Lemma. If $a(x)$ is Lipschitz and $a(x) \geq c>0$, then $\sigma(x)=\sqrt{a(x)}$ is Lipschitz. If $a(x) \geq 0$ and has a bounded second derivative then $\sigma(x)=\sqrt{a(x)}$ is again Lipschitz. The same is true for positive semidefinite matrices. For $\left\{a_{i, j}(x)\right\}$ to have a square root $\sigma(x)=\sqrt{a(x)}$ which is Lipschitz either $a(x)$ to be Lipschitz and bounded below $a(x) \geq c I$ for some $c>0$ or $a_{i, j}(x)$ to have two bounded derivatives is sufficient.

Proof. If $a(x) \geq c>0$

$$
\left|\frac{d \sqrt{a(x)}}{d x}\right|=\frac{1}{2 \sqrt{a(x)}}\left|\frac{d a(x)}{d x}\right| \leq \frac{1}{2 \sqrt{c}}\left|\frac{d a(x)}{d x}\right|
$$

On the other hand if $0 \leq a(x) \leq c_{1}$ and $\left|a^{\prime \prime}(x)\right| \leq c_{2}$, then by Taylor's theorem

$$
0 \leq a(x+z)=a(x)+z a^{\prime}(x)+a^{\prime \prime}(\xi) \frac{1}{2} z^{2} \leq a(x)+z a^{\prime}(x)+\frac{c_{2}}{2} z^{2}
$$

This implies

$$
\left[a^{\prime}(x)\right]^{2} \leq 2 c_{2} a(x) \leq 2 c_{1} c_{2}
$$

In the higher dimensional case we have a symmetric positive semidefinite σ satisfying $\sigma^{2}(x)=a(x)$ or $\sum_{k} \sigma_{i, k}(x) \sigma_{k, j}(x)=a_{i, j}(x)$. We can diagonalize $a(0)$ and $\sigma(0)$ simultaneously. Taking a directional derivative D at 0

$$
\sum_{k}\left[D \sigma_{i, k}\right](0) \sigma_{k, j}(0)+\sum_{k} \sigma_{i, k}(0)\left[D \sigma_{k, j}\right](0)=\left[D a_{i, j}\right](0)
$$

or

$$
\begin{gathered}
{\left[D \sigma_{i, j}\right](0)\left[\sigma_{j, j}(0)+\sigma_{i, i}(0)\right]=\left[D a_{i, j}\right](0)} \\
\left|\left(D \sigma_{i, j}\right)(0)\right|=\frac{\left|\left(D a_{i, j}\right)(0)\right|}{\left[\sigma_{j, j}(0)+\sigma_{i, i}(0)\right]}=\frac{\left|\left(D a_{i, j}\right)(0)\right|}{\sqrt{a_{j, j}(0)}+\sqrt{a_{i, i}(0)}} \leq \frac{\left|\left(D a_{i, j}\right)(0)\right|}{2 \sqrt{\lambda}} \leq \frac{\|a\|_{1}}{2 \sqrt{\lambda}}
\end{gathered}
$$

We can take sup over all directions D and take linear combinations $S^{*} \sigma S$ of σ, where S was used to diagonalize $a . \lambda=\inf _{x} \inf _{\|u\|=1}\langle a(x) u, u\rangle$.
If $a(x)$ is onlyi positive semidefnite since $a_{i, i} \pm 2 a_{i, j}+a_{j, j} \geq 0$ it follows that if c is a bound on the second derivatives

$$
\left|D\left[a_{i, i} \pm 2 a_{i, j}+a_{j, j}\right]\right| \leq \sqrt{2 c} \sqrt{a_{i, i} \pm 2 a_{i, j}+a_{j, j}} \leq C \sqrt{a_{i, i}+a_{j, j}} \leq C\left[\sqrt{a_{i, i}}+\sqrt{a_{j, j}}\right]
$$

Taking the difference of the two

$$
\left|D a_{i, j}(x)\right| \leq C\left[\sqrt{a_{i, i}(x)}+\sqrt{a_{j, j}(x)}\right]
$$

providing a bound for $\left|D \sigma_{i, j}(x)\right|$

Theorem (Surgery). Let L^{1}, L^{2} be two operators

$$
\left(L^{\{k\}} f\right)(x)=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}^{\{k\}}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)+\sum_{i=1}^{d} b_{i}^{\{k\}}(x) \frac{\partial f}{\partial x_{i}}(x)
$$

