Invariant Distributions.

Theorem. Let

$$L = \frac{1}{2} \sum_{i,j=1}^{d} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{d} b_j(x) \frac{\partial}{\partial x_j}$$

where $a_{i,j}, b_j$ are continuous functions on \mathbb{R}^d perhaps unbounded. Assume that the solution to the martingale problem exists (i.e.does not blow up and is unique for every x. So there is a family of measures $\{P_x\}$ on $C[[0,\infty); \mathbb{R}^d]$. Suppose μ is a probability distribution on \mathbb{R}^d such that $\int_{\mathbb{R}^d} (Lu)(x) d\mu(x) = 0$ for every smooth function u with compact support on \mathbb{R}^d . Then μ is an invariant distribution for L and $\int P_x d\mu$ is a stationary Markov process with marginal μ

Proof.

For h > 0 we will construct a family $\pi_h(x, dy)$ of transition probability functions for Markov Chains such that

1. μ is invariant measure for each π_h . i.e.

$$\int \pi(x,A)\mu(dx) = \mu(A)$$

2. The Markov chain with time step h and transition probability π_h converges to the process $\{P_x\}$ as $h \to 0$.

Our candidate for π_h is $(I - hL)^{-1}$. We have the domain \mathcal{D} of C^2 functions that are constant outside a compact set and (I - hL) maps it into continuous functions that are constant outside a compact set. Let u - Lu = f and $f \ge 0$. The minimum of u is attained at some point z and $Lu(z) \ge 0$ implying tha $u(z) = f(z) + Lu(z) \ge 0$. Thus $f \ge 0$ implies $u \ge 0$. This implies that (I - hL) is invertible and the inverse π_h maps the range \mathcal{R}_h of (I_hL) into \mathcal{D} . It maps nonnegative functions to nonnegative ones and $\pi_h \mathbf{1} = \mathbf{1}$. This implies that $\|\pi_h f\|_{\infty} \le \|f\|_{\infty}$. $\int Lf d\mu = 0$ implies $\int \pi_h f d\mu = \int f d\mu$. The problem is \mathcal{R}_h is not necessarily dense and we may have to extend π from \mathcal{R}_h to $C(\mathbb{R}^d)$ preserving nonnegativity and the identity $\int \pi_h f d\mu = \int f d\mu$. We construct a distribution $\lambda_h(dx, dy)$ on $\mathbb{R}^d \times \mathbb{R}^d$ with both marginals equal to μ and $\mathbb{E}^{\lambda}[f(y)|x] = (\pi_h f)(x)$ for $f \in \mathcal{R}_h$. To this end we define a linear functional Λ_h on (not necessarily closed) subspace of functions in $C[\mathbb{R}^d \times \mathbb{R}^d]$ of the form

$$w(x,y) = \sum_{r=1}^{n} u_r(x) f_r(y) + u_0(y)$$

where u_0, u_r are continuous functions with a limit at ∞ and $f_r = g_r - hLg_r \in \mathcal{R}_h$. We define

$$\Lambda_h(w) = \sum_{r=1}^n \int_{R^d} u_r(x) g_r(x) \mu(dx) + \int_{R^d} u_0(x) \mu(dx)$$

We need to show that if $w \ge 0$ then $\Lambda_h(w) \ge 0$. We can then extend Λ_h to all of $C_0(\mathbb{R}^d \times \mathbb{R}^d)$ functions with limit at infinity. Riesz theorem will give a bivariate distribution λ_h with both marginals equal to μ and the conditional probability distribution $\hat{\pi}_h$ will agree with π_h on \mathcal{R}_h . Let us define

$$\psi(z_1,\ldots,z_n) = \inf_x \left[\sum_{r=1}^n u_r(x)z_r\right]$$

It is concave. Let us pretend it is smooth. Then $\psi(f_1(x), \dots, f_n(x)) + u_0(x) \ge 0$.

$$\int \psi(f_1(x) - hLf_1(x), \cdots, f_n(x) - hLf_n(x))d\mu$$

is a concave function of h. Derivative with respect to h at h = 0 is given by

$$-\int \sum_{j} \frac{\partial \psi}{\partial z_{j}} (f_{1}(x), \cdots, f_{n}(x)) (Lf_{j})(x) d\mu \leq -\int L\psi(f_{1}(x), \cdots, f_{n}(x)) d\mu = 0$$

The maximum principle implies that for a concave function $\psi(z_1, \ldots, z_n)$,

$$L\psi(f_1,\ldots,f_n) \le \sum_j \frac{\partial \psi}{\partial z_j} Lf_j$$

As a function of h it is concave and has negative slope at h = 0. So it is decreasing for $h \ge 0$. Hence

$$\int \psi(f_1(x),\ldots,f_n(x))d\mu \ge \int \psi(f_1(x)-hLf_1(x),\ldots,f_n(x)-hLf_n(x))d\mu$$

Now,

$$\begin{split} \int \sum_{r=1}^{n} u_r(x) g_r(x) d\mu &+ \int u_0(x) d\mu \\ &\geq \int \psi(g_1(x), \dots, g_r(x)) d\mu + \int u_0(x) d\mu \\ &\geq \int \psi(g_1(x) - hLg_1(x), \dots, g_n(x) - hLg_n(x)) d\mu + \int u_0(x) d\mu \\ &= \int \psi(f_1(x), \dots, f_n(x)) d\mu + \int u_0(x) d\mu \\ &= \int [\psi(f_1(x), \dots, f_n(x)) + u_0(x)] d\mu \\ &\geq 0 \end{split}$$

Hahn-Banch Theorem. Let *B* be the Banach space of real valued bounded continuous functions on a compact space *X* and B_0 a linear subspace containing constants. $\Lambda(f)$ is a linear functional that is nonnegative, i.e. $f \geq 0$ implies $\Lambda(f) \geq 0$. Let $\Lambda(\mathbf{1}) = 1$. Then Λ

can be extended as a nonnegative linear functional on B and represented by Riesz theorem as integral with respect to a probability measure on X.

Let $g \notin B_0$. Let $c^+(g) = \inf_{f \in B_0; f \ge g} \Lambda(f)$ and $c^- = \sup_{f \in B_0; f \le g} \Lambda(f)$. It is easy to check that $c^+(g) \ge C^-(g)$ and let us define $\Lambda(g) = 1$ where $c^+(g) \ge a \ge C^-(g)$. Then we need to check that if $f + cg \ge 0$ then $\Lambda(f) + ca \ge 0$. Then we would have extended Λ from B_0 to $B_1 = \text{span} \{B_0, g\}$ If c = 0, there is nothing to prove. If c > 0 then $g \ge -\frac{f}{c}$. By choice $\Lambda(g) = a \ge \Lambda(-\frac{f}{c}) = -\frac{\Lambda(f)}{c}$. Thus $\Lambda(f) + ca \ge 0$. The case when c < 0 is similar. The rest is routine.

It is clear that both the marginals are fixed at μ . If we denote by $\hat{\pi}_h(x, dy)$ the r.c.p.d then the Markov Chain has μ as marginal and since $\pi_h((I - hL)f = f, \frac{1}{h}(\pi_h u_h - u_h) = f$ where $u_h = f - hLf \rightarrow u$. This is enough by martingale arguments to show tightness and convergence to $\{P_x\}$.