
Given a(s, ω), b(s, ω) progressively measurable on (Ω,Fs) and an initial distribution µ

is there a probability distribution P on Ω = C[[0,∞) : Rd such that P [x(0) ∈ A] = µ(A)
for all Borel sets A and for any smooth f with compact support in R

Xf (t) = f(x(t))−f(x(0))−

∫ t

0

〈b(s, ω), (∇f)(x(s))〉ds−
1

2

∫ t

0

∑
i,j

ai,j(s, ω)
∂2f

∂xi∂xj

(x(s))ds

is a martingale relative to (Ω,Fs, P )? Is it unique?
Let ‖a(t, ω)‖, ‖b(t, ω)‖ be uniformly bounded. The family Itô process corresponding

to any [a, b] with the distribution µ of x(0) satisfying a uniform tightness condition is a
compact family on C[0, T ].

Some Estimates.

1

P [ sup
0≤s≤t

‖x(s)‖ ≥ ℓ] ≤ C exp[−c1
(ℓ− c3t)

2
+

t
]

If y(t) = x(t)− x(0)−
∫ t

0
b(s, ω)ds then

exp[〈θ, y(t)〉 −
1

2

∫
〈θ, a(s, ω)θ〉ds]

is a martingale and with θ = ±ei and λ > 0,

P [ sup
0≤s≤t

〈θ, y(s)〉 ≥ ℓ] ≤ P [ sup
0≤s≤t

exp[λ〈θ, y(t)〉 −
λ2

2

∫ t

0

〈θ, a(s, ω)θ〉ds] ≥ eλℓ−cλ2

]

≤ e−λℓ+ctλ2

Optimizing over λ proves the inequality.

P [ sup
0≤s≤t

‖y(s)‖ ≥ ℓ] ≤ Ce−
c1ℓ

2

t

This is enough to provide the estimates

E[|y(t)− y(s)|4] ≤ C|t− s|2

establishing tightness. If a, b are constants we have BM, with covariance a and drift b. Run
BM with [a(0, ω), b(0, ω)] for time h then update to [a(h, ω), b(h, ω)] for the next period of
length h and go on. We have a process Ph for which

Z(f, h, t) = f(x(t))− f(x(0))−

∫ t

0

〈b(h[
s

h
], ω), (∇f)〉(x(s))ds

−
1

2

∫ t

0

Tr a(h[
s

h
], ω) · (∇2f)(x(s))ds

1



are martingales for smooth f . Assuming that a and b are continuous, and P is the limit
of Ph along a subsequence then

Z(f, t) = f(x(t))− f(x(0))−

∫ t

0

〈b(s)ω), (∇f)〉(x(s))ds−
1

2

∫ t

0

Tr a(s, ω) · (∇2f)(x(s))ds

is a martingale with respect to (Ω,Ft, P ).

lim
n→∞

∫
Fn(ω)dPn →

∫
F (ω)dP

provided, Fn(ωn) → F (ω) if ωn → ω and supn supω |Fn(ω)| ≤ C

∫
G(ω)Z(f, t, ω)dP =

∫
G(ω)Z(f, s, ω)dP

for all bounded Fs measurable G implies EP [Z(f, t, ω)|Fs] = Z(f, s, ω)
In particular if a(t, x), b(t, x) are bounded and continuous as functions of t, x with

values in S+

d and Rd respectively, for every (s0, x0) ∈ [0, T ] × Rd, there is atleast on
solution P a probability measure on C[[s, T ];Rd such that P [x(s0) = x0] = 1 and with
respect to P for s ≥ s0

z(f, t, ω) = Z(f, t) = f(x(t))− f(x(s0))−

∫ t

s0

〈b(x(s)), (∇f)〉(x(s))ds

−
1

2

∫ t

0

Tr a(s, x(s)) · (∇2f)(x(s))ds

are martingales.

