Suppose u is a smooth function on \mathbb{R}^d with compact support or decays fast enough and $\Delta u = f$, according to a theorem of Calderon and Zygmund, for 1 there is a constant <math>C(d, p) such that

$$\|\frac{\partial^2 u}{\partial x_i \partial x_j}\|_p \le C(d, p) \|f\|_p$$

The heat kernel in d dimension is given by.

$$p(t, x, y) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left[\frac{(x-y)^2}{2t}\right]$$

the semigroup by

$$(T_t f)(x) = \int_{R^d} f(y) p(t, x, y) dy$$

and R_{λ} the resolvent by

$$u(x) = (R_{\lambda}f)(x) = \int_0^\infty \int_{R^d} e^{-\lambda t} f(y)p(t, x, y)dydt = \int_0^\infty e^{-\lambda t} (T_t f)(x)dt$$

It solves the equation

$$\lambda u - \frac{1}{2}\Delta u = f$$

Since $||T_t f|| \leq ||f||_p$ for every t > 0 and $1 \leq p \leq \infty$, $||\lambda R_\lambda f||_p \leq ||f||_p$. $\Delta u = 2(\lambda u - f)$ and $||\Delta u||_p \leq 4||f||_p$. In particular for 1 there is a constant <math>C(p, d) such that for all $f \in L_p(\mathbb{R}^d)$, $i, j = 1, \ldots, d$ and $\lambda > 0$,

$$||D_{x_i}D_{x_j}R_{\lambda}f||_p \le C(p,d)||f||_p$$

Let $\epsilon(p,d) = \frac{1}{d^2 C(p,d)}$. Then if $\sup_{i,j,x} |a_{i,j}(x) - \delta_{i,j}| \le \epsilon(p,d)$

$$\left| (\lambda R_{\lambda} f)(x) - \frac{1}{2} \sum_{i,j} a_{i,j}(x) \frac{\partial^2 R_{\lambda} f}{\partial x_i \partial x_j}(x) - f(x) \right| \leq \left| \frac{1}{2} \sum_{i,j} [[a_{i,j}(x) - \delta_{i,j}] \frac{\partial^2 R_{\lambda} f}{\partial x_i \partial x_j}(x)] \right|$$
$$\leq \frac{1}{2} \sup_{i,j,x} |a_{i,j}(x) - \delta_{i,j}| \sum_{i,j} |\frac{\partial^2 R_{\lambda} f}{\partial x_i \partial x_j}(x)|$$
$$\left| (\lambda R_{\lambda} f)(\cdot) - \frac{1}{2} \sum_{i,j} a_{i,j}(\cdot) \frac{\partial^2 R_{\lambda} f}{\partial x_i \partial x_j}(\cdot) - f(\cdot) \right|_p \leq \frac{1}{2} \epsilon(p,d) d^2 C(d.p) ||f||_p = \frac{1}{2} ||f||_p$$

Denoting by

$$L = \frac{1}{2} \sum_{i,j} a_{i,j}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}$$

and by

$$L_0 = \frac{1}{2}\Delta = \frac{1}{2}\sum_i \frac{\partial^2}{\partial x_i^2}$$

$$\|\lambda R_{\lambda} - LR_{\lambda} - I\|_{p \to p} \le \frac{1}{2}$$

Implies $\lambda R_{\lambda} - LR_{\lambda}$ is an invertible operator $L_p \to L_p$. In particular since R_{λ} maps smooth functions into smooth functions, for any $\lambda > 0$ the range of $\lambda u - Lu$ as u varies over smooth functions with compact support is dense in L_p .

