
Lemma. If a(x) is Lipschitz and a(x) ≥ c > 0, then σ(x) =
√

a(x) is Lipschitz. If

a(x) ≥ 0 and has a bounded second derivative then σ(x) =
√

a(x) is again Lipschitz.
The same is true for positive semidefinite matrices. For {ai,j(x)} to have a square root

σ(x) =
√

a(x) which is Lipschitz either a(x) to be Lipschitz and bounded below a(x) ≥ cI
for some c > 0 or ai,j(x) to have two bounded derivatives is sufficient.

Proof. If a(x) ≥ c > 0

|d
√

a(x)

dx
| = 1

2
√

a(x)
|da(x)

dx
| ≤ 1

2
√
c
|da(x)

dx
|

On the other hand if 0 ≤ a(x) ≤ c1 and |a′′(x)| ≤ c2, then by Taylor’s theorem

0 ≤ a(x+ z) = a(x) + za′(x) + a′′(ξ)
1

2
z2 ≤ a(x) + za′(x) +

c2
2
z2

This implies

[a′(x)]2 ≤ 2c2a(x) ≤ 2c1c2

In the higher dimensional case we have a symmetric positive semidefinite σ satisfying
σ2(x) = a(x) or

∑

k σi,k(x)σk,j(x) = ai,j(x). We can diagonalize a(0) and σ(0) simulta-
neously. Taking a directional derivative D at 0

∑

k

[Dσi,k](0)σk,j(0) +
∑

k

σi,k(0)[Dσk,j ](0) = [Dai,j ](0)

or

[Dσi,j ](0)[σj,j(0) + σi,i(0)] = [Dai,j ](0)

|(Dσi,j)(0)| =
|(Dai,j)(0)|

[σj,j(0) + σi,i(0)]
=

|(Dai,j)(0)|
√

aj,j(0) +
√

ai,i(0)
≤ |(Dai,j)(0)|

2
√
λ

≤ ‖a‖1
2
√
λ

We can take sup over all directions D and take linear combinations S∗σS of σ, where S
was used to diagonalize a. λ = infx inf‖u‖=1〈a(x)u, u〉.
If a(x) is onlyi positive semidefnite since ai,i ± 2ai,j + aj,j ≥ 0 it follows that if c is a
bound on the second derivatives

|D[ai,i ± 2ai,j + aj,j ]| ≤
√
2c
√

ai,i ± 2ai,j + aj,j ≤ C
√

ai,i + aj,j ≤ C[
√
ai,i +

√
aj,j ]

Taking the difference of the two

|Dai,j(x)| ≤ C[
√

ai,i(x) +
√

aj,j(x)]

providing a bound for |Dσi,j(x)|
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Theorem (Surgery). Let L1, L2 be two operators

(L{k}f)(x) =
1

2

d
∑

i,j=1

a
{k}
i,j (x)

∂2f

∂xi∂xj

(x) +
d

∑

i=1

b
{k}
i (x)

∂f

∂xi

(x)

Let P {1} be a solution to the martingale problem on C[[0, T ];Rd] corresponding to L{1}

with P [x(0) = x0] = 1. Let {P {2}
x } be a family of solutions corresponding to L{2} with

P
{2}
x [x(0) = x] = 1. Let U be a neighborhood of x0 such that for x ∈ U , a

{1}
i,j (x) = a

{2}
i,j (x)

for all i, j and b
{1}
i (x) = b

{2}
i (x) for all i. For any path x(·) let τ = inf{t : x(t) /∈ U}. Let

us define a measure Q on C[[0, T ];Rd] by Q = P {1} on Fτ∧T and r.c.p.d of Q|Fτ∧T =

P
{2}
x(τ∧T ) for τ ≤ t ≤ T on the set τ < T . Then Q is a solution for L{2} with Q[x(0) = x0].

Proof depends on a simple lemma.

