
We will consider a(x) = {ai,j(x)} and b(x) = {bj(x)} that do not depend on t explic-
itly, It is not serious at this point. We can consider time as an extra space variable and
add one extra dimension.

â(x0, x) =











0 0 · · · 0
0 a1,1(x0, x) a1,2(x0, x) · · · a1,d(x0, x)
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 ad,1(x0, x) ad,2(x0, x) · · · ad,d(x0, x)











b̂(x0, x) = (1, b1(x0, x), . . . , bdx0, (x))

So long as no non-degeneracy of a is needed.

Given a(·), b(·) we denote by S(a, b, x) the set of probability measures P on C[0,∞) that
satisfy P [x(0) = x] = 1 and

f(x(t)− f(x(0))−
∫ t

0

(Lf)x(s)ds

is a martingale for all smooth C∞ functions f with compact support where

(Lf)(x) =
1

2

d
∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj

(x) +
d

∑

j=1

bj(x)
∂f

∂xj

(x)

What do we know?

1. If a(·), b(·) are bounded and continuous S(a(·), b(·), x) is nonempty for every x ∈ Rd.

2. If b̂(x) = b(x) + a(x)c(x) for a bounded c(·) then with

Y (t) = exp[

∫ t

0

〈c(x(s)), dx(s)− b(x(s))ds〉 − 1

2

∫ t

0

〈c(x(s)), a(x(s))c(x(s))〉ds]

is a martingale with respect to (Ω,Ft, P ) for all P ∈ S(a(·), b(·), x) and the map P → Q

defined by dQ = Y (t)dP sets up an isomorphism between P ∈ S(a(·), b(·), x) and Q ∈
S(a(·), b(·) + a(·)c(·), x). In particular existence or uniqueness for [a(·), b(·)] implies the
same for [a(·), b(·)+a(·)c(·)] for any bounded c(·). With a little extra work one can extend
it to [a(·), b(·) + √

a(·)c(·)] which is the same as [a(·), b(·) + σ(·)c(·)] with a bounded c(·)
for some σ(·) with σ(·)σ∗(·) = a(·). Note that if Y (t) is a P martingale and Y (t) > 0 a.e.
P , the Z(t) = [Y (t)]−1 is Q martingale and dP = Z(t)dQ.

3. if P ∈ S(a, b, x) and Pt,ω is the r.c.p.d. P |Ft then Pt,ω ∈ P ∈ S(a, b, x(t, ω)) for almost
all ω for times s ≥ t. The same is true if we replace t by a stopping time τ . In particular
if we have uniqueness, i.e for every x, S(a, b, x) consists of one distribution Px, then Px is
a strong Markov process with transition probability

p(t, x, A) = Px[x(t) ∈ A]
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4. Stability. If [an(·), bn(·)] converges to [a(·), b(·)] uniformly on compact subsets and are
uniformly bounded, and xn → x then S(an, bn, xn) is a (pre) compact subset of measures
and if P is any limit along a subsequence then P ∈ S(a, b, x).
5. Let πh(x, dy) be the transition probability of a Marko Chain in Rd with time step h.
Assume

lim
h→0

1

h

∫

[f(y)− f(x)]πh(x, dy) = (Lf)(x) =
1

2

d
∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj

(x) +

d
∑

j=1

bj(x)
∂f

∂xj

(x)

Then the piecewise linear interpolated measures Ph,x are precompact and any limit point
P will be in S(a, b, x). In particular if S(a, b, x) consists of a single distribution Px,

lim
n→∞,h→0

nh→t

∫

f(y)πn
h(x, dy) = (Ttf)(x) =

∫

f(y)p(t, x, dy) = E[f(x(t)|x(0) = x]

6. The following are necessary and for sufficient for the assumption of 5. to hold.

lim
h→0

1

h
πh(x, [B(x, ǫ)]c) = 0

lim
h→0

1

h

∫

B(x,1)

(y − x)πh(x, dy) = b(x)

lim
h→0

1

h

∫

B(x,1)

∫

(y − x)⊗ (y − x)πh(x, dy) = a(x)

The first limit should hold for any ǫ > 0 and all limits hold locally uniformly. In the last
two limits B(x.1) can be replaced by any ball of finite radius.

Proof of 6. Taylor expansion.

5. Requires some work. Tightness estimates are needed. For the moment assume that the
limits in 6 hold uniformly on Rd.

Construct a piecewise linear random function with x(0) = x and x(nh) = Xn and x(t)
is linearly interpolated between x(nh) and (x(n+ 1)h). Let Ph,x be its distribution.

f(Xnh)− f(x)−
n−1
∑

j=0

(πhf − f)(Xjh)

is a martingale relative to (Ω,Fnh, Ph,x).

E[f(x(nh))−f(x)−
n−1
∑

j=0

(πhf − f)(x(jh))|F(n−1)h]

= f(x((n− 1)h))− f(x)−
n−2
∑

j=0

(πhf − f)(x(jh))
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The expression is a Riemann sum approximation and seen to converge to

f(x(t))− f(x)−
∫ t

0

(Lf)(x(s))ds

If Ph,x has a limit point P it will be in S(a(·), b(·), x).
To prove tightness we need to estimate the modulus of continuity. Starting from x

how long does it take for the chain to escape B(x, ǫ)? Let us define a sequence of stopping
times. Given ǫ and h, we define

τ1 = h inf j : x(jh) ∈ [B(x, ǫ)]c

and inductively
τk+1 = h inf j : jh ≥ τk, x(jh) ∈ [B(x(τk), ǫ)]

c

If Xj never leaves the ball B(x(τr), ǫ) at some stage we take τr+1 = T . We proceed until
for some k, τk+1 = T . This will happen eventually, definitely before T

h
. The interval [0, T ]

is now divided into sub intervals

0 = τ0 < τ1 < · · · < τk < τk+1 < · · · < τk0
< τk0+1 = T

Let us denote by δ∗ the length of the smallest interval excluding the last one, i.e.

