Assignment 3

Due March 4

Consider the upper half plane $y \geq 0$. If $f(x)$ is a function in $L_{2}(R)$ show that

$$
u(x, y)=\frac{y}{\pi} \int \frac{f(x+z)}{z^{2}+y^{2}} d z
$$

is well defined, satisfies for $y>0$

$$
u_{x x}+u_{y y}=0
$$

and

$$
\lim _{y \downarrow 0} \int_{R}|u(x, y)-f(x)|^{2} d x=0
$$

When will

$$
\lim _{y \downarrow 0} \int_{R}\left|u_{y}(x, y)-g(x)\right|^{2} d x=0
$$

for some $g \in L_{2}$. Can you express g in terms of f.