Let $P^{\{1\}}$ be a solution to the martingale problem on $C\left[[0, T] ; R^{d}\right]$ corresponding to $L^{\{1\}}$ with $P\left[x(0)=x_{0}\right]=1$. Let $\left\{P_{x}^{\{2\}}\right\}$ be a family of solutions corresponding to $L^{\{2\}}$ with $P_{x}^{\{2\}}[x(0)=x]=1$. Let U be a neighborhood of x_{0} such that for $x \in U, a_{i, j}^{\{1\}}(x)=a_{i, j}^{\{2\}}(x)$ for all i, j and $b_{i}^{\{1\}}(x)=b_{i}^{\{2\}}(x)$ for all i. For any path $x(\cdot)$ let $\tau=\inf \{t: x(t) \notin U\}$. Let us define a measure Q on $C\left[[0, T] ; R^{d}\right]$ by $Q=P^{\{1\}}$ on $\mathcal{F}_{\tau \wedge T}$ and r.c.p.d of $Q \mid \mathcal{F}_{\tau \wedge T}=$ $P_{x(\tau \wedge T)}^{\{2\}}$ for $\tau \leq t \leq T$ on the set $\tau<T$. Then Q is a solution for $L^{\{2\}}$ with $Q\left[x(0)=x_{0}\right]$.
Proof depends on a simple lemma.
Lemma. Let $\left(\Omega, \mathcal{F}_{t}, \mathcal{F}, P\right)$ be a measure space with a filtration. Let τ be a stopping time. Let Q_{ω}^{τ} be the r.c.p..d. of $P \mid \mathcal{F}_{\tau}$. That is to say that for almost all ω w.r.t. P i

$$
Q_{\omega}^{\tau}(A)=\mathbf{1}_{A}(\omega)
$$

for all $A \in \mathcal{F}_{\tau}$ and $B \in \mathcal{F}$,

$$
P(A \cap B)=\int_{A} Q_{\omega}^{\tau}(B) d P
$$

Let $X(t)$ be a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$. Then for almost all ω w.r.t P, $\{X(t): t \geq \tau(\omega)\}$ is a martingale respect to $\left(\Omega, \mathcal{F}_{t}, Q_{\omega}^{\tau}\right)$. Conversely if $x(t)$ is a martingale w.r.t $\left(\Omega, \mathcal{F}_{t}, Q_{\omega}^{\tau}\right)$ for times $t \geq \tau(\omega)$ for almost all ω with respect to P and $X(\tau \wedge t)$ is a martingale w.r.t $\left(\Omega, \mathcal{F}_{t}, P\right)$, then $X(t)$ is a martingale w.r.t. $\left(\Omega, \mathcal{F}_{t}, P\right)$.
We will defer the proof of the lemma but prove the thorem assuming the lemma.
Proof of Throrem. We need to prove that for any smooth function with compact support

$$
X(t)=f(x(t))-f(x(0))-\int_{0}^{t}\left(L^{\{2\}} f\right)(x(s)) d s
$$

is martingale with respect to $\left(\omega, \mathcal{F}_{t}, Q\right)$. Let $\tau=\inf \{t: x(t) \notin U\}$. It is enough to show that $X(\tau \wedge t)$ is a martingale and $X(t)$ for $t \geq \tau$ is a martingale w.r.t Q_{ω}^{τ} the r.c.p.d of $Q \mid \mathcal{F}_{\tau}$. Since $Q_{\omega}^{\tau}=P_{x(\tau \wedge T)}^{\{2\}}$ and $X(t)=Y(t)$ until time τ where

$$
Y(t)=f(x(t))-f(x(0))-\int_{0}^{t}\left(L^{\{1\}} f\right)(x(s)) d s
$$

it follows that $X(t)$ is martingale with respect to $\left(\omega, \mathcal{F}_{t}, Q\right)$
Proof of lemma. What does "for almost all ω w.r.t $P,\{X(t): t \geq \tau(\omega)\}$ is a martingale respect to $\left(\Omega, \mathcal{F}_{t}, Q_{\omega}^{\tau}\right) "$ mean?. For $A \in \mathcal{F}_{t_{1}}$,

$$
\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}\right) d Q_{\omega}^{\tau}=\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{1}\right) d Q_{\omega}^{\tau}
$$

for almost all ω with respect to P (modulo problems with null sets!). This requires for $B \in \mathcal{F}_{\tau}$

$$
\int_{B} d P \int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}\right) d Q_{\omega}^{\tau}=\int_{B} d P \int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{1}\right) d Q_{\omega}^{\tau}
$$

