What do we mean by a stochastic process with continuous paths on \mathbb{R}^d with characteristics $\{a_{i,j}(t,\omega)\}$ and $\{b_j(t,\omega)\}$ or solution to the martingale problem corresponding to $(\{a_{i,j}(t,\omega); \{b_j(t,\omega)\}\})$?

 $\Omega = C[[0,T]; \mathbb{R}^d]$ is the space of continuous \mathbb{R}^d valued function on [0,T]. \mathcal{F}_t is the σ -field generated by $\{x(s)\}, 0 \leq s \leq t$. $Tcanbefiniteor\infty$ in which case we have $[0,\infty)$ instead of [0,T]. A function $u: \Omega \times [0,T] \to \mathbb{R}^k$ is progessively measurable if, for each $t \geq 0, u$ is a (jointly) mesurable map from $(\Omega \times [0,t], \mathcal{F}_t \times \mathcal{B}(]0,T])$ to \mathbb{R}^k . $\{a_{i,j}(t,x)\}$ is a symmetric positive semidefinite matrix, assumed to be uniformly bounded (for simplicity) and progressively measurable. $\{b_j(t,x)\}$ are similarly bounded progressively mesurable with values in \mathbb{R}^d .

We say that P is a process with characteristics a, b with initial distribution μ if $P[x(0) \in A] = \mu(A)$ and any one of the following which is equivalent are true.

1. For any smooth function f with compact support on \mathbb{R}^d

$$f(x(t,\omega)) - f(x(0,\omega)) - \int_0^t (L_{s,\omega}f)(s,x(s,\omega))ds$$
(1)

is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$ Here

$$(L_{s,\omega}f)(s,x) = \frac{1}{2}\sum_{i,j}a_{i,j}(s,\omega)\frac{\partial^2 f}{\partial x_i \partial x_j}(s,x) + \sum_j b_j(s,\omega)\frac{\partial f}{\partial x_j}(s,x)$$

2. For any function f(t, x) in $C^{1,2}([0, T] \times \mathbb{R}^d)$

$$f(t, x(t, \omega)) - f(0, x(0, \omega))) - \int_0^t \left[\frac{\partial f}{\partial s}(s, x(s, \omega)) + (L_{s,\omega}f)(s, x(s, \omega))\right] ds \tag{2}$$

is a martingale.

3. For any function f in $C^{1,2}([0,T] \times \mathbb{R}^d)$

$$\exp[f(x(t,\omega) - f(x(0,\omega)) - \int_0^t [e^{-f}(\frac{\partial}{\partial s} + L_{s,\omega})e^f](s,x(s,\omega))ds]$$
(3)

is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$

Rematk: f and its derivatives can have growth $o(|x|^2)$ at infinity. In particular

$$P[\sup_{0 \le t \le T} ||x(t,\omega)|| \ge \ell] \le C(T) \exp[-c_0(T)\ell^2]$$

4. For any $\theta \in \mathbb{R}^d$

$$\exp[<\theta, x(t,\omega) - x(0,\omega) > -\frac{1}{2}\int_0^t < a(s,\omega)\theta, \theta > ds - \int_0^t < b(s,\omega), \theta > ds]$$

is a martingale.

Proofs. We can assume without loss of generality that f(t, x) is $C^{\infty}[[0, T] \times \mathbb{R}^d]$.

$$\begin{split} E[f(t, x(t)) - f(s, x(s)) | \mathcal{F}_{s}] \\ &= E[f(t, x(t)) - f(s, x(t)) + f(s, x(t)) - f(s, x(s)) | \mathcal{F}_{s}] \\ &= E[\int_{s}^{t} f_{v}(v, x(t)) dv + \int_{s}^{t} (L_{v,\omega} f)(s, x(v)) dv | \mathcal{F}_{s}] \\ &= E[\int_{s}^{t} f_{v}(v, x(v)) dv + \int_{s}^{t} dv \int_{v}^{t} L_{u,\omega} f_{v}(v, x(u)) du \\ &\quad + \int_{s}^{t} (L_{v,\omega} f)(v, x(v)) dv - \int_{s}^{v} du \int_{s}^{t} (L_{v,\omega} f)_{u}(u, x(v)) dv | \mathcal{F}_{s}] \\ &= E[\int_{s}^{t} f_{v}(v, x(v)) dv + \int_{s}^{t} (L_{v,\omega} f)(v, x(v)) dv] \end{split}$$

Lemma. Let M(t) be a continuous martingale on $(\Omega, \mathcal{F}_t, P)$ and A(t) a progressively measurable continuous function of bounded variation with A(0) = 0. Assume for any finite T, M(T) is square integrable and the total variation |A|(T) of A(t) on [0, T] is square integrable, then

$$A(t)M(t) - \int_0^t M(s)dA(s)$$

is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$.