Lemma. Let (Ω,Ft,F , P ) be a measure space with a filtration. Let τ be a stopping
time. Let Qτ

ω be the r.c.p,.d. of P |Fτ . That is to say that for almost all ω w.r.t. P ¡

Qτ
ω(A) = 1A(ω)

for all A ∈ Fτ and B ∈ F ,

P (A ∩B) =

∫

A

Qτ
ω(B)dP

Let X(t) be a martingale with respect to (Ω,Ft, P ). Then for almost all ω w.r.t P ,
{X(t) : t ≥ τ(ω)} is a martingale respect to (Ω,Ft, Q

τ
ω). Conversely if x(t) is a martingale

w.r.t (Ω,Ft, Q
τ
ω) for times t ≥ τ(ω) for almost all ω with respect to P and X(τ ∧ t) is a

martingale w.r.t (Ω,Ft, P ), then X(t) is a martingale w.r.t. (Ω,Ft, P ).

We will defer the proof of the lemma but prove the thorem assuming the lemma.

Proof of Throrem. We need to prove that for any smooth function with compact
support

X(t) = f(x(t))− f(x(0))−
∫ t

0

(L{2}f)(x(s))ds

is martingale with respect to (ω,Ft, Q). Let τ = inf{t : x(t) /∈ U}. It is enough to show
that X(τ ∧ t) is a martingale and X(t) for t ≥ τ is a martingale w.r.t Qτ

ω the r.c.p.d of

Q|Fτ . Since Qτ
ω = P

{2}
x(τ∧T ) and X(t) = Y (t) until time τ where

Y (t) = f(x(t))− f(x(0)) −
∫ t

0

(L{1}f)(x(s))ds

it follows that X(t) is martingale with respect to (ω,Ft, Q)

Proof of lemma. What does ”for almost all ω w.r.t P , {X(t) : t ≥ τ(ω)} is a martingale
respect to (Ω,Ft, Q

τ
ω)” mean?. For A ∈ Ft1 ,

∫

A∩{τ≤t1}

X(t2)dQ
τ
ω =

∫

A∩{τ≤t1}

X(t1)dQ
τ
ω
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for almost all ω with respect to P (modulo problems with null sets!). This requires for
B ∈ Fτ

∫

B

dP

∫

A∩{τ≤t1}

X(t2)dQ
τ
ω =

∫

B

dP

∫

A∩{τ≤t1}

X(t1)dQ
τ
ω

Since A ∩ {τ ≤ t1} is Fτ measurable this reduces to verifying

∫

A∩B∩{τ≤t1}

X(t2)dP =

∫

A∩B∩{τ≤t1}

X(t1)dP

Since A,B ∈ Ft1 it is true.

For the converse if A ∈ Ft1

∫

A

X(t2)dP =

∫

A∩{τ≤t1}

X(t2)dP +

∫

A∩{t2≥τ>t1}

X(t2)dP +

∫

A∩{τ>t2≥τ}

X(t2)dP

∫

A∩{τ≤t1}

X(t2, ω)P (dω) =

∫

A

P (dω)

∫

τ≤t1

X(t2, ω
′)Qτ

ω(dω
′)

=

∫

A

P (dω)

∫

τ≤t1

X(t1, ω
′)Qτ

ω(dω
′)

=

∫

A∩{τ≤t1}

X(t1, ω)P (dω)

∫

A∩{t1<τ≤t2}

X(t2, ω)P (dω) =

∫

A∩{t1<τ}

P (dω)

∫

τ≤t2

X(t2, ω
′)Qτ

ω(dω
′)

=

∫

A∩{t1<τ≤t2}

X(τ, ω)P (dω)

=

∫

A∩{t1<τ≤t2}

X(τ ∧ t2, ω)P (dω)

∫

A∩{τ>t2}

X(t2, ω)P (dω) =

∫

A∩{τ>t2}

X(τ ∧ t2, ω)P (dω)

Adding the two

∫

A∩{t1<τ}

X(t2, ω)P (dω) =

∫

A∩{t1<τ}

X(τ ∧ t2, ω)P (dω)