Since $A \cap\left\{\tau \leq t_{1}\right\}$ is \mathcal{F}_{τ} measurable this reduces to verifying

$$
\int_{A \cap B \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}\right) d P=\int_{A \cap B \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{1}\right) d P
$$

Since $A, B \in \mathcal{F}_{t_{1}}$ it is true.
For the converse if $A \in \mathcal{F}_{t_{1}}$

$$
\begin{aligned}
& \int_{A} X\left(t_{2}\right) d P=\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}\right) d P+\int_{A \cap\left\{t_{2} \geq \tau>t_{1}\right\}} X\left(t_{2}\right) d P+\int_{A \cap\left\{\tau>t_{2} \geq \tau\right\}} X\left(t_{2}\right) d P \\
& \int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}, \omega\right) P(d \omega)=\int_{A} P(d \omega) \int_{\tau \leq t_{1}} X\left(t_{2}, \omega^{\prime}\right) Q_{\omega}^{\tau}\left(d \omega^{\prime}\right) \\
&=\int_{A} P(d \omega) \int_{\tau \leq t_{1}} X\left(t_{1}, \omega^{\prime}\right) Q_{\omega}^{\tau}\left(d \omega^{\prime}\right) \\
&=\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{1}, \omega\right) P(d \omega) \\
& \int_{A \cap\left\{t_{1}<\tau \leq t_{2}\right\}} X\left(t_{2}, \omega\right) P(d \omega)=\int_{A \cap\left\{t_{1}<\tau\right\}} P(d \omega) \int_{\tau \leq t_{2}} X\left(t_{2}, \omega^{\prime}\right) Q_{\omega}^{\tau}\left(d \omega^{\prime}\right) \\
&=\int_{A \cap\left\{t_{1}<\tau \leq t_{2}\right\}} X(\tau, \omega) P(d \omega) \\
&=\int_{A \cap\left\{t_{1}<\tau \leq t_{2}\right\}} X\left(\tau \wedge t_{2}, \omega\right) P(d \omega) \\
& \int_{A \cap\left\{\tau>t_{2}\right\}} X\left(t_{2}, \omega\right) P(d \omega)=\int_{A \cap\left\{\tau>t_{2}\right\}} X\left(\tau \wedge t_{2}, \omega\right) P(d \omega)
\end{aligned}
$$

Adding the two

$$
\begin{aligned}
\int_{A \cap\left\{t_{1}<\tau\right\}} X\left(t_{2}, \omega\right) P(d \omega) & =\int_{A \cap\left\{t_{1}<\tau\right\}} X\left(\tau \wedge t_{2}, \omega\right) P(d \omega) \\
& =\int_{A \cap\left\{t_{1}<\tau\right\}} X\left(\tau \wedge t_{1}, \omega\right) P(d \omega) \\
& =\int_{A \cap\left\{t_{1}<\tau\right\}} X\left(t_{1}, \omega\right) P(d \omega)
\end{aligned}
$$

Since

$$
\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{2}, \omega\right) P(d \omega)=\int_{A \cap\left\{\tau \leq t_{1}\right\}} X\left(t_{1}, \omega\right) P(d \omega)
$$

adding the two

$$
\int_{A} X\left(t_{2}, \omega\right) P(d \omega)=\int_{A} X\left(t_{1}, \omega\right) P(d \omega)
$$