Proof.

$$\begin{split} E[A(t)M(t) - A(s)M(s) - \int_{s}^{t} M(u)dA(u)|\mathcal{F}_{s}] \\ &= \lim_{\pi \downarrow 0} \sum_{j} E[A(t_{j})M(t_{j}) - A(t_{j-1})M(t_{j-1}) - \int_{t_{j-1}}^{t_{j}} M(u)dA(u)|\mathcal{F}_{s}] \\ &= \lim_{\pi \downarrow 0} \sum_{j} E[A(t_{j})M(t_{j}) - A(t_{j-1})M(t_{j}) - \int_{t_{j-1}}^{t_{j}} M(u)dA(u)|\mathcal{F}_{s}] \\ &= 0 \end{split}$$

To go from **2**. to **3**.

$$M(t) = e^{f(t,x(t,\omega))} - \int_0^t \left[\left(\frac{\partial}{\partial s} + L_{s,\omega}\right) e^f \right](s,x(s,\omega)) ds$$
$$A(t) = \exp\left[-f(0,x(0,\omega)) - \int_0^t \left[\left(e^{-f}\left(\frac{\partial}{\partial s} + L_{s,\omega}\right) e^f\right)(s,x(s,\omega))\right] ds\right]$$

 $M(t)A(t) - \int_0^t M(s)dA(s)$ simplifies to (3) because

$$A(t)\int_0^t \left[\left(\frac{\partial}{\partial s} + L_{s,\omega}\right)e^f\right](s, x(s,\omega))ds + \int_0^t M(s)dA(s) = 0$$

To verify this let us differentiate with respect to t.

$$A'(t) \int_0^t [(\frac{\partial}{\partial s} + L_{s,\omega})e^f](s, x(s,\omega))ds + A(t)[(\frac{\partial}{\partial s} + L_{s,\omega})e^f](s, x(s,\omega))] + A'(t)M(t) = 0 ?$$
$$A'(t) = -A(t)[(e^{-f}(\frac{\partial}{\partial s} + L_{s,\omega})e^f)(s, x(s,\omega))]$$
$$M(t) = e^{f(t, x(t,\omega))} - \int_0^t [(\frac{\partial}{\partial s} + L_{s,\omega})e^f](s, x(s,\omega))ds$$

We see that after dividing by A(t)

$$-\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right)(s,x(s,\omega))\right]\int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right](s,x(s,\omega))ds$$
$$+\left[\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right](s,x(s,\omega))\right]$$
$$-\left[\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right)(s,x(s,\omega))\right]e^{f(t,x(t,\omega))}$$
$$+\left(e^{-f}\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right)(s,x(s,\omega))\right]\int_{0}^{t}\left[\left(\frac{\partial}{\partial s}+L_{s,\omega}\right)e^{f}\right](s,x(s,\omega))]ds$$

First and last terms cancel each other as do the second and third.

3 implies **4**.

Limits of nonnegative martingales is a supermartingale. Let $X_n(t)$ be a sequence of non negative martingales with $E[X_n(t)] = 1$ and let $X(t) = \lim_{n\to\infty} X_n(t)$ a.e. Then M(t) is a supermartingale.

Proof. Let $E_k(s) = \{\omega : \sup_n X_n(s) \le k\}$. $E_k(s) \in \mathcal{F}_s$ and $E_k(s) \uparrow \Omega$

$$\int_{A \cap E_k(s)} X_n(s) dP = \int_{A \cap E_k(s)} X_n(t) dP$$

Let $n \to \infty$ and use Fatou on the right and bounded convergence theorem on the left.

$$\int_{A \cap E_k(s)} X(s) dP \ge \int_{A \cap E_k(s)} X(t) dP$$

Let $k \to \infty$.

$$\int_A X(s) dP \ge \int_A X(t) dP$$

or $E[X(t)|\mathcal{F}_s] \leq X(s)$ a.e.

The function $\langle \theta, x \rangle$ is not bounded but can be approximated by smooth bounded functions and

$$\exp[<\theta, x(t) - x(0) > -\int_0^t <\theta, b(s,\omega) > ds - \frac{1}{2}\int_0^t <\theta, a(s,\omega)\theta > ds]$$

is a supemartingale.

$$E^{P}[\exp[<\theta, x(t) - x(0) > -\int_{0}^{t} <\theta, b(s,\omega) > ds - \frac{1}{2}\int_{0}^{t} <\theta, a(s,\omega)\theta > ds]] \le 1$$
$$E^{P}[\exp[<\theta, x(t) - x(0) >]] \le \exp[t(c_{1}\|\theta\| + c_{2}\|\theta\|^{2})]$$

It is clear that $E[\exp[\lambda || x(t) ||]] < \infty$ for all $\lambda > 0$. The approximations can be constructed with uniform linear bounds.

