One way to construct a diffusion process corresponding to the operator

$$
(L f)(x)=\frac{1}{2} \sum_{i, j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)+\sum_{j} b_{j}(x) \frac{\partial u}{\partial x_{j}}(x)
$$

is to find a process with the property

$$
x(t+h)-x(t) \simeq \sqrt{h} Z+h b(x(t))
$$

where Z is a Gaussian with dispersion $a_{i, j}(x(t))$. If $\sigma(x) \sigma^{*}(x)=a(x), \sigma(x) \operatorname{maps} R^{k} \rightarrow$ R^{d} then $Z=\sigma(x)[\beta(t+h)-\beta(t)]$ should work. This leads to

$$
d x(t)=\sigma(x(t)) \cdot d \beta(t)+b(x(t)) d t
$$

There are three possible equivalent formulations of what a solution to the equation means.

For any $x \in R^{d}$, there is a measure P on $\Omega=C\left[[0, T] ; R^{d}\right.$ such that $P[x(0)=0]=1$, and for any smooth f with compact support on R^{d}

$$
f(x(t))-f(x)-\int_{0}^{t}(L f)(x(s)) d s
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$.
Or equivalently there is a measure space and a filtration $\left(\Omega, \mathcal{F}_{t}, P\right)$ and two progressively measurable almost surely continuous processes $x(t, \omega), \beta(t, \omega)$ with values in R^{d} and R^{k} respectively, where $\beta(t, \omega)$ is a k-dimensional Brownian motion adapted to \mathcal{F}_{t}, i.e. for any $t>s, \beta(t)-\beta(s)$ is independent of \mathcal{F}_{s}. They satisfy

$$
x(t)=x(0)+\int_{0}^{t} \sigma(x(s)) \cdot d \beta(s)+\int_{0}^{t} b(x(s)) d s
$$

This can be rephrased as finding a measure Q on $\left(C\left[[0, T], R^{d} \times R^{k}\right), \mathcal{F}_{t}, Q\right)$ such that for smooth f with compact support on $R^{d} \times R^{k}$

$$
f(x(t), y(t))-f(x(0), 0)-\int_{0}^{t}(L f)(x(s), y(s)) d s
$$

is a martingale, where

$$
\begin{aligned}
(L f)(x, y)=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(x) & \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x, y)+\sum_{j=1}^{d} b_{j}(x) \frac{\partial f}{\partial x_{j}}(x, y) \\
& +\frac{1}{2} \sum_{i=1}^{k} \frac{\partial^{2} f}{\partial^{2} y_{i}}(x, y)+\sum_{i=1}^{d} \sum_{j=1}^{k} \sigma_{i, j}(x, y) \frac{\partial^{2} f}{\partial x_{i} \partial y_{j}}(x, y)
\end{aligned}
$$

Or one can ask if on the canonical Brownian motion space $\left(C\left[[0, T], R^{k}\right), \mathcal{F}_{t}, P\right)$ the equation

$$
x(t)=x(0)+\int_{0}^{t} \sigma(x(s)) \cdot d \omega(s)+\int_{0}^{t} b(x(s)) d s
$$

can be solved with a progressively measurable almost surely continuous solution $x(t, \omega)$.
If σ satisfies the Lipschitz condition $\|\sigma(x)-\sigma(y)\| \leq C|x-y|$, then for any initial random variable ξ measirable w.r.t. \mathcal{F}_{0} with $\left\|\xi_{2}\right\|_{2}<\infty$ the above equation has a unique solution.

Existence. Let us define recursively starting with $x_{0}(t) \equiv \xi$

$$
x_{n+1}(t)=\xi+\int_{0}^{t} \sigma\left(x_{n}(s)\right) \cdot d \beta(s)+\int_{0}^{t} b\left(x_{n}(s)\right) d s
$$

Inductively σ_{n} is progressively measurable and bounded. Hence so is $x_{n}(t)$. Taking the difference

$$
x_{n+1}(t)-x_{n}(t)=\int_{0}^{t}\left[\sigma\left(x_{n}(s)\right)-\sigma\left(x_{n-1}(s)\right)\right] \cdot d \beta(s)+\int_{0}^{t}\left[b\left(x_{n}(s)\right)-b\left(x_{n-1}(s)\right)\right] d s
$$

Let us denote by $\Delta_{n}(t)=E\left[\sup _{0 \leq s \leq t}\left\|x_{n+1}(s)-x_{n}(s)\right\|^{2}\right]$. Then
$\Delta_{n}(t) \leq 2 E\left[\sup _{0 \leq s \leq t}\left|\int_{0}^{s}\left[\sigma\left(x_{n}(\tau)\right)-\sigma\left(x_{n-1}(\tau)\right)\right] \cdot d \beta(\tau)\right|^{2}+\left|\int_{0}^{t}\right| b\left(x_{n}(s)\right)-b\left(x_{n-1}(s)\right)|d s|^{2}\right]$
By Doob's inequality the first term is dominated by $8 E\left[\int_{0}^{t}\left|\sigma\left(x_{n}(\tau)\right)-\sigma\left(x_{n-1}(\tau)\right)\right|^{2}\right]$ and the second by $2 T E\left[\left|\int_{0}^{t}\right| b\left(x_{n}(s)\right)-\left.b\left(x_{n-1}(s)\right)\right|^{2} d s\right]$. If we consider a finite interval $[0, T]$. using the Lipschitz condition

$$
\Delta_{n+1}(t) \leq C(T) \int_{0}^{t} \Delta_{n}(s) d s
$$

with

$$
\Delta_{0}(t)=8 E\left[\|\sigma(\xi) \cdot(\beta(t)-\beta(0))\|^{2}+2 T t\|b(\xi)\|^{2}\right] \leq c(T) t
$$