Uniqueness. (Localization). Suppose

$$
L^{\{\alpha\}}=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}^{\{\alpha\}}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}^{\{\alpha\}}(x) \frac{\partial}{\partial x_{i}}
$$

is a family of operators for which the solution to the martingale problem is unique, i.e for each α and x i are s a unique solution $\left\{P_{x}^{\{\alpha\}}\right\}$ such that $\left\{P_{x}^{\{\alpha\}}\right\}[x(0)=x]=1$ and for any smooth f with compact support

$$
f(x(t))-f(x(0))-\int_{0}^{t}\left(L^{\{\alpha\}} f\right)(x(s)) d s
$$

is a martingale w.r.t. $\left(C\left[[0, T], R^{d}\right], \mathcal{F}_{t}, P_{x}^{\{\alpha\}}\right)$. Let

$$
L=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial}{\partial x_{i}}
$$

be such that for every $x \in R^{d}$ there is an $\epsilon(x)$ and $\alpha(x)$ such that $L^{\{\alpha(x)\}}=L$ on $B(x, \epsilon(x))$. We can assume with out loss of generality that $\epsilon(x)$ has a uniform lower bound on compact sets $|x| \leq \ell$ for every ℓ. Then for any $x \in R^{d}$ there is at most one solution P_{x} such that $P[x(0)=x]$ and

$$
f(x(t))-f(x(0))-\int_{0}^{t}(L f)(x(s)) d s
$$

is a martingale for any smooth f with compact support.
Proof. Let if possible P_{1} and P_{2} be two solutions for L with $P_{1}[x(0)=x]=P_{2}[x(0)=$ $x]$ 1. Clearly P_{1}, P_{2} can be modified by keeping them on $\mathcal{F}_{\tau_{1}}$ and making $P_{1} \mid \mathcal{F}_{\tau_{1}}$ for $t \geq \tau_{1}$ to be $L^{\{\alpha(x)\}}$. Then the new measures \hat{P}_{1} and \hat{P}_{2} are both solutions of $L^{\{\alpha(x)\}}$. Since uniquenes holds now $\hat{P}_{1}=\hat{P}_{2}$ and in particular $P_{1}=P_{2}$ on $\mathcal{F}_{\tau_{1}}$. The conditional distributions $Q^{1, \tau, \omega}$ and $Q^{2, \tau, \omega}$ are solutions for L starting from $x\left(\tau_{1}\right)$ and cam ne modofied to be solutions of $L^{\left\{\alpha\left(x\left(\tau_{1}\right)\right)\right\}}$. Follows that $Q^{1, \tau, \omega}=Q^{2, \tau, \omega}$ for almost all ω and now $P_{1}=P_{2}$ on $\mathcal{F}_{\tau_{2}}$. Let us define successive stopping times $\tau_{0}=0$ and
$\tau_{j+1}=\inf \left\{t \geq \tau_{j}:\left|x(t)-x\left(\tau_{j}\right)\right| \geq B\left(x\left(\tau_{j}\right), \epsilon\left(x\left(\tau_{j}\right)\right)\right\} . \tau_{k}=T\right.$ for some finite k or if T is infinite $\lim _{j \rightarrow \infty} \tau_{j}=\infty$. Induction works and $P_{1}=P_{2}$ on τ_{n} and letting $n \rightarrow \infty P_{1}=P_{2}$. We will prove existence and uniqueness for a class of operaors

$$
L=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial}{\partial x_{i}}
$$

Assume, $a_{i, j}$ are continuous, positive definite for each x and $b_{i}(x)$ are bounded and measurable. We know that for each x solution exists. It is enough to prove uniqueness assuming that $b_{i}(x)=0$ and $\left|a_{i, j}(x)-\delta_{i, j}\right|<\epsilon$ for some $\epsilon>0$. As we saw earlier it is enough to solve he equation

$$
\lambda u-L u=f
$$

for sufficiently many functions. For $\lambda>0$ what is the range of $\lambda u-L u$ as u varies over smooth functons with compact support?
Step 1. For every p there in an $\epsilon=\epsilon(p, d)$ such that the range is dense in $L_{p}\left(R^{d}\right)$, if $\left|a_{i, j}(x)-\delta_{i, j}\right|<\epsilon(p, d)$
Step 2. If P is any solution for $L=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$ and $\left|a_{i, j}(x)-\delta_{i, j}\right|<\epsilon(p, d)$ with $P[x(0)=x]=1$ then

$$
\Lambda(\lambda, f)=E^{P}\left[\int_{0}^{\infty} e^{-\lambda t} f(x(t)) d t\right]
$$

satifies $|\Lambda(f)| \leq C\|f\|_{p}$.