Hence

$$X_{\theta}(t) = \exp[\langle \theta, x(t,\omega) - x(0,\omega) \rangle - \frac{1}{2} \int_0^t \langle a(s,\omega)\theta, \theta \rangle ds - \int_0^t \langle b(s,\omega), \theta \rangle ds]$$

are martingales. If $y(t) = x(t) - x(0) - \int_0^t b(s, \omega) ds$, then

$$P[\sup_{t} ||y(t)|| \ge \ell] \le c_1 \exp[-\frac{c_2 \ell^2}{t}]$$

4 implies 1.

Continue analytically. Replace θ by $i\theta$.

$$Y_{\theta}(t) = \exp[\langle i\theta, x(t,\omega) - x(0,\omega) \rangle + \frac{1}{2} \int_0^t \langle a(s,\omega)\theta, \theta \rangle ds - i \int_0^t \langle b(s,\omega), \theta \rangle ds]$$

are martingales. Take

$$A(t) = \exp\left[-\frac{1}{2}\int_0^t \langle a(s,\omega)\theta, \theta \rangle \, ds + i\int_0^t \langle b(s,\omega), \theta \rangle \, ds\right]$$

Then $Y_{\theta}(t)A(t) - \int_{0}^{T} Y_{\theta}(s)dA(s)$ reduces to **1** with $f = e^{i < \theta, x >}$. Note that $y(t) - \int_{0}^{t} b(s, \omega)ds$ and $y_{i}(t)y_{j}(t) - \int_{0}^{t} a_{i,j}(s, \omega)ds$ are martingales.

Stochastic Integrals. Given $(\Omega, \mathcal{F}_s, x(s, \omega), P, \{a(s, \omega), b(s, \omega)\})$. A progressively measurable function $e(s, \omega)$ with values in \mathbb{R}^d we want to define

$$z(t,\omega) = \int_0^t \langle e(s,\omega), dx(s) \rangle = \int_0^t \langle e(s,\omega), dy(s) \rangle + \int_0^t \langle e(s,\omega), b(s,\omega) \rangle ds$$

It is only the dy integral that is a problem. Let us take for simplicity b = 0. Take a subdivision $t_j = \frac{j}{N}$

Step 1. Assume *e* is uniformly bounded, is piecewise (in time) constant $e = e_j(\omega)$ on $[t_{j-1}, t_j]$ which is $\mathcal{F}_{t_{j-1}}$ measurable. Then for $t_j \leq t \leq t_{j+1}$

$$z_N(t) = \sum_{1 \le i \le j} \langle e(t_{i-1}), y(t_i) - y(t_{i-1}) \rangle + \langle e(t_j), y(t) - y(t_j) \rangle$$

 $z(\cdot)$ is linear in e, almost surely continuous and for any such e it is a martingale and so is

$$z^{2}(t) - \int_{0}^{t} \langle e(s,\omega), a(s,\omega)e(s,\omega) \rangle ds$$

and by Doob's inequality

$$E[[\sup_{0 \le s \le T} |z(s)|]^2] \le 4E^P[\int_0^T < e(s,\omega), a(s,\omega)e(s,\omega) > ds]$$

and

$$\exp[z(t) - \int_0^t \langle e(s,\omega), b(s,\omega) \rangle ds - \frac{1}{2} \int_0^t \langle e(s,\omega), a(s,\omega)e(s,\omega) \rangle ds]$$

are martingales.

Step 2. If $e(s,\omega)$ is uniformly bounded and continuous we can approximate $e(s,\omega)$ by $(e, \frac{[ns]}{n})$ which is agiain progressively measurable. We can pass to the limit. The limit exists and satisfy the smae properties as before.

Step 2. Given a bounded progressively measurable e we define e_n for $s \ge \frac{1}{n}$ by

$$e_n(s) = n \int_{s-\frac{1}{n}}^s e(v,\omega) dv$$

 $\int_0^T \|e_n(s) - e(s)\|^2 ds \to 0 \text{ and therefore } z_n(t) \text{ has a limit.}$ Step 3. If $E^P[\int_0^T \|e(s,\omega)\|^2 ds] < \infty$ we can truncate by

$$e_{\ell}(s,\omega) = e(s,\omega) \mathbf{1}_{\|e(s,\omega)\| \le \ell}$$

and let $\ell \to \infty$.

