Ω = RZ of sequences x( j
2N ) there is a measure P such

that

P [(ξ(t1, ω), . . . , ξ(tn, ω)) ∈ A] =

∫

A

f(t1, x1, . . . , tn, xn)dx1 · · ·dxn

if {tj} are diadics. For every N , consider the map ξN (t, ω) : Ω → C[0, 1] with ξN ( j
2N ) =

x( j
2N ) for 0 ≤ j ≤ 2N and interpolates linearly over intervals [ j

2N ,
j+1
2N ]. For some δ > 0

we will show that

∑

N

P [sup
t

|ξN+1(t, ω)− ξN (t, ω)| ≥ 2−Nδ] <∞

which is enough. By Borel-Cantelli lemma ξ(t, ω) = limN→∞ ξN (t, ω) will exist uniformly
in t for almost all ω. This defines the limit ξ(t) as a map into C[0, 1] and the image is µ.
We note that

sup
j

2N
≤t≤ j+1

2N

|ξN (t, ω)− ξN+1(t, ω)| = |ξN+1(
2j + 1

2N+1
, ω)− 1

2
[ξN (

j

2N
, ω) + ξN (

j + 1

2N
, ω)]|

≤ max[|ξN+1(
2j + 1

2N+1
)− ξN+1(

2j

2N+1
)|, |ξN+1(

2j + 1

2N+1
− ξN+1(

2j + 2

2N+1
)]

P [ sup
j

2N
≤t≤ j+1

2N

|ξN (t, ω)− ξN+1(t, ω)| ≥ 2−(N+1)δ] ≤ 2 · 2(N+1)βδ · 2−(N+1)(1+α) · C

P [ sup
0≤t≤1

|ξN(t, ω)− ξN+1(t, ω)| ≥ 2−(N+1)δ ] ≤ 2N · 2 · 2(N+1)βδ · 2−(N+1)(1+α) · C

= 2−(N+1)(α−βδ)

Choose δ < α
β
.

4.2. Garsia-Rodemick-Rumsey theorem.

Let f be continuous on [0, T ].Let ψ and p be continuous, even nonnegative functions
on R, with ψ(0) = p(0) = 0 that are strictly increasing on R+. ψ(x) → ∞ as |x| → ∞.
Assume

∫ T

0

∫ T

0

ψ

( |f(t)− f(s)|
p(t− s)

)

dtds = B <∞

Then

|f(t)− f(s)| ≤ 8

∫ |t−s|

0

ψ−1

(

4B

u2

)

du
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With ψ(x) = |x|m and p(u) = |u|a for Brownian motion we can get up to Holder 1
2 − δ

with suitable choices of m and a. E[B] <∞ if

m

2
− am+ a− 1 > −1

or
a(1−m) +

m

2
> 0

or
a <

m

2(m− 1)

We get Holder with α = a− 2
m
. Large m gets α close to 1

2 .

Proof of GRR inequality. Scales correctly. f on [a, b] satisfies.

∫ b

a

∫ b

a

ψ

( |f(t)− f(s)|
p(t− s)

)

dtds = B

t′ = t−a
b−a

and s′ = s−a
b−a

B =(b− a)2
∫ 1

0

∫ 1

0

ψ

( |f(a+ (b− a)t′)− f(a+ (b− a)s′)|
p((b− a)(t′ − s′))

)

dt′ds′

=(b− a)2
∫ 1

0

∫ 1

0

ψ

( |f ′(t)− f ′(s)|
p′(t− s)

)

dtds

with f ′(t) = f(a+ (b− a)t) and p′(t) = p((b− a)t).

|f(b)− f(a)| = |f ′(1)− f ′(0)|

≤ 8

∫ 1

0

ψ−1

(

4B

(b− a)2u2

)

p((b− a)du)

= 8

∫ |b−a|

0

ψ−1

(

4B

u2

)

p(du)

Let I(t) =
∫ 1

0
ψ

(

|f(t)−f(s)|
p(t−s)

)

ds. There is t0 such that I(t0) ≤ B. With this t0 we will show

that

|f(t0)− f(0)| ≤ 4

∫ 1

0

ψ−1

(

4B

u2

)

p(du)

and

|f(t0)− f(1)| ≤ 4

∫ 1

0

ψ−1

(

4B

u2

)

p(du)

so that

|f(1)− f(0)| ≤ 8

∫ 1

0

ψ−1

(

4B

u2

)

p(du)
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we will now pick
t0 > u1 > t1 > · · · · · · > un > tn · · ·

recursively as follows. Let dn = p(tn−1) and pick un such that p(un) = dn

2
. Then

∫ un

0
I(t)dt ≤ B and

∫ un

0

ψ

( |f(tn−1 − f(s)|
p(tn−1 − s)

