
What do we mean by a stochastic process with continuous paths on Rd with charac-
teristics {ai,j(t, ω)} and {bj(t, ω)} or solution to the martingale problem corresponding to
({ai,j(t, ω); {bj(t, ω)})?

Ω = C[[0, T ];Rd] is the space of continuous Rd valued function on [0, T ]. Ft is the
σ-field generated by {x(s)}, 0 ≤ s ≤ t. Tcanbefiniteor∞ in which case we have [0,∞)
instead of [0, T ]. A function u : Ω × [0, T ] → Rk is progessively measurable if, for each
t ≥ 0, u is a (jointly) mesurable map from (Ω× [0, t],Ft ×B(]0, T ]) to Rk. {ai,j(t, x)} is a
symmetric positive semidefinite matrix, assumed to be uniformly bounded (for simplicity)
and progressively measurable. {bj(t, x)} are similarly bounded progressively mesurable
with values in Rd.

We say that P is a process with characteristics a, b with initial distribution µ if
P [x(0) ∈ A] = µ(A) and any one of the following which is equivalent are true.

1. For any smooth function f with compact support on Rd

f(x(t, ω))− f(x(0, ω))−

∫ t

0

(Ls,ωf)(s, x(s, ω))ds (1)

is a martingale with respect to (Ω,Ft, P ) Here

(Ls,ωf)(s, x) =
1

2

∑

i,j

ai,j(s, ω)
∂2f

∂xi∂xj

(s, x) +
∑

j

bj(s, ω)
∂f

∂xj

(s, x)

2. For any function f(t, x) in C1,2([0, T ]×Rd)

f(t, x(t, ω))− f(0, x(0, ω)))−

∫ t

0

[
∂f

∂s
(s, x(s, ω)) + (Ls,ωf)(s, x(s, ω))]ds (2)

is a martingale.

3. For any function f in C1,2([0, T ]×Rd)

exp[f(x(t, ω)− f(x(0, ω))−

∫ t

0

[e−f (
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds] (3)

is a martingale with respect to (Ω,Ft, P )

Rematk: f and its derivatives can have growth o(|x|2) at infinity. In particular

P [ sup
0≤t≤T

‖x(t, ω)‖ ≥ ℓ] ≤ C(T ) exp[−c0(T )ℓ
2]

4. For any θ ∈ Rd

exp[< θ, x(t, ω)− x(0, ω) > −
1

2

∫ t

0

< a(s, ω)θ, θ > ds−

∫ t

0

< b(s, ω), θ > ds]

1



is a martingale.

Proofs. We can assume without loss of generality that f(t, x) is C∞[[0, T ]×Rd].

E[f(t, x(t))− f(s, x(s))|Fs]

= E[f(t, x(t))− f(s, x(t)) + f(s, x(t))− f(s, x(s))|Fs]

= E[

∫ t

s

fv(v, x(t))dv +

∫ t

s

(Lv,ωf)(s, x(v))dv|Fs]

= E[

∫ t

s

fv(v, x(v))dv +

∫ t

s

dv

∫ t

v

Lu,ωfv(v, x(u))du

+

∫ t

s

(Lv,ωf)(v, x(v))dv−

∫ v

s

du

∫ t

s

(Lv,ωf)u(u, x(v))dv|Fs]

= E[

∫ t

s

fv(v, x(v))dv +

∫ t

s

(Lv,ωf)(v, x(v))dv]

Lemma. Let M(t) be a continuous martingale on (Ω,Ft, P ) and A(t) a progressively
measurable continuous function of bounded variation with A(0) = 0. Assume for any
finite T , M(T ) is square integrable and the total variation |A|(T ) of A(t) on [0, T ] is
square intgrable, then

A(t)M(t)−

∫ t

0

M(s)dA(s)

is a martingale with respect to (Ω,Ft, P ).

Proof.

E[A(t)M(t)−A(s)M(s)−

∫ t

s

M(u)dA(u)|Fs]

= lim
π↓0

∑

j

E[A(tj)M(tj)− A(tj−1)M(tj−1)−

∫ tj

tj−1

M(u)dA(u)|Fs]

= lim
π↓0

∑

j

E[A(tj)M(tj)− A(tj−1)M(tj)−

∫ tj

tj−1

M(u)dA(u)|Fs]

= 0

To go from 2. to 3.

M(t) = ef(t,x(t,ω)) −

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds

A(t) = exp[−f(0, x(0, ω))−

∫ t

0

[(e−f (
∂

∂s
+ Ls,ω)e

f )(s, x(s, ω))]ds]
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M(t)A(t)−
∫ t

0
M(s)dA(s) simplifies to (3) because

A(t)

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds+

∫ t

0

M(s)dA(s) = 0

To verify this let us differentiate with respect to t.

