What do we mean by a stochastic process with continuous paths on $R^{d}$ with characteristics $\left\{a_{i, j}(t, \omega)\right\}$ and $\left\{b_{j}(t, \omega)\right\}$ or solution to the martingale problem corresponding to $\left(\left\{a_{i, j}(t, \omega) ;\left\{b_{j}(t, \omega)\right\}\right)\right.$ ?
$\Omega=C\left[[0, T] ; R^{d}\right]$ is the space of continuous $R^{d}$ valued function on $[0, T] . \mathcal{F}_{t}$ is the $\sigma$-field generated by $\{x(s)\}, 0 \leq s \leq t$. Tcanbefiniteor $\infty$ in which case we have $[0, \infty)$ instead of $[0, T]$. A function $u: \Omega \times[0, T] \rightarrow R^{k}$ is progessively measurable if, for each $t \geq 0, u$ is a (jointly) mesurable map from $\left.\left(\Omega \times[0, t], \mathcal{F}_{t} \times \mathcal{B}(] 0, T\right]\right)$ to $R^{k} .\left\{a_{i, j}(t, x)\right\}$ is a symmetric positive semidefinite matrix, assumed to be uniformly bounded (for simplicity) and progressively measurable. $\left\{b_{j}(t, x)\right\}$ are similarly bounded progressively mesurable with values in $R^{d}$.

We say that $P$ is a process with characteristics $a, b$ with initial distribution $\mu$ if $P[x(0) \in A]=\mu(A)$ and any one of the following which is equivalent are true.

1. For any smooth function $f$ with compact support on $R^{d}$

$$
\begin{equation*}
f(x(t, \omega))-f(x(0, \omega))-\int_{0}^{t}\left(L_{s, \omega} f\right)(s, x(s, \omega)) d s \tag{1}
\end{equation*}
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$ Here

$$
\left(L_{s, \omega} f\right)(s, x)=\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s, x)+\sum_{j} b_{j}(s, \omega) \frac{\partial f}{\partial x_{j}}(s, x)
$$

2. For any function $f(t, x)$ in $C^{1,2}\left([0, T] \times R^{d}\right)$

$$
\begin{equation*}
f(t, x(t, \omega))-f(0, x(0, \omega)))-\int_{0}^{t}\left[\frac{\partial f}{\partial s}(s, x(s, \omega))+\left(L_{s, \omega} f\right)(s, x(s, \omega))\right] d s \tag{2}
\end{equation*}
$$

is a martingale.
3. For any function $f$ in $C^{1,2}\left([0, T] \times R^{d}\right)$

$$
\begin{equation*}
\exp \left[f\left(x(t, \omega)-f(x(0, \omega))-\int_{0}^{t}\left[e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s\right]\right. \tag{3}
\end{equation*}
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$
Rematk: $f$ and its derivatives can have growth $o\left(|x|^{2}\right)$ at infinity. In particular

$$
P\left[\sup _{0 \leq t \leq T}\|x(t, \omega)\| \geq \ell\right] \leq C(T) \exp \left[-c_{0}(T) \ell^{2}\right]
$$

4. For any $\theta \in R^{d}$

$$
\exp \left[<\theta, x(t, \omega)-x(0, \omega)>-\frac{1}{2} \int_{0}^{t}<a(s, \omega) \theta, \theta>d s-\int_{0}^{t}<b(s, \omega), \theta>d s\right]
$$

is a martingale.
Proofs. We can assume without loss of generality that $f(t, x)$ is $C^{\infty}\left[[0, T] \times R^{d}\right]$.

$$
\begin{aligned}
E & {\left[f(t, x(t))-f(s, x(s)) \mid \mathcal{F}_{s}\right] } \\
& =E\left[f(t, x(t))-f(s, x(t))+f(s, x(t))-f(s, x(s)) \mid \mathcal{F}_{s}\right] \\
& =E\left[\int_{s}^{t} f_{v}(v, x(t)) d v+\int_{s}^{t}\left(L_{v, \omega} f\right)(s, x(v)) d v \mid \mathcal{F}_{s}\right] \\
= & E\left[\int_{s}^{t} f_{v}(v, x(v)) d v+\int_{s}^{t} d v \int_{v}^{t} L_{u, \omega} f_{v}(v, x(u)) d u\right. \\
& \left.\quad+\int_{s}^{t}\left(L_{v, \omega} f\right)(v, x(v)) d v-\int_{s}^{v} d u \int_{s}^{t}\left(L_{v, \omega} f\right)_{u}(u, x(v)) d v \mid \mathcal{F}_{s}\right] \\
& =E\left[\int_{s}^{t} f_{v}(v, x(v)) d v+\int_{s}^{t}\left(L_{v, \omega} f\right)(v, x(v)) d v\right]
\end{aligned}
$$