)

ds ≤ I(tn−1)

Now tn is chosen from [0, un] such that I(tn) ≤ 2B
un

and

ψ

( |f(tn−1 − f(tn)|
p(tn−1 − tn)

)

≤ 2I(tn−1)

un

Since
2I(tn−1)

un
≤ 4B

un−1un
≤ 4B

u2
n
, we have

|f(tn)− f(tn−1)| ≤ ψ−1

(

4B

u2n

)

p(tn−1 − tn) ≤ ψ−1

(

4B

u2n

)

p(tn−1)

and

p(tn−1) = 2p(un) = 4
[

p(un)−
p(un)

2

]

≤ 4[p(un)− p(un+1]

Then

|f(tn)− f(tn−1)| ≤ 4ψ−1

(

4B

u2n

)

[p(un)− p(un+1)] ≤ 4

∫ un

un+1

ψ−1

(

4B

u2

)

p(du)

Sum over n.

|f(t0)− f(0)| ≤ 4

∫ t0

0

ψ−1

(

4B

u2

)

p(du) ≤ 4

∫ 1

0

ψ−1

(

4B

u2

)

p(du)

In a similar fashion, replacing f(t) by f(1− t),

|f(t0)− f(1)| ≤ 4

∫ 1−t0

0

ψ−1

(

4B

u2

)

p(du) ≤ 4

∫ 1

0

ψ−1

(

4B

u2

)

p(du)

4.3. View in terms of weak convergence. Let µN be the measure on C[0, 1] induced by the
random polygon. If we have a weak limit µ along a sub sequence that will do it.

Uniform tightness. Need Kǫ compact set in C[0, 1] such that

sup
N

[µN (Kc)] ≤ ǫ

Fix N . 0 ≤ j ≤ k ≤ N . Kolmogorov’s inequality.
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Let {Xi} be mutually independent and have mean 0 and finite variance. Then with
Sn = X1 + · · ·+Xn

P [ sup
1≤j≤n

|Sj| ≥ ℓ] ≤ 1

ℓ2
E[S2

n]

Let Br =
{

|S1, . . . , |Sr−1| < ℓ, |Sr| ≥ ℓ
}

∫

Br

|Sn|2dP =

∫

Br

[(Sr)
2 + 2Sr(Sn − Sr) + (Sn − Sr)

2]dP ≥ ℓ2P (Br)

You can sum over r and since Br are disjoint

ℓ2P [∪rBr] ≤
∑

r

∫

Br

|Sn|2dP ≤
∫

|Sn|2dP

This is enough to provide the following estimate for a potential approximation

P [ sup
0≤h≤δ

|x(t+ h) − x(t)| ≥ ǫ] ≤ Cδ

ǫ2

By Ascoli-Arzela theorem we need to estimate the modulus of continuity. Since ξ(0) = 0,
uniform boundedness will follow from uniform estimates on the modulus of continuity. Let
δ > 0 be given. Divide the interval [0, 1] into 1

δ
overlapping subintervals of length 2δ. If

we control the oscillation in all the subintervals of length 2δ then since any interval of
length δ is contained in one of the 1

δ
intervals of length 2δ the modulus of continuity at δ

is controlled.
But there are 2

h
such intervals are needed to estimate the modulus of continuity. The

estimate misses the mark. Need

P [ sup
s:t≤s≤t+δ

|x(s)− x(t)| ≥ ǫ] ≤ c(δ)

ǫ2

with c(δ) = o(δ). Note that ξ(t) has independent increments and E[(ξ(t)−ξ(s))2] = |t−s|.

Martingales and Doob’s inequality.

(Ω,Σ, P ) is a probability space, Σn ⊂ Σ. ↑. A martingale is a sequence {Xn} such that
Xn is Σn measurable, ∈ L1 and

E[Xn|Σn−1] = Xn−1

or Xn = Y1 + · · ·+ Yn, Yj is Σj measurable and E[Yn|Σn−1] = 0.

