
One way to construct a diffusion process corresponding to the operator

(Lf)(x) =
1

2

∑

i,j

∂2u

∂xi∂xj

(x) +
∑

j

bj(x)
∂u

∂xj

(x)

is to find a process with the property

x(t+ h)− x(t) ≃
√
hZ + hb(x(t))

where Z is a Gaussian with dispersion ai,j(x(t)). If σ(x)σ∗(x) = a(x), σ(x) maps Rk →
Rd then Z = σ(x)[β(t+ h)− β(t)] should work. This leads to

dx(t) = σ(x(t)) · dβ(t) + b(x(t))dt

There are three possible equivalent formulations of what a solution to the equation
means.

For any x ∈ Rd, there is a measure P on Ω = C[[0, T ];Rd such that P [x(0) = 0] = 1, and
for any smooth f with compact support on Rd

f(x(t))− f(x)−
∫ t

0

(Lf)(x(s))ds

is a martingale with respect to (Ω,Ft, P ).

Or equivalently there is a measure space and a filtration (Ω,Ft, P ) and two progressively
measurable almost surely continuous processes x(t, ω), β(t, ω) with values in Rd and Rk

respectively, where β(t, ω) is a k-dimensional Brownian motion adapted to Ft, i.e. for
any t > s, β(t) − β(s) is independent of Fs. They satisfy

x(t) = x(0) +

∫ t

0

σ(x(s)) · dβ(s) +
∫ t

0

b(x(s))ds

This can be rephrased as finding a measure Q on (C[[0, T ], Rd×Rk),Ft, Q) such that for
smooth f with compact support on Rd ×Rk

f(x(t), y(t))− f(x(0), 0)−
∫ t

0

(Lf)(x(s), y(s))ds

is a martingale, where

(Lf)(x, y) =
1

2

d
∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj

(x, y) +
d

∑

j=1

bj(x)
∂f

∂xj

(x, y)

+
1

2

k
∑

i=1

∂2f

∂2yi
(x, y) +

d
∑

i=1

k
∑

j=1

σi,j(x, y)
∂2f

∂xi∂yj
(x, y)
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Or one can ask if on the canonical Brownian motion space (C[[0, T ], Rk),Ft, P ) the
equation

x(t) = x(0) +

∫ t

0

σ(x(s)) · dω(s) +
∫ t

0

b(x(s))ds

can be solved with a progressively measurable almost surely continuous solution x(t, ω).
If σ satisfies the Lipschitz condition ‖σ(x) − σ(y)‖ ≤ C|x − y|, then for any initial

random variable ξ measirable w.r.t. F0 with ‖ξ2‖2 < ∞ the above equation has a unique
solution.

Existence. Let us define recursively starting with x0(t) ≡ ξ

xn+1(t) = ξ +

∫ t

0

σ(xn(s)) · dβ(s) +
∫ t

0

b(xn(s))ds

Inductively σn is progressively measurable and bounded. Hence so is xn(t). Taking the
difference

xn+1(t)− xn(t) =

∫ t

0

[σ(xn(s)) − σ(xn−1(s))] · dβ(s) +
∫ t

0

[b(xn(s)) − b(xn−1(s))]ds

Let us denote by ∆n(t) = E[sup0≤s≤t ‖xn+1(s)− xn(s)‖2]. Then

∆n(t) ≤ 2E[ sup
0≤s≤t

|
∫ s

0

[σ(xn(τ))−σ(xn−1(τ))] ·dβ(τ)|2 + |
∫ t

0

|b(xn(s))− b(xn−1(s))|ds|2]

By Doob’s inequality the first term is dominated by 8E[
∫ t

0
|σ(xn(τ))−σ(xn−1(τ))|2] and

the second by 2TE[|
∫ t

0
|b(xn(s))− b(xn−1(s))|2ds]. If we consider a finite interval [0, T ].

using the Lipschitz condition

∆n+1(t) ≤ C(T )

∫ t

0

∆n(s)ds

with

∆0(t) = 8E[‖σ(ξ) · (β(t) − β(0))‖2 + 2Tt‖b(ξ)‖2] ≤ c(T )t

By induction

∆n(t) ≤
[C(T )]n+1

(n+ 1)!

