Suppose u is a smooth function on R^{d} with compact support or decays fast enough and $\Delta u=f$, according to a theorem of Calderon and Zygmund, for $1<p<\infty$ there is a constant $C(d, p)$ such that

$$
\left\|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|_{p} \leq C(d, p)\|f\|_{p}
$$

The heat kernel in d dimension is given by.

$$
p(t, x, y)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \exp \left[\frac{(x-y)^{2}}{2 t}\right]
$$

the semigroup by

$$
\left(T_{t} f\right)(x)=\int_{R^{d}} f(y) p(t, x, y) d y
$$

and R_{λ} the resolvent by

$$
u(x)=\left(R_{\lambda} f\right)(x)=\int_{0}^{\infty} \int_{R^{d}} e^{-\lambda t} f(y) p(t, x, y) d y d t=\int_{0}^{\infty} e^{-\lambda t}\left(T_{t} f\right)(x) d t
$$

It solves the equation

$$
\lambda u-\frac{1}{2} \Delta u=f
$$

Since $\left\|T_{t} f\right\| \leq\|f\|_{p}$ for every $t>0$ and $1 \leq p \leq \infty,\left\|\lambda R_{\lambda} f\right\|_{p} \leq\|f\|_{p} . \Delta u=2(\lambda u-f)$ and $\|\Delta u\|_{p} \leq 4\|f\|_{p}$. In particular for $1<p<\infty$ there is a constant $C(p, d)$ such that for all $f \in L_{p}\left(R^{d}\right), i, j=1, \ldots, d$ and $\lambda>0$,

$$
\left\|D_{x_{i}} D_{x_{j}} R_{\lambda} f\right\|_{p} \leq C(p, d)\|f\|_{p}
$$

Let $\epsilon(p, d)=\frac{1}{d^{2} C(p, d)}$. Then if $\sup _{i, j, x}\left|a_{i, j}(x)-\delta_{i, j}\right| \leq \epsilon(p, d)$

$$
\begin{aligned}
\mid\left(\lambda R_{\lambda} f\right)(x) & -\frac{1}{2} \sum_{i, j} a_{i, j}(x) \frac{\partial^{2} R_{\lambda} f}{\partial x_{i} \partial x_{j}}(x)-f(x)|\leq| \frac{1}{2} \sum_{i, j}\left[\left.\left[a_{i, j}(x)-\delta_{i, j}\right] \frac{\partial^{2} R_{\lambda} f}{\partial x_{i} \partial x_{j}}(x) \right\rvert\,\right. \\
& \leq \frac{1}{2} \sup _{i, j, x}\left|a_{i, j}(x)-\delta_{i, j}\right| \sum_{i, j}\left|\frac{\partial^{2} R_{\lambda} f}{\partial x_{i} \partial x_{j}}(x)\right| \\
\mid\left(\lambda R_{\lambda} f\right)(\cdot) & -\frac{1}{2} \sum_{i, j} a_{i, j}(\cdot) \frac{\partial^{2} R_{\lambda} f}{\partial x_{i} \partial x_{j}}(\cdot)-\left.f(\cdot)\right|_{p} \leq \frac{1}{2} \epsilon(p, d) d^{2} C(d . p)\|f\|_{p}=\frac{1}{2}\|f\|_{p}
\end{aligned}
$$

Denoting by

$$
L=\frac{1}{2} \sum_{i, j} a_{i, j}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

and by

$$
L_{0}=\frac{1}{2} \Delta=\frac{1}{2} \sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

$$
\left\|\lambda R_{\lambda}-L R_{\lambda}-I\right\|_{p \rightarrow p} \leq \frac{1}{2}
$$

Implies $\lambda R_{\lambda}-L R_{\lambda}$ is an invertible operator $L_{p} \rightarrow L_{p}$. In particular since R_{λ} maps smooth functions into smooth functions, for any $\lambda>0$ the range of $\lambda u-L u$ as u varies over smooth functions with compact support is dense in L_{p}.
If P_{1}, P_{2} are two solutions on $\left(C\left[[0, T] ; R^{d}, \mathcal{F}_{t}\right)\right.$ with $P_{i}\left[x(0)-x_{0}\right]=1$ that make

$$
X_{u}(t)=u(x(t))-u(x(0))-\int_{0}^{t}(L u)(x(s)) d s
$$

a martingale for smooth u, then for smooth u

$$
e^{-\lambda t} u(x(t))-u(x(0))-\int_{0}^{t} e^{-\lambda s}(\lambda u-L u)(x(s)) d s
$$

is a martingale and

$$
E^{P_{i}}\left[\int_{0}^{\infty} e^{-\lambda s}(\lambda u-L u)(x(s)) d s\right]=u\left(x_{0}\right)
$$