Lemma. Let $M(t)$ be a continuous martingale on $\left(\Omega, \mathcal{F}_{t}, P\right)$ and $A(t)$ a progressively measurable continuous function of bounded variation with $A(0)=0$. Assume for any finite $T, M(T)$ is square integrable and the total variation $|A|(T)$ of $A(t)$ on $[0, T]$ is square intgrable, then

$$
A(t) M(t)-\int_{0}^{t} M(s) d A(s)
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$.
Proof.

$$
\begin{aligned}
E & {\left[A(t) M(t)-A(s) M(s)-\int_{s}^{t} M(u) d A(u) \mid \mathcal{F}_{s}\right] } \\
& =\lim _{\pi \downarrow 0} \sum_{j} E\left[A\left(t_{j}\right) M\left(t_{j}\right)-A\left(t_{j-1}\right) M\left(t_{j-1}\right)-\int_{t_{j-1}}^{t_{j}} M(u) d A(u) \mid \mathcal{F}_{s}\right] \\
& =\lim _{\pi \downarrow 0} \sum_{j} E\left[A\left(t_{j}\right) M\left(t_{j}\right)-A\left(t_{j-1}\right) M\left(t_{j}\right)-\int_{t_{j-1}}^{t_{j}} M(u) d A(u) \mid \mathcal{F}_{s}\right] \\
& =0
\end{aligned}
$$

To go from 2. to $\mathbf{3 .}$

$$
\begin{gathered}
M(t)=e^{f(t, x(t, \omega))}-\int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s \\
A(t)=\exp \left[-f(0, x(0, \omega))-\int_{0}^{t}\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right)(s, x(s, \omega))\right] d s\right]
\end{gathered}
$$

$M(t) A(t)-\int_{0}^{t} M(s) d A(s)$ simplifies to (3) because

$$
A(t) \int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s+\int_{0}^{t} M(s) d A(s)=0
$$

To verify this let us differentiate with respect to $t$.

$$
\begin{gathered}
\left.A^{\prime}(t) \int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s+A(t)\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega))\right]+A^{\prime}(t) M(t)=0 ? \\
A^{\prime}(t)=-A(t)\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right)(s, x(s, \omega))\right] \\
M(t)=e^{f(t, x(t, \omega))}-\int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s
\end{gathered}
$$

We see that after dividing by $A(t)$

$$
\begin{aligned}
& -\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right)(s, x(s, \omega))\right] \int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega)) d s \\
& \left.+\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega))\right] \\
& -\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right)(s, x(s, \omega))\right] e^{f(t, x(t, \omega))} \\
& \left.\left.+\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right)(s, x(s, \omega))\right] \int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s, \omega}\right) e^{f}\right](s, x(s, \omega))\right] d s
\end{aligned}
$$

First and last terms cancel each other as do the second and third.

## 3 implies 4.

Limits of nonnegative martingales is a supermartingale. Let $X_{n}(t)$ be a sequence of non negative martingales with $E\left[X_{n}(t)\right]=1$ and let $X(t)=\lim _{n \rightarrow \infty} X_{n}(t)$ a.e. Then $M(t)$ is a supermartingale.

Proof. Let $E_{k}(s)=\left\{\omega: \sup _{n} X_{n}(s) \leq k\right\} . E_{k}(s) \in \mathcal{F}_{s}$ and $E_{k}(s) \uparrow \Omega$

$$
\int_{A \cap E_{k}(s)} X_{n}(s) d P=\int_{A \cap E_{k}(s)} X_{n}(t) d P
$$

Let $n \rightarrow \infty$ and use Fatou on the right and bounded convergence theorem on the left.

$$
\int_{A \cap E_{k}(s)} X(s) d P \geq \int_{A \cap E_{k}(s)} X(t) d P
$$

Let $k \rightarrow \infty$.

$$
\int_{A} X(s) d P \geq \int_{A} X(t) d P
$$

or $E\left[X(t) \mid \mathcal{F}_{s}\right] \leq X(s)$ a.e.
The function $<\theta, x>$ is not bounded but can be approximated by smooth bounded functions and

$$
\exp \left[<\theta, x(t)-x(0)>-\int_{0}^{t}<\theta, b(s, \omega)>d s-\frac{1}{2} \int_{0}^{t}<\theta, a(s, \omega) \theta>d s\right]
$$

is a supemartingale.

$$
\begin{gathered}
E^{P}\left[\exp \left[<\theta, x(t)-x(0)>-\int_{0}^{t}<\theta, b(s, \omega)>d s-\frac{1}{2} \int_{0}^{t}<\theta, a(s, \omega) \theta>d s\right]\right] \leq 1 \\
E^{P}[\exp [<\theta, x(t)-x(0)>]] \leq \exp \left[t\left(c_{1}\|\theta\|+c_{2}\|\theta\|^{2}\right)\right]
\end{gathered}
$$

It is clear that $E[\exp [\lambda\|x(t)\|]]<\infty$ for all $\lambda>0$. The approximations can be constructed with uniform linear bounds.