A′(t)

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds+ A(t)[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))] + A′(t)M(t) = 0 ?

A′(t) = −A(t)[(e−f (
∂

∂s
+ Ls,ω)e

f )(s, x(s, ω))]

M(t) = ef(t,x(t,ω)) −

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds

We see that after dividing by A(t)

− [(e−f (
∂

∂s
+ Ls,ω)e

f )(s, x(s, ω))]

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))ds

+ [(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))]

− [(e−f (
∂

∂s
+ Ls,ω)e

f )(s, x(s, ω))]ef(t,x(t,ω))

+ (e−f (
∂

∂s
+ Ls,ω)e

f )(s, x(s, ω))]

∫ t

0

[(
∂

∂s
+ Ls,ω)e

f ](s, x(s, ω))]ds

First and last terms cancel each other as do the second and third.

3 implies 4.

Limits of nonnegative martingales is a supermartingale. Let Xn(t) be a sequence
of non negative martingales with E[Xn(t)] = 1 and let X(t) = limn→∞ Xn(t) a.e. Then
M(t) is a supermartingale.

Proof. Let Ek(s) = {ω : supn Xn(s) ≤ k}. Ek(s) ∈ Fs and Ek(s) ↑ Ω

∫

A∩Ek(s)

Xn(s)dP =

∫

A∩Ek(s)

Xn(t)dP

Let n → ∞ and use Fatou on the right and bounded convergence theorem on the left.

∫

A∩Ek(s)

X(s)dP ≥

∫

A∩Ek(s)

X(t)dP

Let k → ∞.

∫

A

X(s)dP ≥

∫

A

X(t)dP

3



or E[X(t)|Fs] ≤ X(s) a.e.
The function < θ, x > is not bounded but can be approximated by smooth bounded

functions and

exp[< θ, x(t)− x(0) > −

∫ t

0

< θ, b(s, ω) > ds−
1

2

∫ t

0

< θ, a(s, ω)θ > ds]

is a supemartingale.

EP [exp[< θ, x(t)− x(0) > −

∫ t

0

< θ, b(s, ω) > ds−
1

2

∫ t

0

< θ, a(s, ω)θ > ds]] ≤ 1

EP [exp[< θ, x(t)− x(0) >]] ≤ exp[t(c1‖θ‖+ c2‖θ‖
2)]

It is clear that E[exp[λ‖x(t)‖]] < ∞ for all λ > 0. The approximations can be constructed
with uniform linear bounds.

Hence

Xθ(t) = exp[< θ, x(t, ω)− x(0, ω) > −
1

2

∫ t

0

< a(s, ω)θ, θ > ds−

∫ t

0

< b(s, ω), θ > ds]

are martingales. If y(t) = x(t)− x(0)−
∫ t

0
b(s, ω)ds, then

P [sup
t

‖y(t)‖ ≥ ℓ] ≤ c1 exp[−
c2ℓ

2

t
]

4 implies 1.
Continue analytically. Replace θ by iθ.

Yθ(t) = exp[< iθ, x(t, ω)− x(0, ω) > +
1

2

∫ t

0

< a(s, ω)θ, θ > ds− i

∫ t

0

< b(s, ω), θ > ds]

are martingales. Take

A(t) = exp[−
1

2

∫ t

0

< a(s, ω)θ, θ > ds+ i

∫ t

0

< b(s, ω), θ > ds]

Then Yθ(t)A(t)−
∫ T

0
Yθ(s)dA(s) reduces to 1 with f = ei<θ,x>. Note that y(t)−

∫ t

0
b(s, ω)ds

and yi(t)yj(t)−
∫ t

0
ai,j(s, ω)ds are martingales.
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Stochastic Integrals. Given (Ω,Fs, x(s, ω), P, {a(s, ω), b(s, ω)}). A progressively mea-
surable function e(s, ω) with values in Rd we want to define

z(t, ω) =

∫ t

0

< e(s, ω), dx(s) >=

∫ t

0

< e(s, ω), dy(s) > +

∫ t

0

< e(s, ω), b(s, ω) > ds

It is only the dy integral that is a problem. Let us take for simplicity b = 0. Take a
subdivision tj =

j
N

Step 1. Assume e is uniformly bounded, is piecewise (in time) constant e = ej(ω) on
[tj−1, tj] which is Ftj−1

measurable. Then for tj ≤ t ≤ tj+1

zN (t) =
∑

1≤i≤j

< e(ti−1), y(ti)− y(ti−1) > + < e(tj), y(t)− y(tj) >

z(·) is linear in e, almost surely continuous and for any such e it is a martingale and
so is

z2(t)−

∫ t

0

< e(s, ω), a(s, ω)e(s, ω)> ds

and by Doob’s inequality

E[[ sup
0≤s≤T

|z(s)|]2] ≤ 4EP [

∫ T

0

< e(s, ω), a(s, ω)e(s, ω)> ds]

and

exp[z(t)−

∫ t

0

< e(s, ω), b(s, ω) > ds−
1

2

∫ t

0

< e(s, ω), a(s, ω)e(s, ω)> ds]

are martingales.