We want to conclude that

$$
E^{P_{1}}\left[\int_{0}^{\infty} e^{-\lambda s} f(x(s) d s]=E^{P_{2}}\left[\int_{0}^{\infty} e^{-\lambda s} f(x(s) d s]\right.\right.
$$

for sufficiently many f and therefore by the uniqueness result for Laplace transforms conclude that

$$
E^{P_{1}}\left[f(x(t)]=E^{P_{2}}[f(x(t)]\right.
$$

Since the set of functions f in the range of $\lambda I-L$ is dense in L_{p} we need to show that for any solution P the probability measure

$$
\mu(A)=\int_{0}^{\infty} e^{-\lambda t} P[x(t) \in A] d t
$$

is in L_{q} where $\frac{1}{p}+\frac{1}{q}=1$. For Brownian motion the singularity at the origin is $\simeq|x|^{2-d}$. For $\lambda>0$ there is exponential decay at ∞ so that $\mu \in L_{q}$ if $q(d-2)<d$ or $q<\frac{d}{d-2}$ or $p>\frac{d}{2}$. Fix $p_{0}>\frac{d}{2}$. If P is a solution for

$$
L=\frac{1}{2} \sum_{i, j} a_{i, j}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

and

$$
\left|a_{i, j}(x)-\delta_{i, j}\right| \leq \epsilon\left(p_{0}, d\right)
$$

so that for any $\lambda>0$, the range of $\lambda u-L u$ as u ranges over smooth functions with compact support is dense in $L_{p_{0}}$. Let q_{0} satisfy $p_{0}^{-1}+q_{0}^{-1}=1$. Let P be a solution for L with $P\left[x(0)=x_{0}\right]=1$. Then we know that if $f=\lambda u-L u$,

$$
u\left(x_{0}\right)=E^{P}\left[\int_{0}^{\infty} e^{-\lambda s} f(x(s)) d s\right]=\int f(x) \mu_{\lambda}(d x)
$$

where $\mu_{\lambda}(A)=\int_{0}^{\infty} e^{-\lambda t} P[x(t) \in A] d t$.

$$
\begin{aligned}
{\left[\left(\lambda I-L_{0}\right)^{-1} f\right]\left(x_{0}\right) } & =E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[(\lambda I-L)\left(\lambda-L_{0}\right)^{-1} f\right](x(t) d t \\
& =E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[\left(\lambda I-L_{0}+L_{0}-L\right)\left(\lambda-L_{0}\right)^{-1} f\right](x(t) d t \\
& =E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[\left[I-\left(L-L_{0}\right)\left(\lambda-L_{0}\right)^{-1}\right] f\right](x(t) d t \\
& =<f, \mu_{\lambda}>-<\left(L-L_{0}\right)\left(\lambda-L_{0}\right)^{-1} f, \mu_{\lambda}>
\end{aligned}
$$

Let us take supremum over f with $\|f\|_{p} \leq 1$. Then

$$
\left\|\mu_{\lambda}\right\|_{q} \leq c(q, d)+\epsilon(p, d)\left\|\mu_{\lambda}\right\|_{q}
$$

Either $\left\|\mu_{\lambda}\right\|_{q}=\infty$ or $\left\|\mu_{\lambda}\right\|_{q} \leq(1-\epsilon(p, d))^{-1} c(p, d)$ We have an a priori bound, but we need to approximate P by P_{n} satisfying the same bound and pass to the limit. We know that there is a BM such that with $\sigma \sigma^{*}=a, \sigma=a^{\frac{1}{2}}$.

$$
x(t)=x_{0}+\int_{0}^{t} \sigma(x(s)) \cdot d \beta(s)
$$

we can approximate by

$$
x^{n}(t)=x_{0}+\int_{0}^{t} \sigma^{n}(s, \omega) \cdot d \beta(s)
$$

where $a^{n}(s, \omega)=\sigma^{n}(s, \omega) \sigma^{n}(s, \omega)^{*}$ satisfies $d^{2} \sup _{i, j, t, \omega}\left|a_{i, j}^{n}(t, \omega)-\delta_{i, j}\right| \leq \epsilon(p, d)$.
Let $\mu_{\lambda}^{n}(A)=\int_{0}^{\infty} e^{-\lambda t} P\left[x^{n}(t) \in A\right] d t$.