Theorem.. Let (C[[0, T ];Rd,Ft, P ) be a solution to the martingale problem corresponding
to [a, b] with P [x(0) ∈ A] = µ(A) for A ∈ B(Rd) and a(t, ω) = σ(t, ω)σ∗(t, ω). σ ∈ d× k

matrices. Let ((C[0, T ];Rk),Gt, Q) be Brownian motion. Then on Ω = ((C[0, T ];Rd ×

Rk),Ft ⊗ Gt, P ⊗Q) there is a Brownian motion β̂ on Ω such that

x(t)− x(0) =

∫ t

0

σ(s, ω)dβ̂(s) +

∫ t

0

b(s, ω)ds

In particular, if a(t, ω) = a(t, x(t)) and b(t, ω) = b(t, x(t)), the above equation takes the
form

x(t)− x(0) =

∫ t

0

σ(s, x(s))dβ̂(s) +

∫ t

0

b(s, x(s))ds

Let τ(s, ω) be a pseudo inverse of σ(S, ω) and P1(s, ω) = σ(s, ω)τ(s, ω) and P2(s, ω) =
τ(s, ω)σ(s, ω) or orthogonal projections that depend on s, ω.

Then if y(t) = x(t)− x(0)−
∫ t

0
b(s, ω)ds then

β̂(t) =

∫ t

0

τ(s, ω)dy(s) +

∫ t

0

(I − P2(s, ω))dβ(s)

2



is a martingale,

τaτ∗ + (I − P2) = τσσ∗τ∗ + (I − P2) = P2 + (I − P2) = I

and ∫ t

0

dy(s)−

∫ t

0

σ(s, ω)dβ̂(s) =

∫ t

0

(I − σ(s, ω)τ(s, ω))dy(s)

−

∫ t

0

σ(s, ω)(I − P2(s, ω))dβ(s)

(I − P1)a(I − P1) + σ(I − P2)(I − P2)σ
∗ = 0

because P1 is the projection onto the range of a and

σ(I − P2)(I − P2)σ
∗ = σ(I − P2)σ

∗ = σσ∗ − σP2σ
∗ = σσ∗ − στσσ∗ = a− P1a = 0

Girsanov’s formula. If P corresponds to [a(t, ω), b(t, ω)] and c(t, ω) is bounded then

Y0(t) = exp[

∫ t

0

[〈c(s, ω), (dx(s)− b(s, ω)ds)〉]

−
1

2

∫ t

0

[〈c(s, ω), a(s, ω)c(s, ω)〉]ds]

is a martingale with respect to (Ω,Ft, P ). dQ = Y (t)dP is well defined. Moreover if ξ(t)
is a martingale w.r.t. Q, if and only if ξ(t)Y (t) is a martingale w.r.t.P . The following are
martingales w.r.t. P

Yθ(t) = exp[

∫ t

0

[〈(θ + c(s, ω)), (dx(s)− b(s, ω)ds)〉]

−
1

2

∫ t

0

[〈(θ + c(s, ω)), a(s, ω)(θ+ c(s, ω))〉]ds]

= Y0(t)Zθ(t)

where

Zθ(t) = exp[〈θ, x(t)− x(0)〉 −

∫ t

0

[〈θ, b(s, ω) + a(s, ω)c(s, ω)〉ds−
1

2

∫ t

0

〈θ, a(s, ω)θ〉ds]

is a martingale w.r.t. Q defined by dQ = Y0(t)dP .
Q corresponds to [a, b+ ac]. c need not be bounded . Enough < c, ac > is bounded.

c = τc∗ where τ is the pseudo inverse of σ with σσ∗ = a and c∗ is bounded.

Martingales and conditioning. r.c.p.d or disintegration. If M(t) is martingale w.r.t.
(Ω,Ft, P ) and Qt0,ω is r.c.p.d given Ft0 , M(t) for t ≥ 0 is a martingale w.r.t. Qt0,ω for
almost all ω.
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∫
A

M(t1)dQt0,ω =

∫
A

M(t2)dQt0,ω

t0 ≤ t1 < t2 and A ∈ Ft1 .∫
B

[

∫
A

M(t1)dQt0,ω]dP =

∫
B

[

∫
A

M(t2)dQt0,ω]dP

for all B ∈ Ft0 . Need

∫
A∩B

M(t1)dP =

∫
A∩B

M(t2)dP

valid since A ∩B ∈ Ft1 .

Corollary.If a(s, ω) = a(s, x(s)) and b(s, ω) = b(s, x(s)) then uniqueness for all staring
points (s, x) implies the processes are all Markov with transition probability

p(s, x, t, A) = Ps,x[x(t) ∈ A]

If it is a(x(s)), b(x(s)) then p(s, x, t, A) = p(t−s, x, A). Extends to stopping times. Unique-
ness implies the strong Markov property.

Uniqueness and Stability. If Pn is a solution for [an, bn] and if [an, bn] → [a, b], if P is
the unique solution for [a, b] then Pn → P in the weak topology.
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