If P_1, P_2 are two solutions on $(C[[0, T]; \mathbb{R}^d, \mathcal{F}_t)$ with $P_i[x(0) - x_0] = 1$ that make

$$X_u(t) = u(x(t)) - u(x(0)) - \int_0^t (Lu)(x(s))ds$$

a martingale for smooth u, then for smooth u

$$e^{-\lambda t}u(x(t)) - u(x(0)) - \int_0^t e^{-\lambda s}(\lambda u - Lu)(x(s))ds$$

is a martingale and

$$E^{P_i}\left[\int_0^\infty e^{-\lambda s} (\lambda u - Lu)(x(s))ds\right] = u(x_0)$$

We want to conclude that

$$E^{P_1}\left[\int_0^\infty e^{-\lambda s} f(x(s)ds]\right] = E^{P_2}\left[\int_0^\infty e^{-\lambda s} f(x(s)ds]\right]$$

for sufficiently many f and therefore by the uniqueness result for Laplace transforms conclude that

$$E^{P_1}[f(x(t))] = E^{P_2}[f(x(t))]$$

Since the set of functions f in the range of $\lambda I - L$ is dense in L_p we need to show that for any solution P the probability measure

$$\mu(A) = \int_0^\infty e^{-\lambda t} P[x(t) \in A] dt$$

is in L_q where $\frac{1}{p} + \frac{1}{q} = 1$. For Brownian motion the singularity at the origin is $\simeq |x|^{2-d}$. For $\lambda > 0$ there is exponential decay at ∞ so that $\mu \in L_q$ if q(d-2) < d or $q < \frac{d}{d-2}$ or $p > \frac{d}{2}$. Fix $p_0 > \frac{d}{2}$. If P is a solution for

$$L = \frac{1}{2} \sum_{i,j} a_{i,j}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}$$

and

$$|a_{i,j}(x) - \delta_{i,j}| \le \epsilon(p_0, d)$$

so that for any $\lambda > 0$, the range of $\lambda u - Lu$ as u ranges over smooth functions with compact support is dense in L_{p_0} . Let q_0 satisfy $p_0^{-1} + q_0^{-1} = 1$. Let P be a solution for L with $P[x(0) = x_0] = 1$. Then we know that if $f = \lambda u - Lu$,

$$u(x_0) = E^P[\int_0^\infty e^{-\lambda s} f(x(s))ds] = \int f(x)\mu_\lambda(dx)$$

where $\mu_{\lambda}(A) = \int_0^\infty e^{-\lambda t} P[x(t) \in A] dt.$

$$\begin{split} [(\lambda I - L_0)^{-1} f](x_0) &= E^P \int_0^\infty e^{-\lambda t} [(\lambda I - L)(\lambda - L_0)^{-1} f](x(t) dt \\ &= E^P \int_0^\infty e^{-\lambda t} [(\lambda I - L_0 + L_0 - L)(\lambda - L_0)^{-1} f](x(t) dt \\ &= E^P \int_0^\infty e^{-\lambda t} [[I - (L - L_0)(\lambda - L_0)^{-1}] f](x(t) dt \\ &= < f, \mu_\lambda > - < (L - L_0)(\lambda - L_0)^{-1} f, \mu_\lambda > \end{split}$$

Let us take supremum over f with $||f||_p \leq 1$. Then

$$\|\mu_{\lambda}\|_{q} \le c(q,d) + \epsilon(p,d) \|\mu_{\lambda}\|_{q}$$

Either $\|\mu_{\lambda}\|_{q} = \infty$ or $\|\mu_{\lambda}\|_{q} \leq (1 - \epsilon(p, d))^{-1}c(p, d)$ We have an a priori bound, but we need to approximate P by P_{n} satisfying the same bound and pass to the limit. We know that there is a BM such that with $\sigma\sigma^{*} = a$, $\sigma = a^{\frac{1}{2}}$.

$$x(t) = x_0 + \int_0^t \sigma(x(s)) \cdot d\beta(s)$$

we can approximate by

$$x^{n}(t) = x_{0} + \int_{0}^{t} \sigma^{n}(s,\omega) \cdot d\beta(s)$$

where $a^n(s,\omega) = \sigma^n(s,\omega)\sigma^n(s,\omega)^*$ satisfies $d^2 \sup_{i,j,t,\omega} |a_{i,j}^n(t,\omega) - \delta_{i,j}| \le \epsilon(p,d)$. Let $\mu^n_\lambda(A) = \int_0^\infty e^{-\lambda t} P[x^n(t) \in A] dt$.