Step 2. If e(s, ω) is uniformly bounded and continuous we can approximate e(s, ω) by

(e, [ns]
n

) which is agiain progressively measurable. We can pass to the limit. The limit
exists and satisfy the smae properties as before.

Step 2. Given a bounded progressively measurable e we define en for s ≥ 1
n
by

en(s) = n

∫ s

s− 1

n

e(v, ω)dv

∫ T

0
‖en(s)− e(s)‖2ds → 0 and therefore zn(t) has a limit.

Step 3. If EP [
∫ T

0
‖e(s, ω)‖2ds] < ∞ we can truncate by

eℓ(s, ω) = e(s, ω)1‖e(s,ω)‖≤ℓ

and let ℓ → ∞.
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In conclusion we can define

z(t) =

∫ t

0

< e(s, ω), dx(s) >

provided

EP [

∫ T

0

‖e(s, ω)‖2ds] < ∞

Then z(t) −
∫ t

0
< e(s, ω, b(s, ω)ds > is a square ntegrable martingale. If e is uniformly

bounded then

exp[z(t)−

∫ t

0

< e(s, ω, b(s, ω)ds > −
1

2

∫ t

0

< e(s, ω, a(s, ω)e(s, ω)ds > ds >]

is martingale.

The linear algebra of Stochastic Integrals.

[Ω,Fs, P, x(s, ω), a(s, ω), b(s, ω)]
x ∈ Rd, b ∈ Rd, a ∈ S+

d S+
d is positive semidefinite d × d matrices. Let y(t) =

∫ t

0
c(s, ω)ds +

∫ t

0
e(s, ω)dx(s) where c ∈ Rn, e ∈ Wn,d where Wn,d is the set of n × d

matrices. Then [Ω,Fs, P, y(s, ω), â(s, ω), b̂(s, ω)] and y ∈ Rn, b̂ ∈ Rn, â ∈ S+
n , b̂ = c + eb

and â = eae∗

If X is Gaussian with mean µ and covariance A, Y = eX + c is Gaussian with mean
eµ+ c and covariance eAe∗.

Itô’s Formula. Let f(t, x) be a smooth bounded function function. Let gλ,θ(t, x) =
λf(t, x)+ < θ, x >.

exp[(g(t, x(t))− g(0, x(0)))−

∫ t

0

H(s, ω)ds]

is a martingale, where

H(s, ω) =
∂g

∂s
(s, x(s, ω)) +

1

2

∑

i,j

ai,j(s, ω)
∂2g

∂xi∂xj

(s, x(s, ω))

+
∑

j

bj(s, ω)
∂g

∂xj

(s, x(s, ω)) +
1

2
< a(s, ω)(∇g)(s, ω), (∇g)(s, ω)>

Let y(t) = f(t, x(t))− f(0, x(0)). Then

[Ω,Fs, P, y(s, ω), x(s, ω), â(s, ω), b̂(s, ω)]

where

b̂ = [
∂f

∂s
(s, x(s, ω)) +

1

2

∑

i,j

ai,j(s, ω)
∂2f

∂xi∂xj

(s, x(s, ω))

+
∑

j

bj(s, ω)
∂f

∂xj

(s, x(s, ω)), b(s, ω)]
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â =

(

< a(s, ω)(∇f)(s, x(s, ω), (∇f(s, ω)> a(s, ω)(∇f)(s, x(s, ω)
a(s, ω)(∇f)(s, x(s, ω) a(s, ω)

)

Let us define a new process

w(t) = f(t, x(t))− f(0, x(0))−

∫ t

0

fs(s, x(s))ds−

∫ t

0

〈(∇f)(s, x(s)), dx(s)〉

dw = dy − fs(s, x(s))ds− 〈(∇f)(s, x(s, ω)), dx(s)〉

[Ω,Fs, P, w(s, ω), ã(s, ω), b̃(s, ω)]

b̃ =
1

2

∑

i,j

ai,j(s, ω)
∂2f

∂xi∂xj

(s, x(s, ω))

ã = 〈(1,−(∇f)(s, x(s))), â(s, ω)(1,−(∇f)(s, x(s)))〉 = 0

df(t, x(t)) = ftdt+ 〈(∇f), dx〉+
1

2

∑

i,j

ai,j(t, ω)
∂2f

∂xi∂xj

(t, x(t, ω))dt
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