If Xn is a martingale with respect to (Ω,Σn, P ),

E[|Xn||Σn−1] ≥ |Xn−1|
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It is enough to note that

E[max{X, Y }|Σ] ≥ max
{

E[X |Σ], E[Y |Σ]
}

Let as before
Br = {sup

j<r

|X1 + · · ·Xj| < ℓ, |X1 + · · ·Xr| ≥ ℓ]

If ξn = max{|X1|, . . . , |Xn|}, then

ℓ

∫

ξn≥ℓ

dP ≤
∑

r

∫

Br

|Xr|dP ≤
∑

r

∫

Br

|Xn|dP =

∫

ξn≥ℓ

|Xn|dP

Lemma. Let X and Y be two nonnegative random variables such that

P [X ≥ ℓ] ≤ 1

ℓ

∫

X≥ℓ

Y dP

Then for p > 1,

E[Xp] ≤
( p

p− 1

)P
E[Y p]

Proof. Let F (t) = P [X ≥ t] and G(t) = P [Y ≥ t]

E[Xp] = −
∫ ∞

0

tpdF (t)

= p

∫ ∞

0

F (t)tp−1dt

= p

∫ ∞

0

∫

1X≥tY t
p−2dPdt

= p

∫ ∫ X

0

tp−2Y dtdP

=
p

p− 1

∫

Xp−1Y dP

≤ p

p− 1
‖Xp−1‖p∗‖Y ‖p

=
p

p− 1
‖X‖1−

1
p

p ‖Y ‖p

Now we can improve the estimate on martingales

P [ sup
1≤j≤n

|Xj| ≥ ℓ] ≤ 1

ℓ4
(
4

3
)4E[S4

n]

One can ask in general if we have a Markov process with transition probability p(t, x, dy)
on some Rd when can we say that the Markov process with transition probability p can
be realized in the space of continuous functions.
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Let
h(t, ǫ) = sup

x
p(t, xB(x, ǫ)c) = sup

x
P [|x(t)− x(0)| ≥ ǫ|x(0) = x]

If for every ǫ > 0

lim
t→0

h(t, ǫ)

t
= 0

then the process can be realized in C[[0, T ];Rd]. We saw before that it is enough to show
that

h∗(t, ǫ) = P [ sup
0≤s≤t

|x(s)− x(0)| ≥ ǫ]

satisfies

lim
t→0

h∗(t, ǫ)

t
= 0

Lemma.

h∗(t, 2ǫ) ≤ h(t, ǫ)

1− h(t, ǫ)

We will let the time in x(·) vary over a grid of equally spaced points and get estimates
to hold uniformly as the grid size goes to 0.

Let X1, . . .Xn be random variables such that for 1 ≤ i < j ≤ n

sup
1≤i<j≤n

P [|Xj −Xi| ≥ ǫ|X1, . . . , Xi] ≤ δ

a.e. Then

P [ sup
1≤i<j≤n

|Xj −Xi| ≥ 4ǫ] ≤ δ

1− δ

It is enough to show that

P [ sup
1≤i≤n

|Xi −X1| ≥ 2ǫ] ≤ δ

1− δ

Let
B = { sup

1≤j≤n

|Xj −X1| ≥ ǫ}

is the disjoint union over r = 1, . . . , n of

Br =
{

sup
1≤j≤r−1

|Xj −X1| < 2ǫ, |Xr −X1| ≥ 2ǫ
}

.
B = [B ∩ {|Xn −X1| < ǫ}] ∪ [B ∩ {|Xn −X1| ≥ ǫ}]

P [B ∩ {|Xn −X1| ≥ ǫ}] ≤ P [|Xn −X1| ≥ ǫ] ≤ δ

P [Br ∩ {|Xn −X1| < ǫ}] ≤ P [Br ∩ {|Xn −Xr| ≥ ǫ}] ≤ δP [Br]

It follows that
P [B] ≤ δ + δP [B]

and therefore P (B) ≤ δ
1−δ

.

The generator Lf = limt→0
Ttf−f

t
is local.
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Kolmogorov’s backward and forward equations.

Assume

1
t

∫

|y−x|≥ǫ
p(t, x, dy) = 0 locally uniformly in x.

1
t

∫

|y−x|≤ǫ
(y − x)p(t, x, dy) = b(x) locally uniformly in x.

1
t

∫

|y−x|≤ǫ
(y − x)⊗ (y − x)p(t, x, dy) = a(x) locally uniformly in x.

lim
h→0

1

h

∫

[f(y)− f(x)]p(h, x, dy) = (Lf)(x) =
1

2

∑

ai,j(x)
∂2f

∂xi∂xj
(x) +

∑

bj(x)
∂f

∂xj
(x)

locally uniformly in x.

