Invariant Distributions.

Theorem. Let

$$
L=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b_{j}(x) \frac{\partial}{\partial x_{j}}
$$

where $a_{i, j}, b_{j}$ are continuous functions on R^{d} perhaps unbounded. Assume that the solution to the martingale problem exists (i.e.does not blow up and is unique for every x. So there is a family of measures $\left\{P_{x}\right\}$ on $C\left[[0, \infty) ; R^{d}\right]$. Suppose μ is a probability distribution on R^{d} such that $\int_{R^{d}}(L u)(x) d \mu(x)=0$ for every smooth function u with compact support on R^{d}. Then μ is an invariant distribution for L and $\int P_{x} d \mu$ is a stationary Markov process with marginal μ

Proof.

For $h>0$ we will construct a family $\pi_{h}(x, d y)$ of transition probability functions for Markov Chains such that

1. μ is invariant measure for each π_{h}. i.e.

$$
\int \pi(x, A) \mu(d x)=\mu(A)
$$

2. The Markov chain with time step h and transition probability π_{h} converges to the process $\left\{P_{x}\right\}$ as $h \rightarrow 0$.
Our candidate for π_{h} is $(I-h L)^{-1}$. We have the domain \mathcal{D} of C^{2} functions that are constant outside a compact set and $(I-h L)$ maps it into continuous functions that are constant outside a compact set. Let $u-L u=f$ and $f \geq 0$. The minimum of u is attained at some point z and $L u(z) \geq 0$ implying tha $u(z)=f(z)+L u(z) \geq 0$. Thus $f \geq 0$ implies $u \geq 0$. This implies that $(I-h L)$ is invertible and the inverse π_{h} maps the range \mathcal{R}_{h} of $\left(I_{h} L\right)$ into \mathcal{D}. It maps nonnegative functions to nonnegative ones and $\pi_{h} \mathbf{1}=\mathbf{1}$. This implies that $\left\|\pi_{h} f\right\|_{\infty} \leq\|f\|_{\infty}$. $\int L f d \mu=0$ implies $\int \pi_{h} f d \mu=\int f d \mu$. The problem is \mathcal{R}_{h} is not necessarily dense and we may have to extend π from \mathcal{R}_{h} to $C\left(R^{d}\right)$ preserving nonnegativity and the identity $\int \pi_{h} f d \mu=\int f d \mu$. We construct a distribution $\lambda_{h}(d x, d y)$ on $R^{d} \times R^{d}$ with both marginals equal to μ and $E^{\lambda}[f(y) \mid x]=\left(\pi_{h} f\right)(x)$ for $f \in \mathcal{R}_{h}$. To this end we define a linear functional Λ_{h} on (not necessarily closed) subspace of functions in $C\left[R^{d} \times R^{d}\right]$ of the form

$$
w(x, y)=\sum_{r=1}^{n} u_{r}(x) f_{r}(y)+u_{0}(y)
$$

where u_{0}, u_{r} are continuous functions with a limit at ∞ and $f_{r}=g_{r}-h L g_{r} \in \mathcal{R}_{h}$. We define

$$
\Lambda_{h}(w)=\sum_{r=1}^{n} \int_{R^{d}} u_{r}(x) g_{r}(x) \mu(d x)+\int_{R^{d}} u_{0}(x) \mu(d x)
$$

We need to show that if $w \geq 0$ then $\Lambda_{h}(w) \geq 0$. We can then extend Λ_{h} to all of $C_{0}\left(R^{d} \times R^{d}\right)$ functions with limit at infinity. Riesz theorem will give a bivariate distribution λ_{h} with both marginals equal to μ and the conditional probability distribution $\hat{\pi}_{h}$ will agree with π_{h} on \mathcal{R}_{h}. Let us define

$$
\psi\left(z_{1}, \ldots, z_{n}\right)=\inf _{x}\left[\sum_{r=1}^{n} u_{r}(x) z_{r}\right]
$$

It is concave. Let us pretend it is smooth. Then $\psi\left(f_{1}(x), \cdots, f_{n}(x)\right)+u_{0}(x) \geq 0$.

