Lemma. If a(x) is Lipschitz and a(z) > ¢ > 0, then o(z) = \/a(z) is Lipschitz. If
a(x) > 0 and has a bounded second derivative then o(z) = y/a(z) is again Lipschitz.
The same is true for positive semidefinite matrices. For {a; ;j(x)} to have a square root

= y/a(x) which is Lipschitz either a(z) to be Lipschitz and bounded below a(z) > ¢l
for some ¢ > 0 or a; j(z) to have two bounded derivatives is sufficient.

Proof. If a(z) > ¢ >0

d\/ 1 | ()| 1| (96‘)|
dx 2\/7 dx _2\/_ dx

On the other hand if 0 < a(x) < ¢; and |a”(z)| < ¢, then by Taylor’s theorem

C2

0<a(zr+2z)=a(x)+zd(x)+ a”(ﬁ)%f <a(x)+ zd'(z) + 5

This implies
[0/ (2)]? < 2cqa(x) < 2¢169

In the higher dimensional case we have a symmetric positive semidefinite o satisfying
o?(x) = a(x) or Y, 0i k()oK j(x) = a; j(x). We can diagonalize a(0) and o(0) simulta-
neously. Taking a directional derivative D at 0

> [Do; k] (0)o (0 +Zm )[Doy. ;](0) = [Daj ;)(0)
k

[Da; ;](0)[o;,;(0) + 0:,:(0)] = [Da; ;](0)
|(Dai;)(0)] [(Dai ;)(0)] < [Dai)O) _ allx
[05(0) +0::(0)]  \/a;;(0) + /ai:(0) =  2V/A T 2V/A

We can take sup over all directions D and take linear combinations $*¢.S of o, where S
was used to diagonalize a. A = inf, inf |, =1 (a(x)u, u).

(Do 3)(0)] =

If a(z) is onlyi positive semidefnite since a;; & 2a; ; + a;; > 0 it follows that if c is a
bound on the second derivatives

|Dlasi £ 2a;,; + aj ]| < V2ei/aii £ 2ai5+ a;5 < C/ai; + a55 < Cly/aig + v/ajz)

Taking the difference of the two

|Da; j(z)| < Cly/aii(x) +1/aj;(z)]

providing a bound for |Do; ;(z)|




Theorem (Surgery). Let L', L? be two operators

d
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i,j=1

(L™ () =

N~

Let P11} be a solution to the martingale problem on C[[0,T]; R?] corresponding to Li!}
with P[z(0) = xo] = 1. Let {P{2}} be a family of solutions corresponding to L2} with
pi? [£(0) = z] = 1. Let U be a neighborhood of z( such that for x € U, a{ }( ) = aﬁ-} (x)

for all 7, j and b;{ Na) = bz{ }( ) for all 4. For any path z(-) let 7 = inf{t : x(¢t) ¢ U}. Let
us define a measure @ on C[[0,T]; RY] by Q@ = P} on Foar and r.c.p.d of Q|Frar =

Pi(QT}/\T) for 7 <t < T on the set 7 < T. Then Q is a solution for L%} with Q[z(0) = x].

Proof depends on a simple lemma.

Lemma. Let (2, F;, F, P) be a measure space with a filtration. Let 7 be a stopping
time. Let Q7 be the r.c.p,.d. of P|F.. That is to say that for almost all w w.r.t. Pj

QL(A) =14(w)
for all A € F, and B € F,
P(ANB) = / QL(B)dP
A

Let X (t) be a martingale with respect to (€2, F;, P). Then for almost all w w.r.t P,
{X(t) : t > 7(w)} is a martingale respect to (2, F;, Q7). Conversely if z(¢) is a martingale
w.r.t (2, F¢, QL) for times ¢ > 7(w) for almost all w with respect to P and X (7 At) is a
martingale w.r.t (2, F¢, P), then X (¢) is a martingale w.r.t. (Q, F, P).

We will defer the proof of the lemma but prove the thorem assuming the lemma.

Proof of Throrem. We need to prove that for any smooth function with compact
support

X(t) = f(x(t)) = f((0)) —/0 (L2 f)(2(s))ds

is martingale with respect to (w, F¢, Q). Let 7 = inf{t : z(¢) ¢ U}. It is enough to show
that X (7 A t) is a martingale and X (¢) for ¢ > 7 is a martingale w.r.t Q7, the r.c.p.d of

Q|F:. Since Q], = P{(Q}/\T) and X (t) = Y (¢) until time 7 where

Y(t) = f(x(t)) — f(x(0) / (L £) (a(s))ds

0
it follows that X (¢) is martingale with respect to (w, F¢, Q)

Proof of lemma. What does ”for almost all w w.r.t P, {X(¢) : t > 7(w)} is a martingale
respect to (2, F¢, Q7)” mean?. For A € F,,

/ X (t2)dQ7, = / X (41)dQ
Aﬁ{rﬁtl} Aﬂ{TStl}
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for almost all w with respect to P (modulo problems with null sets!). This requires for

B e F;
/ ip / X (t2)dQT, = / ip / X (1)dQT
B Aﬁ{rﬁtl} B Aﬁ{rﬁtl}

Since AN {1 < t;} is F, measurable this reduces to verifying

/ X (y)dP = / X (t,)dP
AmBﬂ{TStl} AﬂBm{Tgtl}

Since A, B € F;, it is true.