δ∗ = inf
1≤r≤k0

[τr − τr−1]

If |t−s| ≤ δ∗, the points s and t will be at most in two adjacent intervals and the oscillation
|x(t)−x(s)| of the function is at most 2ǫ. If we can get a uniform estimate on Ph,x[δ

∗ ≤ δ]
we can then estimate the modulus of continuity. Let f be nonnegative, with f = 1 out
side B(x, ǫ) and f(x) = 0. If we stop at time τ1, since

f(x(nh))− f(x)−
n−1
∑

j=0

(πhf − f)(x(jh))

is a martingale

EPh,x

[

f(x(τ1))]−
k−1
∑

j=0

(πhf − f)(x(jh))

]

= 0

Since ‖(πhf)− f‖ ≤ C(ǫ)h and if τ1 < T , then f(x(τ1)) = 1 and

Ph,x[τ1 ≤ δ] ≤ EPh,x
[

f(x)
]

≤ C(ǫ)δ

The argument works for any τr+1 − τr as long as r < k0. The estimates are conditionally
uniform. None of them is too small. If we can show that k0 can not be too large then δ∗

can not be too small.

Ph,x[δ
∗ ≤ δ] ≤ kPh,x[τ1 ≤ δ] + Ph,x[k0 ≥ k]
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Ph,x[k0 ≥ k] ≤ Ph,x[τk ≤ T ] ≤ eTEPh,x [e−τk ] ≤ eT [EPh,x [e−τ1 ]]k

If the estimates only hold locally, we can stop the chain when it gets out of a ball of
radius ℓ. This family will be tight and any limit point will satisfy the matingale relation
until the stopping time τl = inf{t : |x(t)| ≥ ℓ}. The proof is completed by the following

Lemma. Let the processes Pn on C[[0, T ];Rd] when stopped at the exit time from a ball
of radius ℓ, τℓ = inf{t : |x(t)| ≥ ℓ} converge to a limit P ℓ and

f(x(τℓ ∧ t))− f(x(0))−
∫ τℓ∧t

0

(Lf)(x(s))ds

be a martingale for smooth f with respect to P ℓ. Then Pn is tight and Pn converges to a
limit P and with respect to (C[[0, T ];Rd],Ft, P )

f(x(t))− f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a martingale.

Proof. Need to get an estimate

lim
ℓ→∞

sup
n

Pn[ sup
0≤s≤T

‖x(s)‖ ≥ ℓ] = 0

Let if possible along a subsequnce, for some ℓn → ∞

Pn[ sup
0≤s≤T

‖x(s)‖ ≥ ℓn] ≥ p > 0

Then for every ℓ, the stopped process P ℓ
n satisfies

P ℓ[ sup
0≤s≤T

‖x(s)‖ ≥ ℓ] = lim sup
n→∞

P ℓ
n[ sup

0≤s≤T

‖x(s)‖ ≥ ℓ] = lim sup
n→∞

Pn[ sup
0≤s≤T

‖x(s)‖ ≥ ℓ] ≥ p

Since

f(x(t))− f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a martingale with respect to P ℓ it follows that

lim
ℓ→∞

P ℓ[ sup
0≤s≤T

‖x(s)‖ ≥ ℓ] = 0

PDE proof. Let the equation

∂u(t, x)

∂t
= (Lu)(t, x); u(0, x) = f(x)
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have a C1,2 solution. Then with uh(j, x) = (πj
hf)(x), if nh → t

‖uh(nh, ·)− u(t, ·)‖ → 0

Let us estimate as h → 0

∫

u(jh, y)πh(x, dy)− u(j + 1)h, x)

=

∫

[u(jh, y)− u(jh, x)]πh(x, dy)− [u((j + 1)h, x)− u(j, h)]

= h(Lu)(jh, x)− hut(jh, x) + o(h)

= o(1)

Adding the telescoping sum no(h) → 0.

Actually if u(t, x) solves ut = Lu, then for any T

∂u

∂t
(T − t, x) + (Lu)(T − t, x) = −ut(T − t, x) + (Lu)(T − t, x) = 0

making u(T − t, x(t)) a martingale with respect to every P ∈ S(a(·), b(·), x) Equating
expectations

EP [x(T )] = u(T, x)

for all P ∈ S(a(·), b(·), x).
If equations can be solved for enough initial data then P [x(t) ∈ A] = p(t, x, A) is deter-
mined for all P ∈ S(a(·), b(·), x). Since the conditional distribution P |Ft ∈ S(a(·), b(·), x(t))
for times s larger than t, the conditional distribution of x(t+ s) depends only on x(t) and
is given by p(s, x(t)A). Sufficiently many smooth solutions of PDE implies uniqueness and
Markov property. Turning the agument around existence of a P ∈ S(a(·), b(·), x) proves
uniquenss of a solution to the PDE. This is meaningful when a and b are unbounded. We
will visit this issue later.

There could be other ways of proving uniqueness. That will still enable us to construct
the process and prove limit theorems.
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