Random time change.

If P is a solution to the martingale problem for

$$
\left.L=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b_{(} x\right) \frac{\partial}{\partial x_{j}}
$$

we can make a transformation by rescaling time $y(t)=\left(T_{2} x\right)(t)=x(2 t)$. Then the new process $Q=P T_{2}^{-1}$ will be a solution to the martingale problem for $2 L$. We just need to observe that if $M(t)$ is a martingale with respect $\left(\mathcal{F}_{t}, P\right)$, for any $c>0, M(c t)$ is a martingale with respect $\left(\mathcal{F}_{c t}, P\right)$ and all we have done is change the time scale. There is the possibility of changing the time scale differently at different points. Let $c(x)$ be a measurable function that satisfies $0<c_{1} \leq c(x) \leq c_{2}$, and we run the clock at speed $\frac{1}{c(x)}$ when the trajectory is at x. So at time t the clock shows

$$
\sigma_{t}=\int_{0}^{t} \frac{1}{c(x(s))} d s
$$

It will show a time of t at time τ_{t} which is a solution is the solution of

$$
\sigma_{\tau_{t}}=\int_{0}^{\tau_{t}} \frac{1}{c(x(s))} d s=t
$$

Then τ_{t} is a stopping time and the random time change

$$
y(t)=x\left(\tau_{t}\right)
$$

defines a map $\Theta_{c(\cdot)}: C\left[[0, \infty) ; R^{d}\right] \rightarrow C\left[[0, \infty) ; R^{d}\right]$. It is easy to check that

$$
\Theta_{c_{1}(\cdot)} \Theta_{c_{2}(\cdot)}=\Theta_{c_{1}(\cdot) c_{2}(\cdot)}
$$

If $X(t)$ is a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$ and τ_{t} is an increasing family of stopping times then $Y(t)=X\left(\tau_{t}\right)$ is a martingale with respect to $\left(\Omega, \mathcal{F}_{\tau_{t}}, P\right)$. It follows that $Q=P \Theta_{c(\cdot)}^{-1}$ is a solution for

$$
(\widehat{L} u)(x)=c(x)(L u)(x)
$$

The steps are reversible and $\Theta_{c(\cdot)}$ is an invertible map with $\Theta_{\frac{1}{c(\cdot)}}$ being the inverse. In particular if $0<c_{1} \leq c(x) \leq c_{2}<\infty, P$ is a solution for L if and only if $Q=P \Theta_{c(\cdot)}^{-1}$ is a solution for $c(x) L$. Existence or uniqueness for L implies and is implied respectively by Existence or uniqueness for $c(x) L$

This proves in one dimension existence and uniqueness for any

$$
L=\frac{1}{2} a(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}
$$

provided $0<c_{1} \leq c(x) \leq c_{2}<\infty$ and $|b(x)| \leq C<\infty$.

Special situation in $\mathrm{d}=1,2$.

We consider time dependent operator in 1-d

$$
\frac{1}{2} a(t, x) \frac{\partial^{2}}{\partial x^{2}}
$$

where $a(t, x)$ is measurable and satisfies $0<c_{1} \leq a(t, x) \leq c_{2}<\infty$. We need to be able to solve for $t \leq T$

$$
\frac{\partial u}{\partial t}+\frac{1}{2} a(t, x) \frac{\partial^{2} u}{\partial x^{2}}=f(t, x) ; u(T, x)=0
$$

in $W_{p}^{1,2}$ for some p such that

$$
\|u\|_{\infty} \leq C\|u\|_{p}^{1,2}
$$

For the heat equation $u_{t}+\frac{C}{2} u_{x x}=f p(t, x, y)=\frac{1}{\sqrt{2 \pi C t}} e^{-\frac{(x-y)^{2}}{2 C t}}$

$$
\sup _{0 \leq s \leq T, x \in R} \int_{s}^{T} \int_{R}|p(t-s, x, y)|^{2} d t d y=\sup _{0 \leq s \leq T} \int_{s}^{T} \frac{1}{2 \pi C t} \sqrt{\pi C t} d t=c(T)<\infty
$$

We can afford to take $p=2$ for the perturbation.
If $u_{t}+\frac{C}{2} u_{x x}=f$ then $i \tau \hat{u}(\tau, \xi)-\frac{C \xi^{2}}{2}=\hat{f}(\tau, \xi)$. We meed to invert $D_{t}+\frac{1}{2} a(t, x) D_{x x}$ on $L_{2}\left[[0, T] \times R^{d}\right]$ and get a $u \in W_{2}^{1,2}$ on $\left[[0, T] \times R^{d}\right]$. Since $\left|\frac{\xi^{2}}{\frac{C}{2} \xi^{2}-i \tau}\right| \leq \frac{2}{C}$,

$$
\begin{aligned}
{\left[D_{t}+\frac{1}{2} a(t, x) D_{x x}\right]^{-1} } & =\left[D_{t}+\frac{C}{2} D_{x x}+\frac{1}{2}[a(t, x)-C] D_{x x}\right]^{-1} \\
& =\left[D_{t}+\frac{C}{2} D_{x x}\right]^{-1}\left[I+\left[\frac{1}{2}[a(t, x)-C] D_{x x}\right]\left[D_{t}+\frac{C}{2} D_{x x}\right]^{-1}\right]^{-1}
\end{aligned}
$$