For the converse if A € F;,

/X(tg)dP:/ X(tg)dP—F/ X(tg)dp—l-/ X(tg)dp
A An{r<t:} An{to>T>t1} An{T>te>71}

/ X (to,w)P(dw) = / P(dw) X (to, w")QT (dw")
An{r<t1}

A TStl
- / Pldw) [ Xt o) QL (de)
A T<t1
/ X (t1,w)P(dw)
Aﬂ{TStl}

/ X (b, ) P(dw) = / Pldw) [ X(ta,w')QT ()
Aﬁ{tl <’T§t2} Aﬁ{tl <’T} T<to

/ X(7,w)P(dw)
Aﬁ{tl <’T§t2}

/ X (7 At w) P(dw)
Aﬁ{tl <T§t2}

/ X (ta,w)P(dw) = / X (1T A ta,w)P(dw)
AN{r>t2}

Aﬂ{‘l‘>t2}

Adding the two

/ X (t, ) P(dw) = / X (7 A b, w) P(dw)
An{ti<7}

Aﬂ{tl <T}

_ / X (r Aty w) P(dw)
Aﬂ{t1<T}

_ / X (t), w) P(dw)
An{ti<7}
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Since

/ X (t, ) P(dw) = / X (b, ) P(dw)
Aﬁ{rﬁtl} Aﬂ{TStl}

/ X (t, ) P(dw) = / X (tr, ) P(dw)
A A

Uniqueness. (Localization). Suppose

adding the two

d
1
L{a} —— {a} b{a}
2 Z 890 &UJ Z 8901

7,7=1 =1

is a family of operators for which the solution to the martingale problem is unique, i.e

for each a and z i are s a unique solution {P{*} such that {P{*}[z(0) = 2] = 1 and
for any smooth f with compact support

f(z(t)) = f(2(0)) —/0 (LI ) ((s))ds

is a martingale w.r.t. (C[[0,T], RY], Ft, P;;{O‘}). Let

1< 02 )
L[ == i - s -
2 Z “ 7](1:) 8%‘18113] + Zb (l‘) 81132

1,7=1 =1

be such that for every € R there is an e(z) and «(z) such that L{®®)} = L on
B(x,e(x)). We can assume with out loss of generality that e(x) has a uniform lower

bound on compact sets |z| < £ for every £. Then for any x € R? there is at most one
solution P, such that P[z(0) = z] and

F(a(t) — F((0)) - / (Lf)(x(s))ds

0

is a martingale for any smooth f with compact support.

Proof. Let if possible P, and P, be two solutions for L with P[z(0) = z] = P2[z(0) =

z]l. Clearly P, P, can be modified by keeping them on F,, and making P;|F;, for
t > 7 to be L1®@)} Then the new measures P1 and P2 are both solutions of L)}
Since uniquenes holds now P1 = P2 and in particular P, = P on F,. The condi-
tional distributions Q™% and Q%™ are solutions for L starting from x(7y) and cam
ne modofied to be solutions of Li®@(M)} — Follows that QY™ = Q7 for almost
all w and now P, = P, on F,,. Let us define successive stopping times 79 = 0 and
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Tjt1 = inf{t > 7; : |2(t) — x(7;)| > B(x(7j), e(x(7;))}. 7% = T for some finite k or if T" is
infinite lim;_, ., 7; = co. Induction works and P; = P5 on ,, and letting n — oo P; = P».

We will prove existence and uniqueness for a class of operaors

1 < 5?2 d 0

i,7=1 =1

Assume, a; ; are continuous, positive definite for each x and b;(x) are bounded and
measurable. We know that for each x solution exists. It is enough to prove uniqueness
assuming that b;(x) = 0 and |a; j(z) — 0; ;| < € for some € > 0. As we saw earlier it is
enough to solve he equation

Au— Lu = f

for sufficiently many functions. For A > 0 what is the range of Au — Lu as u varies over
smooth functons with compact support?

Step 1. For every p there in an € = €(p,d) such that the range is dense in L,(R?), if
|ai j(x) — 65| < e(p, d)

Step 2. If P is any solution for L = %Zijzl ai,j(x)#gwj and |a; ;(x) — &; ;] < €(p,d)
with P[z(0) = 2] = 1 then

A = B T e (e(t))dt]

0

satifies [A(f)] < CI|f]lp-