$$
\int \psi\left(f_{1}(x)-h L f_{1}(x), \cdots, f_{n}(x)-h L f_{n}(x)\right) d \mu
$$

is a concave function of h. Derivative with respect to h at $h=0$ is given by

$$
-\int \sum_{j} \frac{\partial \psi}{\partial z_{j}}\left(f_{1}(x), \cdots, f_{n}(x)\right)\left(L f_{j}\right)(x) d \mu \leq-\int L \psi\left(f_{1}(x), \cdots, f_{n}(x)\right) d \mu=0
$$

The maximum principle implies that for a concave function $\psi\left(z_{1}, \ldots, z_{n}\right)$,

$$
L \psi\left(f_{1}, \ldots, f_{n}\right) \leq \sum_{j} \frac{\partial \psi}{\partial z_{j}} L f_{j}
$$

As a function of h it is concave and has negative slope at $h=0$. So it is decreasing for $h \geq 0$. Hence

$$
\int \psi\left(f_{1}(x), \ldots, f_{n}(x)\right) d \mu \geq \int \psi\left(f_{1}(x)-h L f_{1}(x), \ldots, f_{n}(x)-h L f_{n}(x)\right) d \mu
$$

Now,

$$
\begin{aligned}
\int & \sum_{r=1}^{n} u_{r}(x) g_{r}(x) d \mu+\int u_{0}(x) d \mu \\
& \geq \int \psi\left(g_{1}(x), \ldots, g_{r}(x)\right) d \mu+\int u_{0}(x) d \mu \\
& \geq \int \psi\left(g_{1}(x)-h L g_{1}(x), \ldots, g_{n}(x)-h L g_{n}(x)\right) d \mu+\int u_{0}(x) d \mu \\
& =\int \psi\left(f_{1}(x), \ldots, f_{n}(x)\right) d \mu+\int u_{0}(x) d \mu \\
& =\int\left[\psi\left(f_{1}(x), \ldots, f_{n}(x)\right)+u_{0}(x)\right] d \mu \\
& \geq 0
\end{aligned}
$$

Hahn-Banch Theorem. Let B be the Banach space of real valued bounded continuous functions on a compact space X and B_{0} a linear subspace containing constants. $\Lambda(f)$ is a linear functional that is nonnegative, i.e. $f \geq 0$ implies $\Lambda(f) \geq 0$. Let $\Lambda(\mathbf{1})=1$. Then Λ
can be extended as a nonnegative linear functional on B and represented by Riesz theorem as integral with resprct to a probability measure on X.
Let $g \notin B_{0}$. Let $c^{+}(g)=\inf _{f \in B_{0} ; f \geq g} \Lambda(f)$ and $c^{-}=\sup _{f \in B_{0} ; f \leq g} \Lambda(f)$. It is easy to check that $c^{+}(g) \geq C^{-}(g)$ and let us define $\Lambda(g)=1$ where $c^{+}(g) \geq a \geq C^{-}(g)$. Then we need to check that if $f+c g \geq 0$ then $\Lambda(f)+c a \geq 0$. Then we would have extended Λ from B_{0} to $B_{1}=\operatorname{span}\left\{B_{0}, g\right\}$ If $c=0$, there is nothing to prove. If $c>0$ then $g \geq-\frac{f}{c}$. By choice $\Lambda(g)=a \geq \Lambda\left(-\frac{f}{c}\right)=-\frac{\Lambda(f)}{c}$. Thus $\Lambda(f)+c a \geq 0$. The case when $c<0$ is similar. The rest is routine.

It is clear that both the marginals are fixed at μ. If we denote by $\hat{\pi}_{h}(x, d y)$ the r.c.p.d then the Markov Chain has μ as marginal and since $\pi_{h}\left((I-h L) f=f, \frac{1}{h}\left(\pi_{h} u_{h}-u_{h}\right)=f\right.$ where $u_{h}=f-h L f \rightarrow u$. This is enough by martingale arguments to show tightness and convergence to $\left\{P_{x}\right\}$.