=

∫

A∩{t1<τ}

X(τ ∧ t1, ω)P (dω)

=

∫

A∩{t1<τ}

X(t1, ω)P (dω)
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Since
∫

A∩{τ≤t1}

X(t2, ω)P (dω) =

∫

A∩{τ≤t1}

X(t1, ω)P (dω)

adding the two

∫

A

X(t2, ω)P (dω) =

∫

A

X(t1, ω)P (dω)

Uniqueness. (Localization). Suppose

L{α} =
1

2

d
∑

i,j=1

a
{α}
i,j (x)

∂2

∂xi∂xj

+
d

∑

i=1

b
{α}
i (x)

∂

∂xi

is a family of operators for which the solution to the martingale problem is unique, i.e

for each α and x i are s a unique solution {P {α}
x } such that {P {α}

x }[x(0) = x] = 1 and
for any smooth f with compact support

f(x(t))− f(x(0)) −
∫ t

0

(L{α}f)(x(s))ds

is a martingale w.r.t. (C[[0, T ], Rd],Ft, P
{α}
x ). Let

L =
1

2

d
∑

i,j=1

ai,j(x)
∂2

∂xi∂xj

+
d

∑

i=1

bi(x)
∂

∂xi

be such that for every x ∈ Rd there is an ǫ(x) and α(x) such that L{α(x)} = L on
B(x, ǫ(x)). We can assume with out loss of generality that ǫ(x) has a uniform lower
bound on compact sets |x| ≤ ℓ for every ℓ. Then for any x ∈ Rd there is at most one
solution Px such that P [x(0) = x] and

f(x(t))− f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a martingale for any smooth f with compact support.

Proof. Let if possible P1 and P2 be two solutions for L with P1[x(0) = x] = P2[x(0) =
x]1. Clearly P1, P2 can be modified by keeping them on Fτ1 and making P1|Fτ1 for
t ≥ τ1 to be L{α(x)}. Then the new measures P̂1 and P̂2 are both solutions of L{α(x)}.
Since uniquenes holds now P̂1 = P̂2 and in particular P1 = P2 on Fτ1 . The condi-
tional distributions Q1,τ,ω and Q2,τ,ω are solutions for L starting from x(τ1) and cam
ne modofied to be solutions of L{α(x(τ1))}. Follows that Q1,τ,ω = Q2,τ,ω for almost
all ω and now P1 = P2 on Fτ2 . Let us define successive stopping times τ0 = 0 and
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τj+1 = inf{t ≥ τj : |x(t)− x(τj)| ≥ B(x(τj), ǫ(x(τj))}. τk = T for some finite k or if T is
infinite limj→∞ τj = ∞. Induction works and P1 = P2 on τn and letting n → ∞ P1 = P2.

We will prove existence and uniqueness for a class of operaors

L =
1

2

d
∑

i,j=1

ai,j(x)
∂2

∂xi∂xj

+
d

∑

i=1

bi(x)
∂

∂xi

Assume, ai,j are continuous, positive definite for each x and bi(x) are bounded and
measurable. We know that for each x solution exists. It is enough to prove uniqueness
assuming that bi(x) = 0 and |ai,j(x) − δi,j | < ǫ for some ǫ > 0. As we saw earlier it is
enough to solve he equation

λu− Lu = f

for sufficiently many functions. For λ > 0 what is the range of λu − Lu as u varies over
smooth functons with compact support?

Step 1. For every p there in an ǫ = ǫ(p, d) such that the range is dense in Lp(R
d), if

|ai,j(x)− δi,j | < ǫ(p, d)

Step 2. If P is any solution for L = 1
2

∑d
i,j=1 ai,j(x)

∂2

∂xi∂xj
and |ai,j(x) − δi,j | < ǫ(p, d)

with P [x(0) = x] = 1 then

Λ(λ, f) = EP [

∫ ∞

0

e−λtf(x(t))dt]

satifies |Λ(f)| ≤ C‖f‖p.
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