By induction

$$
\Delta_{n}(t) \leq \frac{[C(T)]^{n+1}}{(n+1)!}
$$

Since $\sum_{n} \sqrt{\Delta_{n}(t)}<\infty$, it follows that

$$
P\left[\sum_{n} \sup _{0 \leq t \leq T}\left\|x_{n+1}(t)-x_{n}(t)\right\|<\infty\right]=1
$$

Therefore $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$ exists almost surely and passing to the limit

$$
x(t)=x(0)+\int_{0}^{t} \sigma(x(s)) \cdot d \omega(s)+\int_{0}^{t} b(x(s)) d s
$$

Uniqueness. For $i=1,2$

$$
x_{i}(t)=\xi+\int_{0}^{t} \sigma\left(x_{i}(s)\right) \cdot d \beta(s)+\int_{0}^{t} b\left(x_{i}(s)\right) d s
$$

Let $y(t)=x_{1}(t)-x_{2}(t)$ and $\delta(t)=E\left[\|y(t)\|^{2}\right]$.

$$
\delta(t) \leq C(T) \int_{0}^{t} \delta(s) d s
$$

Implies $\delta(t) \equiv 0$.

Markov and Strong Markov Property.

If you start the solution from $x(0)=x$ and run it up to a stopping time τ, then the solution starting from $x(\tau)$ is the same as the old one. But the Brownian increments after time τ are independent of \mathcal{F}_{τ}. This is strong Markov property. The discrete analog is if $X_{n+1}=f\left(X_{n}, Y_{n+1}\right)$ where $\left\{Y_{n}\right\}$ are mutually independent and indpendent of X_{0}, then $\left\{X_{n}\right\}$ is a Markov process.

If the SDE

$$
x(t)=x+\int_{0}^{t} \sigma(x(s)) \cdot d \beta(s)+\int_{0}^{t} b(x(s)) d s
$$

has a unique solution for some choice of σ satisfying $\sigma(x) \sigma^{*}(x)=a(x)$ then the Markov family $\left\{P_{x}\right\}$ the distributions of (\cdot) for the varying starting points $x \in R^{d}$, are solutions to the martingale problem for L. Does it imply that there are no other solutions to the Martingale Problem?
Theorem.. If P is any solution of the martingale problem and if $a(x)=\sigma(x) \sigma^{*}(x)$ for some choice of σ for which the solution to the SDE is unique then the soulution to the martingale problem is unique.
Proof. If P_{1} and P_{2} are two solutions to the martingale probem and $a(x)=\sigma(x) \sigma^{*}(x)$ then on the space $\Omega=C\left[[0, T] ; R^{d} \times R^{k}\right]$ there are two probability measures \hat{P}_{1} and \hat{P}_{2}. There projections on $C\left[[0, T] ; R^{d}\right]$ are P_{1} and P_{2} whlie their projections on the second component $C\left[[0, T] ; R^{k}\right]$ is the Brownian motion μ. They are related by

$$
x(t)=x+\int_{0}^{t} \sigma(x(s)) \cdot d \beta(s)+\int_{0}^{t} b(x(s)) d s
$$

with $\omega \in \Omega$ being $\omega(t)=(x(t), \beta(t))$ If we can construct a measure \hat{Q} on $\hat{\Omega}=C\left[[0, T] ; R^{d} \times\right.$ $\left.R^{d} \times R^{k}\right]$ with $\hat{\omega}=(x(t), y(t), \beta(t))$ such that $(x(\cdot), \beta(\cdot))$ and $(y(\cdot), \beta(\cdot))$ have distributions \hat{P}_{1} and \hat{P}_{2} then we would have

$$
x(t)=x+\int_{0}^{t} \sigma(x(s)) \cdot d \beta(s)+\int_{0}^{t} b(x(s)) d s
$$

as well as

$$
y(t)=x+\int_{0}^{t} \sigma(y(s)) \cdot d \beta(s)+\int_{0}^{t} b(y(s)) d s
$$

implying $x(t) \equiv y(t)$ proving $P_{1}=P_{2}$.
Construction of \hat{Q}. Let us denote by $q_{\beta}^{1}\left(d \omega_{1}\right)$ the regular conditional probability distribution of $x(\cdot)$ given $\beta(\cdot)$ and by $q_{\beta}^{2}\left(d \omega_{1}\right)$ the regular conditional probability distribution of $y(\cdot)$ given $\beta(\cdot)$. We define \hat{Q} by

$$
Q\left(d \omega_{1}, d \omega_{2}, d \beta\right)=q_{\beta}^{1}\left(d \omega_{1}\right) \times q_{\beta}^{2}\left(d \omega_{1}\right) \times \mu(d \beta)
$$

We need to make sure that the Brownian increments after time t are independent of the σ-field \mathcal{F}_{t} generated by $\{x(s), y(s), \beta(s)\}$ where $0 \leq s \leq t$. This is easily ckecked. Depends on the fact that the conditional distribution of $x(\cdot), y(\cdot)$ on $[0, t]$ given $\beta(\cdot)$ on $[0, T]$ depends only on $\beta(\cdot)$ on $[0, t]$.

Given $a(x)$ when can we find a $\sigma(x)$ with $\sigma(x) \sigma^{*}(x)=a(x)$?