Hence

$$
X_{\theta}(t)=\exp \left[<\theta, x(t, \omega)-x(0, \omega)>-\frac{1}{2} \int_{0}^{t}<a(s, \omega) \theta, \theta>d s-\int_{0}^{t}<b(s, \omega), \theta>d s\right]
$$

are martingales. If $y(t)=x(t)-x(0)-\int_{0}^{t} b(s, \omega) d s$, then

$$
P\left[\sup _{t}\|y(t)\| \geq \ell\right] \leq c_{1} \exp \left[-\frac{c_{2} \ell^{2}}{t}\right]
$$

4 implies 1.
Continue analytically. Replace $\theta$ by $i \theta$.

$$
Y_{\theta}(t)=\exp \left[<i \theta, x(t, \omega)-x(0, \omega)>+\frac{1}{2} \int_{0}^{t}<a(s, \omega) \theta, \theta>d s-i \int_{0}^{t}<b(s, \omega), \theta>d s\right]
$$

are martingales. Take

$$
A(t)=\exp \left[-\frac{1}{2} \int_{0}^{t}<a(s, \omega) \theta, \theta>d s+i \int_{0}^{t}<b(s, \omega), \theta>d s\right]
$$

Then $Y_{\theta}(t) A(t)-\int_{0}^{T} Y_{\theta}(s) d A(s)$ reduces to 1 with $f=e^{i<\theta, x\rangle}$. Note that $y(t)-\int_{0}^{t} b(s, \omega) d s$ and $y_{i}(t) y_{j}(t)-\int_{0}^{t} a_{i, j}(s, \omega) d s$ are martingales.

Stochastic Integrals. Given $\left(\Omega, \mathcal{F}_{s}, x(s, \omega), P,\{a(s, \omega), b(s, \omega)\}\right)$. A progressively measurable function $e(s, \omega)$ with values in $R^{d}$ we want to define

$$
z(t, \omega)=\int_{0}^{t}<e(s, \omega), d x(s)>=\int_{0}^{t}<e(s, \omega), d y(s)>+\int_{0}^{t}<e(s, \omega), b(s, \omega)>d s
$$

It is only the $d y$ integral that is a problem. Let us take for simplicity $b=0$. Take a subdivision $t_{j}=\frac{j}{N}$
Step 1. Assume $e$ is uniformly bounded, is piecewise (in time) constant $e=e_{j}(\omega)$ on $\left[t_{j-1}, t_{j}\right]$ which is $\mathcal{F}_{t_{j-1}}$ measurable. Then for $t_{j} \leq t \leq t_{j+1}$

$$
z_{N}(t)=\sum_{1 \leq i \leq j}<e\left(t_{i-1}\right), y\left(t_{i}\right)-y\left(t_{i-1}\right)>+<e\left(t_{j}\right), y(t)-y\left(t_{j}\right)>
$$

$z(\cdot)$ is linear in $e$, almost surely continuous and for any such $e$ it is a martingale and so is

$$
z^{2}(t)-\int_{0}^{t}<e(s, \omega), a(s, \omega) e(s, \omega)>d s
$$

and by Doob's inequality

$$
E\left[\left[\sup _{0 \leq s \leq T}|z(s)|\right]^{2}\right] \leq 4 E^{P}\left[\int_{0}^{T}<e(s, \omega), a(s, \omega) e(s, \omega)>d s\right]
$$

and

$$
\exp \left[z(t)-\int_{0}^{t}<e(s, \omega), b(s, \omega)>d s-\frac{1}{2} \int_{0}^{t}<e(s, \omega), a(s, \omega) e(s, \omega)>d s\right]
$$

are martingales.
Step 2. If $e(s, \omega)$ is uniformly bounded and continuous we can approximate $e(s, \omega)$ by ( $e, \frac{[n s]}{n}$ ) which is agiain progressively measurable. We can pass to the limit. The limit exists and satisfy the smae properties as before.
Step 2. Given a bounded progressively measurable $e$ we define $e_{n}$ for $s \geq \frac{1}{n}$ by

$$
e_{n}(s)=n \int_{s-\frac{1}{n}}^{s} e(v, \omega) d v
$$

$\int_{0}^{T}\left\|e_{n}(s)-e(s)\right\|^{2} d s \rightarrow 0$ and therefore $z_{n}(t)$ has a limit.
Step 3. If $E^{P}\left[\int_{0}^{T}\|e(s, \omega)\|^{2} d s\right]<\infty$ we can truncate by

$$
e_{\ell}(s, \omega)=e(s, \omega) \mathbf{1}_{\|e(s, \omega)\| \leq \ell}
$$

and let $\ell \rightarrow \infty$.