$$
\begin{aligned}
& \left.\left[\left(\lambda I-L_{0}\right)^{-1} f\right]\left(x_{0}\right)=E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[\left(\lambda I-\frac{1}{2} \sum_{i, j} a_{i, j}^{n}(t, \omega) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)\right)\left(\lambda-L_{0}\right)^{-1} f\right]\left(x^{n}(t) d t\right. \\
& \quad=E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[\left(\lambda I-L_{0}+L_{0}-\frac{1}{2} \sum_{i, j} a_{i, j}^{n}(t, \omega) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)\left(\lambda-L_{0}\right)^{-1} f\right]\left(x^{n}(t) d t\right. \\
& \left.\left.\quad=E^{P} \int_{0}^{\infty} e^{-\lambda t}\left[I-\frac{1}{2} \sum_{i, j}\left(a_{i, j}^{n}(t, \omega)-\delta_{i, j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)\left(\lambda-L_{0}\right)^{-1}\right] f\right]\left(x^{n}(t) d t\right. \\
& \left.\left.\quad=<f, \mu_{\lambda}^{n}>-<\frac{1}{2} \sum_{i, j}\left(a_{i, j}^{n}(t, \omega)-\delta_{i, j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right)\right)\left(\lambda-L_{0}\right)^{-1} f, \mu_{\lambda}^{n}>
\end{aligned}
$$

Let us again take supremum over f with $\|f\|_{p} \leq 1$. Then

$$
\left\|\mu_{\lambda}^{n}\right\|_{q} \leq c(q, d)+\epsilon(p, d)\left\|\mu_{\lambda}^{n}\right\|_{q}
$$

But $\left\|\mu_{\lambda}\right\|_{q}<\infty$ and $\left\|\mu_{\lambda}\right\|_{q} \leq(1-\epsilon(p, d))^{-1} c(p, d)$ We can now pass to the limit.
A similar argument holds for time dependent situation where we have $a_{i, j}(t, x)$ and then the Laplace transform is not useful. We need to solve the Cauchy problem

$$
u_{t}+\frac{1}{2} \sum_{i, j} a_{i, j}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=-f(t, x) ; \text { for } s<T, \text { and } u(T, x)=0
$$

Then if P is a solution with $P\left[x(s)=x_{0}\right]=1$,

$$
u(t, x(t))-u(s, x(s))-\int_{s}^{t} u_{\sigma}(\sigma, x(\sigma)) d \sigma-\int_{s}^{t} \frac{1}{2} \sum_{i, j} a_{i, j}(\sigma, x(\sigma)) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(\sigma, x(\sigma)) d \sigma
$$

l.e.

$$
u(t, x(t))-u(s, x(s))+\int_{s}^{t} f(\sigma, x(\sigma)) d \sigma
$$

is a martingale with respect to any solution P with $P\left[x(s)=x_{0}\right]=1$. Equating expectations at $t=s$ and $t=T$

$$
u\left(s, x_{0}\right)=E^{P}\left[\int_{s}^{T} f(\sigma, x(\sigma)) d \sigma\right]
$$

If enough expectations are determined, then P is unique. The equation

$$
u_{t}+\frac{1}{2} \Delta u=-f ; u(T, x)=0
$$

has the solution

$$
u(s, x)=\int_{s}^{T} \int_{R^{d}} f(t, y) \frac{1}{(2 \pi(t-s))^{\frac{d}{2}}} \exp \left[-\frac{(y-x)^{2}}{2(t-s)}\right] d y d t
$$

One has analogs of Calderon-Zygmund estimates (Ben Franklin Jones) that estimate $\left\|u_{t}\right\|_{p},\left\|u_{x_{i}, x_{j}}\right\|_{p}$ on $R^{d} \times[0, T]$ in terms of $\|f\|_{p}$ on $R^{d} \times[0, T]$ for $1<p<\infty$. This allows the perturbation to work. We need to pick a p such that for $q=\frac{p}{p-1}$

$$
\int_{0}^{T} \int_{R^{d}} \frac{1}{(2 \pi t)^{\frac{d q}{2}}} \exp \left[-\frac{q y^{2}}{2 t}\right] d y d t<\infty
$$

i.e $d(q-1)<2$ or $q<1+\frac{2}{d}$ or $p>\frac{1+\frac{2}{d}}{\frac{2}{d}}=\frac{d+2}{2}$