$$\begin{split} &[(\lambda I - L_0)^{-1} f](x_0) = E^P \int_0^\infty e^{-\lambda t} [(\lambda I - \frac{1}{2} \sum_{i,j} a_{i,j}^n (t, \omega) \frac{\partial^2}{\partial x_i \partial x_j}))(\lambda - L_0)^{-1} f](x^n (t) dt \\ &= E^P \int_0^\infty e^{-\lambda t} [(\lambda I - L_0 + L_0 - \frac{1}{2} \sum_{i,j} a_{i,j}^n (t, \omega) \frac{\partial^2}{\partial x_i \partial x_j})(\lambda - L_0)^{-1} f](x^n (t) dt \\ &= E^P \int_0^\infty e^{-\lambda t} [I - \frac{1}{2} \sum_{i,j} (a_{i,j}^n (t, \omega) - \delta_{i,j}) \frac{\partial^2}{\partial x_i \partial x_j})(\lambda - L_0)^{-1}]f](x^n (t) dt \\ &= < f, \mu_\lambda^n > - < \frac{1}{2} \sum_{i,j} (a_{i,j}^n (t, \omega) - \delta_{i,j}) \frac{\partial^2}{\partial x_i \partial x_j}))(\lambda - L_0)^{-1} f, \mu_\lambda^n > \end{split}$$

Let us again take supremum over f with $||f||_p \leq 1$. Then

$$\|\mu_{\lambda}^{n}\|_{q} \leq c(q,d) + \epsilon(p,d) \|\mu_{\lambda}^{n}\|_{q}$$

But $\|\mu_{\lambda}\|_q < \infty$ and $\|\mu_{\lambda}\|_q \le (1 - \epsilon(p, d))^{-1} c(p, d)$ We can now pass to the limit.

A similar argument holds for time dependent situation where we have $a_{i,j}(t,x)$ and then the Laplace transform is not useful. We need to solve the Cauchy problem

$$u_t + \frac{1}{2} \sum_{i,j} a_{i,j}(t,x) \frac{\partial^2 u}{\partial x_i \partial x_j} = -f(t,x); \text{ for } s < T, \text{ and } u(T,x) = 0$$

Then if P is a solution with $P[x(s) = x_0] = 1$,

$$u(t,x(t)) - u(s,x(s)) - \int_{s}^{t} u_{\sigma}(\sigma,x(\sigma))d\sigma - \int_{s}^{t} \frac{1}{2} \sum_{i,j} a_{i,j}(\sigma,x(\sigma)) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}(\sigma,x(\sigma))d\sigma$$

l.e.

$$u(t, x(t)) - u(s, x(s)) + \int_{s}^{t} f(\sigma, x(\sigma)) d\sigma$$

is a martingale with respect to any solution P with $P[x(s)=x_0]=1$. Equating expectations at t=s and t=T

$$u(s, x_0) = E^P \left[\int_s^T f(\sigma, x(\sigma)) d\sigma\right]$$

If enough expectations are determined, then P is unique. The equation

$$u_t + \frac{1}{2}\Delta u = -f; u(T, x) = 0$$

has the solution

$$u(s,x) = \int_{s}^{T} \int_{R^{d}} f(t,y) \frac{1}{(2\pi(t-s))^{\frac{d}{2}}} \exp[-\frac{(y-x)^{2}}{2(t-s)}] dy dt$$

One has analogs of Calderon-Zygmund estimates (Ben Franklin Jones) that estimate $||u_t||_p, ||u_{x_i,x_j}||_p$ on $\mathbb{R}^d \times [0,T]$ in terms of $||f||_p$ on $\mathbb{R}^d \times [0,T]$ for 1 . This allows the perturbation to work. We need to pick a <math>p such that for $q = \frac{p}{p-1}$

$$\int_{0}^{T} \int_{R^{d}} \frac{1}{(2\pi t)^{\frac{dq}{2}}} \exp[-\frac{qy^{2}}{2t}] dy dt < \infty$$

i.e d(q-1) < 2 or $q < 1 + \frac{2}{d}$ or $p > \frac{1+\frac{2}{d}}{\frac{2}{d}} = \frac{d+2}{2}$