In conclusion we can define

$$
z(t)=\int_{0}^{t}<e(s, \omega), d x(s)>
$$

provided

$$
E^{P}\left[\int_{0}^{T}\|e(s, \omega)\|^{2} d s\right]<\infty
$$

Then $z(t)-\int_{0}^{t}<e(s, \omega, b(s, \omega) d s>$ is a square ntegrable martingale. If $e$ is uniformly bounded then

$$
\exp \left[z(t)-\int_{0}^{t}<e\left(s, \omega, b(s, \omega) d s>-\frac{1}{2} \int_{0}^{t}<e(s, \omega, a(s, \omega) e(s, \omega) d s>d s>]\right.\right.
$$

is martingale.

## The linear algebra of Stochastic Integrals.

$\left[\Omega, \mathcal{F}_{s}, P, x(s, \omega), a(s, \omega), b(s, \omega)\right]$
$x \in R^{d}, b \in R^{d}, a \in S_{d}^{+} S_{d}^{+}$is positive semidefinite $d \times d$ matrices. Let $y(t)=$ $\int_{0}^{t} c(s, \omega) d s+\int_{0}^{t} e(s, \omega) d x(s)$ where $c \in R^{n}, e \in W_{n, d}$ where $W_{n, d}$ is the set of $n \times d$ matrices. Then $\left[\Omega, \mathcal{F}_{s}, P, y(s, \omega), \hat{a}(s, \omega), \hat{b}(s, \omega)\right]$ and $y \in R^{n}, \hat{b} \in R^{n}, \hat{a} \in S_{n}^{+}, \hat{b}=c+e b$ and $\hat{a}=e a e^{*}$

If $X$ is Gaussian with mean $\mu$ and covariance $A, Y=e X+c$ is Gaussian with mean $e \mu+c$ and covariance $e A e^{*}$.
Itô's Formula. Let $f(t, x)$ be a smooth bounded function function. Let $g_{\lambda, \theta}(t, x)=$ $\lambda f(t, x)+<\theta, x>$.

$$
\exp \left[(g(t, x(t))-g(0, x(0)))-\int_{0}^{t} H(s, \omega) d s\right]
$$

is a martingale, where

$$
\begin{aligned}
H(s, \omega) & =\frac{\partial g}{\partial s}(s, x(s, \omega))+\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega) \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(s, x(s, \omega)) \\
& +\sum_{j} b_{j}(s, \omega) \frac{\partial g}{\partial x_{j}}(s, x(s, \omega))+\frac{1}{2}<a(s, \omega)(\nabla g)(s, \omega),(\nabla g)(s, \omega)>
\end{aligned}
$$

Let $y(t)=f(t, x(t))-f(0, x(0))$. Then

$$
\left[\Omega, \mathcal{F}_{s}, P, y(s, \omega), x(s, \omega), \hat{a}(s, \omega), \hat{b}(s, \omega)\right]
$$

where

$$
\begin{aligned}
\hat{b} & =\left[\frac{\partial f}{\partial s}(s, x(s, \omega))+\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s, x(s, \omega))\right. \\
& \left.+\sum_{j} b_{j}(s, \omega) \frac{\partial f}{\partial x_{j}}(s, x(s, \omega)), b(s, \omega)\right]
\end{aligned}
$$

$$
\hat{a}=\left(\begin{array}{cc}
<a(s, \omega)(\nabla f)(s, x(s, \omega),(\nabla f(s, \omega)> & a(s, \omega)(\nabla f)(s, x(s, \omega) \\
a(s, \omega)(\nabla f)(s, x(s, \omega) & a(s, \omega)
\end{array}\right)
$$

Let us define a new process

$$
\begin{gathered}
w(t)=f(t, x(t))-f(0, x(0))-\int_{0}^{t} f_{s}(s, x(s)) d s-\int_{0}^{t}\langle(\nabla f)(s, x(s)), d x(s)\rangle \\
d w=d y-f_{s}(s, x(s)) d s-\langle(\nabla f)(s, x(s, \omega)), d x(s)\rangle \\
{\left[\Omega, \mathcal{F}_{s}, P, w(s, \omega), \tilde{a}(s, \omega), \tilde{b}(s, \omega)\right]} \\
\tilde{b}=\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s, x(s, \omega)) \\
\tilde{a}=\langle(1,-(\nabla f)(s, x(s))), \hat{a}(s, \omega)(1,-(\nabla f)(s, x(s)))\rangle=0 \\
d f(t, x(t))=f_{t} d t+\langle(\nabla f), d x\rangle+\frac{1}{2} \sum_{i, j} a_{i, j}(t, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(t, x(t, \omega)) d t
\end{gathered}
$$

