What do we mean by a stochastic process with continuous paths on R? with charac-
teristics {a; ;(t,w)} and {b;(¢,w)} or solution to the martingale problem corresponding to

({ai;(t,w); {bj(t, w)})?

Q = C[[0,T]; RY is the space of continuous R? valued function on [0,7]. JF; is the
o-field generated by {z(s)}, 0 < s < t. Tcanbefiniteoroo in which case we have [0, c0)
instead of [0,7]. A function u : Q x [0,T] — RF is progessively measurable if, for each
t >0, u is a (jointly) mesurable map from (Q x [0,], F; x B(]0,T]) to R*. {a; ;(t,z)} is a
symmetric positive semidefinite matrix, assumed to be uniformly bounded (for simplicity)
and progressively measurable. {b;(¢,x)} are similarly bounded progressively mesurable
with values in R%.

We say that P is a process with characteristics a,b with initial distribution p if
P[z(0) € A] = u(A) and any one of the following which is equivalent are true.

1. For any smooth function f with compact support on R¢

f(l‘(t,W))—f(x(O,W))—/o (Ls,wf)(s,2(s,w))ds (1)

is a martingale with respect to (2, 7, P) Here

(Ls,f)(s,x) Zawswaa%sx-i-z:b S, W) , )

2. For any function f(t,z) in C%2([0,T] x R%)

f(t,x(tM))—f(wa(O,W)))—/O [%(8,$(8,W))+(Ls,wf)(s,w(s,W))]dS (2)

is a martingale.

3. For any function f in C%2([0,T] x R%)

explfa(t.0) = F(@(0.0) = [ e (G + L)ef) (sl ®

is a martingale with respect to (€2, 7, P)

Rematk: f and its derivatives can have growth o(|x|?) at infinity. In particular
P[ sup |z(t,w)]| = €] < C(T) exp[—co(T)¢?]
0<t<T
4. For any § € R?

t t
expl< 0, z(t,w) — z(0,w) > —% / < a(s,w)d,0 > ds — / < b(s,w),0 > ds]
0 0
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is a martingale.

Proofs. We can assume without loss of generality that f(¢,z) is C°°[[0,T] x R9].

Elf(t,2(t)) = f(s,2(s))|F4]
= E[f(t,z(t) — f(s,2(t)) + f(s,2(t)) — f(s,2(s))|F]
( )

t
:E/fvvxt)dv-l- Ly f)(s, z(v

/fvva: dv+/dv/ Ly fo(v,z(u

/S< o) (0,30 dv—/du/ Lo ), 3(0))do| 7

)dv|]:3]

:E[/ fv(v,x(v))dv-i-/ (Lywf) (v, 2(v))dv]

Lemma. Let M(t) be a continuous martingale on (2, F;, P) and A(t) a progressively
measurable continuous function of bounded variation with A(0) = 0. Assume for any
finite T, M (T) is square integrable and the total variation |A|(T") of A(t) on [0,T] is

square intgrable, then
t
— / M(s)dA(s)
0

is a martingale with respect to (€2, F, P).
Proof.

BIAW®M() = AGM(s) ~ [ M(w)dAw)|F
= lim 37 BLA@)M(6) — Alty-)M(t2) = [ M(dA@w)| 7]
=1y D ELAGIM(G) - Al-)M ) - [ MOAWIZ)

=0

To go from 2. to 3.

t
M(t) = ef (tz(tw)) _/ [(% + Ls’w)ef](s,x(s,w))ds
0

At) = expl=f(0,20.0) = [ 17 (5L + Luw)el) sl
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M(t)A(t) — f(f M (s)dA(s) simplifies to (3) because

A(t)/o [(% +L5,w)ef](s,x(s,w))ds+/0 M(s)dA(s) =0

To verify this let us differentiate with respect to .

) [ 155+ Lawlelsva(s s+ A + Lu)e! Vol 0] + AOM) =02
W) = ~ AW (5 + Luw)el) s, 2(5,0))
= fta(tw)) _ t g ef(s, x(s, w))ds
(1) [ 1Gs+ Ledell(s.atswa

We see that after dividing by A(t)

(G + L))ol [ G+ Lewlel)(sva(s.0))ds

[+ L)) (s, (5, )

[ (o + D)ol (s, (s, el )

e G LN sals )] [ (G + Lewel (s, (5,0))ds

First and last terms cancel each other as do the second and third.
3 implies 4.

Limits of nonnegative martingales is a supermartingale. Let X,,(¢) be a sequence
of non negative martingales with E[X,(¢)] = 1 and let X (¢) = lim,,—,o0 X,,(t) a.e. Then
M (t) is a supermartingale.

Proof. Let Ei(s) = {w :sup,, Xn(s) < k}. Ex(s) € Fs and Eg(s) 1

/ X, (s)dP = / X, (t)dP
AﬂEk(S) AﬂEk(S)

Let n — oo and use Fatou on the right and bounded convergence theorem on the left.

/ X(s)dP > / X (£)dP
AﬂEk(S) AﬁEk(S)

Let & — oo.

