Random time change.

If P is a solution to the martingale problem for

$$L = \frac{1}{2} \sum_{i,j=1}^{d} a_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{d} b_j(x) \frac{\partial}{\partial x_j}$$

we can make a transformation by rescaling time $y(t) = (T_2x)(t) = x(2t)$. Then the new process $Q = PT_2^{-1}$ will be a solution to the martingale problem for 2L. We just need to observe that if M(t) is a martingale with respect (\mathcal{F}_t, P) , for any c > 0, M(ct) is a martingale with respect (\mathcal{F}_{ct}, P) and all we have done is change the time scale. There is the possibility of changing the time scale differently at different points. Let c(x) be a measurable function that satisfies $0 < c_1 \le c(x) \le c_2$, and we run the clock at speed $\frac{1}{c(x)}$ when the trajectory is at x. So at time t the clock shows

$$\sigma_t = \int_0^t \frac{1}{c(x(s))} ds$$

It will show a time of t at time τ_t which is a solution is the solution of

$$\sigma_{\tau_t} = \int_0^{\tau_t} \frac{1}{c(x(s))} ds = t$$

Then τ_t is a stopping time and the random time change

$$y(t) = x(\tau_t)$$

defines a map $\Theta_{c(\cdot)}: C[[0,\infty); \mathbb{R}^d] \to C[[0,\infty); \mathbb{R}^d]$. It is easy to check that

$$\Theta_{c_1(\cdot)}\Theta_{c_2(\cdot)} = \Theta_{c_1(\cdot)c_2(\cdot)}$$

If X(t) is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$ and τ_t is an increasing family of stopping times then $Y(t) = X(\tau_t)$ is a martingale with respect to $(\Omega, \mathcal{F}_{\tau_t}, P)$. It follows that $Q = P\Theta_{c(\cdot)}^{-1}$ is a solution for

$$(\widehat{L}u)(x) = c(x)(Lu)(x)$$

The steps are reversible and $\Theta_{c(\cdot)}$ is an invertible map with $\Theta_{\frac{1}{c(\cdot)}}$ being the inverse. In particular if $0 < c_1 \le c(x) \le c_2 < \infty$, P is a solution for L if and only if $Q = P\Theta_{c(\cdot)}^{-1}$ is a solution for c(x)L. Existence or uniqueness for L implies and is implied respectively by Existence or uniqueness for c(x)L

This proves in one dimension existence and uniqueness for any

$$L = \frac{1}{2}a(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$$

provided $0 < c_1 \le c(x) \le c_2 < \infty$ and $|b(x)| \le C < \infty$.

Special situation in d=1,2.

We consider time dependent operator in 1-d

$$\frac{1}{2}a(t,x)\frac{\partial^2}{\partial x^2}$$

where a(t, x) is measurable and satisfies $0 < c_1 \le a(t, x) \le c_2 < \infty$. We need to be able to solve for $t \le T$

$$\frac{\partial u}{\partial t} + \frac{1}{2}a(t,x)\frac{\partial^2 u}{\partial x^2} = f(t,x); u(T,x) = 0$$

in $W_p^{1,2}$ for some p such that

$$\|u\|_{\infty} \le C \|u\|_p^{1,2}$$

For the heat equation $u_t + \frac{C}{2}u_{xx} = f p(t, x, y) = \frac{1}{\sqrt{2\pi Ct}}e^{-\frac{(x-y)^2}{2Ct}}$

$$\sup_{0 \le s \le T, x \in R} \int_{s}^{T} \int_{R} |p(t-s, x, y)|^{2} dt dy = \sup_{0 \le s \le T} \int_{s}^{T} \frac{1}{2\pi Ct} \sqrt{\pi Ct} \, dt = c(T) < \infty$$

We can afford to take p = 2 for the perturbation.

If $u_t + \frac{C}{2}u_{xx} = f$ then $i\tau\hat{u}(\tau,\xi) - \frac{C\xi^2}{2} = \hat{f}(\tau,\xi)$. We meed to invert $D_t + \frac{1}{2}a(t,x)D_{xx}$ on $L_2[[0,T] \times \mathbb{R}^d]$ and get a $u \in W_2^{1,2}$ on $[[0,T] \times \mathbb{R}^d]$. Since $|\frac{\xi^2}{2\xi^2 - i\tau}| \leq \frac{2}{C}$,

$$[D_t + \frac{1}{2}a(t,x)D_{xx}]^{-1} = [D_t + \frac{C}{2}D_{xx} + \frac{1}{2}[a(t,x) - C]D_{xx}]^{-1}$$
$$= [D_t + \frac{C}{2}D_{xx}]^{-1}[I + [\frac{1}{2}[a(t,x) - C]D_{xx}][D_t + \frac{C}{2}D_{xx}]^{-1}]^{-1}$$

More over $\left[\left|\frac{1}{2}[a(t,x)-C]\frac{2}{C}\right| \le \frac{C-c_1}{C} < 1$. Rest is as before. p = 2 works $\mathbf{d=2}$.

We consider

$$\frac{1}{2}\sum_{i,j=1}^{2}a_{i,j}(x)D_{x_i}D_{x_j}$$

We can do a random time change and assume that the trace of $\{a_{i,j}(x)\} = a_{1,1}(x) + a_{2,2}(x) \equiv 2$ or $(a_{1,1}(x) - 1) = (1 - a_{2,2}(x))$. We also have an estimate of the form

$$\|u\|_{\infty} \le C |\lambda u - \frac{\Delta}{2}u\|_2$$

because

$$u(x) = \int \frac{e^{-i\langle x,\xi\rangle}}{(\lambda + \frac{\xi^2}{2})} \hat{f}(\xi) d\xi$$

0

In 1-d, the S.D.E

$$dx(t) = \sigma(x(t))d\beta(t)$$

has a unique sloution provided σ is Hölder continuous of exponent $\frac{1}{2}$. If we have two solutions, x(t) and y(t), z(t) = x(t) - y(t) stsfies

$$dz(t) = \int_0^t [\sigma(x(s)) - \sigma(y(s))] d\beta(s)$$

We take a function $\phi(z) \ge 0$, $\phi(0) = 0$ that is twice differentiable and

$$E[\phi(z(t))] = \frac{1}{2}E\left[\int_0^t [\sigma(x(s)) - \sigma(y(s))]^2 \phi_{\epsilon}''(z(s))ds\right]$$

Take $\phi_{\epsilon}(z) = (\epsilon^2 + z^2)^{\frac{1}{2}}$ and let $\epsilon \to 0$. LHS goes to E[|z(t)|]. Since $|\sigma(x) - \sigma(y)|^2 \leq C|x-y|$ one checks that $|\phi_{\epsilon}''(z)|z| \to 0$ pointwise and is uniformly bounded. Bounded convergence theorem completes the proof.