More over $\left[\left|\frac{1}{2}[a(t, x)-C] \frac{2}{C}\right| \leq \frac{C-c_{1}}{C}<1\right.$. Rest is as before. $p=2$ works $d=2$.
We consider

$$
\frac{1}{2} \sum_{i, j=1}^{2} a_{i, j}(x) D_{x_{i}} D_{x_{j}}
$$

We can do a random time change and assume that the trace of $\left\{a_{i, j}(x)\right\}=a_{1,1}(x)+$ $a_{2,2}(x) \equiv 2$ or $\left(a_{1,1}(x)-1\right)=\left(1-a_{2,2}(x)\right)$. We also have an estimate of the form

$$
\|u\|_{\infty} \leq C \left\lvert\, \lambda u-\frac{\Delta}{2} u\right. \|_{2}
$$

because

$$
u(x)=\int \frac{e^{-i<x, \xi>}}{\left(\lambda+\frac{\left.\xi^{2}\right)}{2}\right.} \hat{f}(\xi) d \xi
$$

and $\left(\lambda+\frac{\xi^{2}}{2}\right)^{-2}$ is integrable. It is enough to work on L_{2}. For some $\rho>0$ and $c>0$ $\left|a_{1,2}(x)\right|^{2} \leq(1-\rho) a_{1,1}(x) a_{2,2}(x)$ and $a_{1,1}(x) \geq c$ and $a_{2,2}(x) \geq c$.

$$
\begin{aligned}
& \left\|\left[a_{1,1}(x)-1\right] u_{x x}+2 a_{1,2} u_{x y}+\left[a_{2,2}(x)-1\right] u_{y y}\right\|_{2}^{2} \\
& =\left\|\left[a_{1,1}(x)-1\right]\left[u_{x x}-u_{y y}\right]+2 a_{1,2}(x) u_{x y}\right\|_{2}^{2} \\
& \leq \int\left[\left[a_{1,1}(x)-1\right]^{2}+a_{1,2}^{2}(x)\right]\left[\left(u_{x x}-u_{y y}\right)^{2}+4 u_{x y}^{2}\right] d x d y \\
& \leq \sup _{x}\left[\left[a_{1,1}(x)-1\right]^{2}+(1-\rho) a_{1,1}(x) a_{2,2}(x)\right] \int\left[\left(u_{x x}-u_{y y}\right)^{2}+4 u_{x y}^{2}\right] d x d y \\
& \leq \sup _{x}\left[\left(a_{1,1}(x)-1\right)^{2}+a_{1,1}(x)\left(2-a_{1,1}(x)\right]-\rho a_{1,1}(x) a_{2,2}(x)\right] \\
& \times \int\left[\left(u_{x x}-u_{y y}\right)^{2}+4 u_{x y}^{2}\right] d x d y \\
& \leq\left(1-\rho c^{2}\right) \int\left[\left(u_{x x}-u_{y y}\right)^{2}+4 u_{x y}^{2}\right] d x d y \\
& \left.=\left(1-\rho c^{2}\right) \int\left[\left(\xi^{2}-\eta^{2}\right)^{2}+4 \xi^{2} \eta^{2}\right]|\hat{f}(\xi, \eta)|^{2}\right] d \xi d \eta \\
& =\left(1-\rho c^{2}\right)\|\widehat{\Delta f}\|_{2}^{2}
\end{aligned}
$$

In 1-d, the S.D.E

$$
d x(t)=\sigma(x(t)) d \beta(t)
$$

has a unique sloution provided σ is Hölder continuous of exponent $\frac{1}{2}$. If we have two solutions, $x(t)$ and $y(t), z(t)=x(t)-y(t)$ stsfies

$$
d z(t)=\int_{0}^{t}[\sigma(x(s))-\sigma(y(s))] d \beta(s)
$$

We take a function $\phi(z) \geq 0, \phi(0)=0$ that is twice differentiable and

$$
E[\phi(z(t))]=\frac{1}{2} E\left[\int_{0}^{t}[\sigma(x(s))-\sigma(y(s))]^{2} \phi_{\epsilon}^{\prime \prime}(z(s)) d s\right]
$$

Take $\phi_{\epsilon}(z)=\left(\epsilon^{2}+z^{2}\right)^{\frac{1}{2}}$ and let $\epsilon \rightarrow 0$. LHS goes to $E[|z(t)|]$.Since $|\sigma(x)-\sigma(y)|^{2} \leq C|x-y|$ one checks that $\left|\phi_{\epsilon}^{\prime \prime}(z)\right| z \mid \rightarrow 0$ pointwise and is uniformly bounded. Bounded convergence theorem completes the proof.