In conclusion we can define

$$z(t) = \int_0^t \langle e(s,\omega), dx(s) \rangle$$

provided

$$E^{P}[\int_{0}^{T} \|e(s,\omega)\|^{2} ds] < \infty$$

Then $z(t) - \int_0^t \langle e(s, \omega, b(s, \omega) ds \rangle$ is a square ntegrable martingale. If e is uniformly bounded then

$$\exp[z(t) - \int_0^t \langle e(s,\omega, b(s,\omega)ds \rangle - \frac{1}{2}\int_0^t \langle e(s,\omega, a(s,\omega)e(s,\omega)ds \rangle ds \rangle]$$

is martingale.

The linear algebra of Stochastic Integrals.

 $[\Omega, \mathcal{F}_s, P, x(s, \omega), a(s, \omega), b(s, \omega)]$

 $x \in R^d, b \in R^d, a \in S_d^+ S_d^+$ is positive semidefinite $d \times d$ matrices. Let $y(t) = \int_0^t c(s,\omega)ds + \int_0^t e(s,\omega)dx(s)$ where $c \in R^n, e \in W_{n,d}$ where $W_{n,d}$ is the set of $n \times d$ matrices. Then $[\Omega, \mathcal{F}_s, P, y(s,\omega), \hat{a}(s,\omega), \hat{b}(s,\omega)]$ and $y \in R^n, \hat{b} \in R^n, \hat{a} \in S_n^+, \hat{b} = c + eb$ and $\hat{a} = eae^*$

If X is Gaussian with mean μ and covariance A, Y = eX + c is Gaussian with mean $e\mu + c$ and covariance eAe^* .

Itô's Formula. Let f(t,x) be a smooth bounded function function. Let $g_{\lambda,\theta}(t,x) = \lambda f(t,x) + \langle \theta, x \rangle$.

$$\exp[(g(t, x(t)) - g(0, x(0))) - \int_0^t H(s, \omega) ds]$$

is a martingale, where

$$\begin{split} H(s,\omega) &= \frac{\partial g}{\partial s}(s,x(s,\omega)) + \frac{1}{2}\sum_{i,j}a_{i,j}(s,\omega)\frac{\partial^2 g}{\partial x_i\partial x_j}(s,x(s,\omega)) \\ &+ \sum_j b_j(s,\omega)\frac{\partial g}{\partial x_j}(s,x(s,\omega)) + \frac{1}{2} < a(s,\omega)(\nabla g)(s,\omega), (\nabla g)(s,\omega) > 0 \end{split}$$

Let y(t) = f(t, x(t)) - f(0, x(0)). Then

$$[\Omega, \mathcal{F}_s, P, y(s, \omega), x(s, \omega), \hat{a}(s, \omega), \hat{b}(s, \omega)]$$

where

$$\begin{split} \hat{b} &= \left[\frac{\partial f}{\partial s}(s, x(s, \omega)) + \frac{1}{2}\sum_{i,j} a_{i,j}(s, \omega) \frac{\partial^2 f}{\partial x_i \partial x_j}(s, x(s, \omega)) \right. \\ &+ \sum_j b_j(s, \omega) \frac{\partial f}{\partial x_j}(s, x(s, \omega)), b(s, \omega)] \end{split}$$

$$\hat{a} = \begin{pmatrix} < a(s,\omega)(\nabla f)(s,x(s,\omega),(\nabla f(s,\omega) > a(s,\omega)(\nabla f)(s,x(s,\omega)) \\ a(s,\omega)(\nabla f)(s,x(s,\omega) & a(s,\omega) \end{pmatrix}$$

Let us define a new process

$$\begin{split} w(t) &= f(t, x(t)) - f(0, x(0)) - \int_0^t f_s(s, x(s)) ds - \int_0^t \langle (\nabla f)(s, x(s)), dx(s) \rangle \\ dw &= dy - f_s(s, x(s)) ds - \langle (\nabla f)(s, x(s, \omega)), dx(s) \rangle \\ & [\Omega, \mathcal{F}_s, P, w(s, \omega), \tilde{a}(s, \omega), \tilde{b}(s, \omega)] \\ & \tilde{b} = \frac{1}{2} \sum_{i,j} a_{i,j}(s, \omega) \frac{\partial^2 f}{\partial x_i \partial x_j}(s, x(s, \omega)) \\ & \tilde{a} = \langle (1, -(\nabla f)(s, x(s))), \hat{a}(s, \omega)(1, -(\nabla f)(s, x(s))) \rangle = 0 \\ & df(t, x(t)) = f_t dt + \langle (\nabla f), dx \rangle + \frac{1}{2} \sum_{i,j} a_{i,j}(t, \omega) \frac{\partial^2 f}{\partial x_i \partial x_j}(t, x(t, \omega)) dt \end{split}$$