Suppose for t > 0, p(t, x, y) is smooth in (t, x). Then for fixed y and t > 0, as a function
of t, x

∂p

∂t
= lim

h→0

1

h
[p(t+ h, x, y)− p(t, x, y)] = lim

h→0

1

h

∫

p(h, x, z)[p(t, z, y)− p(t, x, y)]dy = Lp

For fixed x as a function of t and y it will satisfy the forward equation

∂p

∂t
=

1

2

∑ ∂2

∂yi∂yj
[ai,j(y)p(t, x, y)]−

∑ ∂

∂yj
[bj(y)p(t, x, y)]

It will be a weak solution.

lim
h→0

∫ ∫

[f(x)p(h, x, y)dx− f(y)]g(y)dy

= lim
h→0

∫ ∫

f(x)g(y)p(h, x, y)dy−
∫

f(y)g(y)dy

= lim
h→0

[

∫ ∫

f(x)g(y)p(h, x, y)dy−
∫

f(x)g(x)dx]

= lim
h→0

∫ ∫

f(x)[g(y)p(h, x, y)− g(x)]dydx

=< f, Lg >=< L∗f, g >

How do you describe a stochastic process. Discrete time. Successive conditionals.
Continuos time successive infinitesimal conditionals.

lim
h→0

∫

(f(y)− f(x(t)))µt,ω,h(dy) = [Lt,ωf ](x(t))

Lt,ωf =
1

2

∑

ai,j(t, ω)
∂2f

∂xi∂xj
(x(t)) +

∑

bj(t, ω)
∂f

∂xj
(x(t))

Infinitely divisible. What is the tangent space to probability distributions on Rd. Infinitely
divisible distributions. Levy-Khinchine theorem.
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D(t, ω), Depends as D(t, x(t)) Markov. D(x(t)). Time homogeneous. D is Gaussian
N(a(t, ω), b(t, ω)) contuous paths. N(a(t, x(t)), b(t, x(t))) Markov. [a(t), b(t)x(t) + c(t)]
Gauss-Markov process.

How to rigorously connect the infinitesimal characteristics with the measure?

P [Xn ∈ A|Σn−1] = νn(X1, . . . , Xn−1, A)

E[f(Xn)− f(Xn−1)|Σn−1] =

∫

[f(y)− f(Xn−1)]νn(X1, . . . , Xn−1, dy)

E

[

f(Xn)− f(Xn−1)− gn(X1, . . . , Xn−1)|Σn−1

]

= 0

Zn = f(Xn)− f(X0)−
n
∑

j=1

gj(X1, . . . , Xj−1)

is a martingale.

∫

f(y)

f(Xn−1)
|Σn−1νn(X1, . . . , Xn−1, dy) = hn(X1, . . . , Xn−1)

Zn =
f(Xn)

f(X0)

n
∏

j=1

1

hj(X1, . . . , Xj−1)

is a martingale.

Continuous versions.

f(x(t))− f(x(0))−
∫ t

0

(Ls,ωf)(x(s))ds

is a martingale

f(x(t))

f(x(0))
exp

[

−
∫ t

0

(Ls,ωf)(x(s))

f(x(s))
ds
]

is a martingale
One way to model is

x(t+ h) = x(t) + b(t, ω)h+ Zh

Zh is a mean 0 Gaussian with dispersion ha(t, ω), modeled by σ(t, ω)[B(t+h)−B(t)].
with σσ∗ = a.

dz(t) = b(t, ω)dt+ σ(t, ω)dB(t)

In the Markov case
dz(t) = b(t, z(t))dt+ σ(t, z(t))dB(t)
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Does

z(t) = z(0) +

∫ t

0

b(z(s))ds+

∫ t

0

σ(s, x(s))dB(s)

make sense?
What regularity does B(·) have. We saw it was Holder with exponent α < 1

2 . It is

NOT Holder 1
2 . Divide [0, 1] into n equal parts {tj}. x(tj)−x(tj−1)√

tj−tj−1

are independent standard

Gaussians and

C = sup
s,t

|x(t)− x(s)|
√

|t− s ≥ sup
j

|x(tj)− x(tj−1)|
√

|tj − tj−1

= sup[|U1|, . . . , |U |n]

When n is large supj |Uj| of n Gaussians is very large with high probability. Therefore
C = ∞.

x(t) is definitely not diffrentiable. Is it of BV so we can justify the integral? It is not.

E[
∑

j

[(x(tj)− x(tj−1)]
2] =

∑

[tj − tj−1] = T

Variance of

[x(tj)− x(tj−1)]
2 = E[[x(tj)− x(tj−1)]

4]− [E[x(tj)− x(tj−1)]
2]2

= 3(tj − tj−1)
2 − (tj − tj−1)

2

= 2(tj − tj−1)
2

The sum tends to 0 as the partition is refined. The quadratic variation is T and can not
be of BV in any intervals. With some extra work one can show

lim
n→∞

sup
0≤t≤T

|
∑

j: j

2n
≤t

[x(
j + 1

2n
− x(

j

2n
)]2 − t| = 0

a.e.
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