Since
∑

n

√

∆n(t) < ∞, it follows that

P [
∑

n

sup
0≤t≤T

‖xn+1(t)− xn(t)‖ < ∞] = 1
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Therefore limn→∞ xn(t) = x(t) exists almost surely and passing to the limit

x(t) = x(0) +

∫ t

0

σ(x(s)) · dω(s) +
∫ t

0

b(x(s))ds

Uniqueness. For i = 1, 2

xi(t) = ξ +

∫ t

0

σ(xi(s)) · dβ(s) +
∫ t

0

b(xi(s))ds

Let y(t) = x1(t)− x2(t) and δ(t) = E[‖y(t)‖2].

δ(t) ≤ C(T )

∫ t

0

δ(s)ds

Implies δ(t) ≡ 0.

Markov and Strong Markov Property.

If you start the solution from x(0) = x and run it up to a stopping time τ , then
the solution starting from x(τ) is the same as the old one. But the Brownian increments
after time τ are independent of Fτ . This is strong Markov property. The discrete analog
is if Xn+1 = f(Xn, Yn+1) where {Yn} are mutually independent and indpendent of X0,
then {Xn} is a Markov process.

If the SDE

x(t) = x+

∫ t

0

σ(x(s)) · dβ(s) +
∫ t

0

b(x(s))ds

has a unique solution for some choice of σ satisfying σ(x)σ∗(x) = a(x) then the Markov
family {Px} the distributions of (·) for the varying starting points x ∈ Rd, are solutions
to the martingale problem for L. Does it imply that there are no other solutions to the
Martingale Problem?

Theorem.. If P is any solution of the martingale problem and if a(x) = σ(x)σ∗(x) for
some choice of σ for which the solution to the SDE is unique then the soulution to the
martingale problem is unique.

Proof. If P1 and P2 are two solutions to the martingale probem and a(x) = σ(x)σ∗(x)
then on the space Ω = C[[0, T ];Rd ×Rk] there are two probability measures P̂1 and P̂2.
There projections on C[[0, T ];Rd] are P1 and P2 whlie their projections on the second
component C[[0, T ];Rk] is the Brownian motion µ. They are related by

x(t) = x+

∫ t

0

σ(x(s)) · dβ(s) +
∫ t

0

b(x(s))ds

with ω ∈ Ω being ω(t) = (x(t), β(t)) If we can construct a measure Q̂ on Ω̂ = C[[0, T ];Rd×
Rd×Rk] with ω̂ = (x(t), y(t), β(t)) such that (x(·), β(·)) and (y(·), β(·)) have distributions
P̂1 and P̂2 then we would have
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x(t) = x+

∫ t

0

σ(x(s)) · dβ(s) +
∫ t

0

b(x(s))ds

as well as

y(t) = x+

∫ t

0

σ(y(s)) · dβ(s) +
∫ t

0

b(y(s))ds

implying x(t) ≡ y(t) proving P1 = P2.

Construction of Q̂. Let us denote by q1β(dω1) the regular conditional probability distri-

bution of x(·) given β(·) and by q2β(dω1) the regular conditional probability distribution

of y(·) given β(·). We define Q̂ by

Q(dω1, dω2, dβ) = q1β(dω1)× q2β(dω1)× µ(dβ)

We need to make sure that the Brownian increments after time t are independent of
the σ-field Ft generated by {x(s), y(s), β(s)} where 0 ≤ s ≤ t. This is easily ckecked.
Depends on the fact that the conditional distribution of x(·), y(·) on [0, t] given β(·) on
[0, T ] depends only on β(·) on [0, t].

Given a(x) when can we find a σ(x) with σ(x)σ∗(x) = a(x)?
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