/AX(s)dPZ/AX(t)dP
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or E[X(t)|Fs] < X(s) a.e.
The function < 6,z > is not bounded but can be approximated by smooth bounded
functions and

t 1t
exp[< 0, z(t) — z(0) > —/ < 0,b(s,w) > ds — 3 / < 0,a(s,w)d > ds]
0 0

is a supemartingale.

t t
EF[expl< 0, z(t) — 2(0) > —/ < 0,b(s,w) > ds — %/ < 0,a(s,w)f > ds]] <1
0 0

E* [exp[< 0,z(t) — 2(0) >]] < exp[t(c1]|0] + c2[|0]|*)]

It is clear that Efexp[A||z(t)||]] < oo for all A > 0. The approximations can be constructed
with uniform linear bounds.
Hence

t t
Xo(t) = exp[< 0, 2(t,w) — 2(0,w) > —%/ < a(s,w)d,0 > ds — / < b(s,w),0 > ds]
0 0

are martingales. If y(¢) = x(t) — z(0) — fg b(s,w)ds, then

C2£2
Plsup ly(t)]| > €] < e exp[~ =]

4 implies 1.
Continue analytically. Replace 6 by 6.

t t
Yy(t) = exp[< 6, z(t,w) — (0, w) > —l—% / < a(s,w)d,0 > ds— 2/ < b(s,w),0 > ds]
0 0

are martingales. Take

t t
A(t) = exp[—%/o < a(s,w)0,0 > ds + z/o < b(s,w),0> ds

Then Yg(t)A(t)—fOT Yy(s)dA(s) reduces to 1 with f = e’<%%>_ Note that y(t)—f(f b(s,w)ds
and y; (t)y;(t) — f(f a; j(s,w)ds are martingales.



Stochastic Integrals. Given (Q, Fs, z(s,w), P,{a(s,w),b(s,w)}). A progressively mea-
surable function e(s,w) with values in R? we want to define

2(t,w) = /0 < e(s,w),dz(s) >= /0 < e(s,w),dy(s) > —|—/0 < e(s,w),b(s,w) > ds

It is only the dy integral that is a problem. Let us take for simplicity b = 0. Take a

L g
subdivision t; = A7

Step 1. Assume e is uniformly bounded, is piecewise (in time) constant e = e;(w) on
[tj—1,t;] which is F;, | measurable. Then for t; <t <t;

zn(t) = Z <e(tio1),y(ts) —y(tio1) >+ <elt;), y(t) —y(t;) >

z(+) is linear in e, almost surely continuous and for any such e it is a martingale and
so is

t
22(t) —/ <e(s,w),a(s,w)e(s,w) > ds
0
and by Doob’s inequality
T
E[[ sup |z(s)[]?] < 4EP[/ <e(s,w),a(s,w)e(s,w) > ds]
0<s<T 0

and

exp[z(t) — /0 < e(s,w),b(s,w) > ds — %/0 < e(s,w),a(s,w)e(s,w) > ds]

are martingales.

Step 2. If e(s,w) is uniformly bounded and continuous we can approximate e(s,w) by
(e, @) which is agiain progressively measurable. We can pass to the limit. The limit
exists and satisfy the smae properties as before.

Step 2. Given a bounded progressively measurable e we define e,, for s > % by

en(s) = n/si e(v,w)dv

3=

fOT len(s) — e(s)||?ds — 0 and therefore z,(t) has a limit.
Step 3. If Ep[foT le(s,w)||?ds] < oo we can truncate by
6[(8, w) = 6(37 w)1||e(s,w)||§€

and let ¢ — oo.



In conclusion we can define

provided
T
B[ fe(s.)|Pds] < o0
0

Then z(t) — fg < e(s,w,b(s,w)ds > is a square ntegrable martingale. If e is uniformly
bounded then

t t
explz(t) — / < e(s,w,b(s,w)ds > —% / < e(s,w,a(s,w)e(s,w)ds > ds >|
0 0

is martingale.
The linear algebra of Stochastic Integrals.

[Q, Fs, P,x(s,w),a(s,w),b(s,w)]

r € RLb € R a € S; Sj is positive semidefinite d x d matrices. Let y(t) =
f(f c(s,w)ds + fg e(s,w)dz(s) where ¢ € R™ e € W, 4 where W, 4 is the set of n x d
matrices. Then [Q,]—"s,P,y(s,w),&(s,w),l;(s,w)] and y € R",b € R",a € St b=c+eb
and a = eae”

If X is Gaussian with mean p and covariance A, Y = eX + ¢ is Gaussian with mean
eu + ¢ and covariance eAe*.

Itd6’s Formula. Let f(t,z) be a smooth bounded function function. Let gy o(t,z) =
M(t,x)+ <6,z >.

exp[(g(t,x(t))—9(0727(0)))—/0 H{(s,w)ds]

is a martingale, where
dg 1 0%g
H = a5 5 i,7\2 a0 D )
(5,0) = 5 (s,2(5,0)) + 5 )i i(5,w) S, (5 ()

2]

+ Z bj(S,W)%gj(S, z(s,w)) + % < a(s,w)(Vg)(s,w), (Vg)(s,w) >

Let y(t) = f(t,z(t)) — f(0,2(0)). Then
[Q,]—"S,P,y(s,w),x(s,w),&(s,w),l;(s,w)]
where
b= (5 (sv(s,) + 5 D o) g (s 5.)

,J

+ Z b;(s, w)g—xfj(s, x(s,w)), b(s,w)]
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G- << a(s,w)(Vf)(s,z(s,w), (Vf(s,w)> a(s,w)(Vf)(s,x(s,w))
a(s,w)(Vf)(s,z(s,w) a(s,w)

Let us define a new process
w(t) = f(t,x(t)) — f(0,2(0)) — /O fs(s,x(s))ds — /0 (Vf)(s,2(s)), dx(s))

dw = dy — fs(s,z(s))ds — ((Vf)(s, z(s,w)), dz(s))
[Q, Fs, P,w(s,w), a(s,w), l;(s,w)]

-1 o0 f
b= 3 ;ai’j(s’w)axiaxj (s,z(s,w))

a=((1,=(Vf)(s,2(s))), als,w)(1, =(Vf)(s, 2(s)))) = 0

0% f
8562'(9.’13]'

df (t,z(t)) = frdt + ((Vf),dz) + % Zai’j(t,(.d) (t,z(t,w))dt



