Q1. Consider the map

$$
(K f)(x)=\int_{R^{3}} \frac{f(y)}{|x-y|} d y
$$

acting on C_{∞} functions with compact support on R^{3}. Show that f is C_{∞} and $\Delta K=c I$ i.e $\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}(K f)=c f$ for some constant c and evaluate c.

Q2. What would the corresponding result be in dimension 1 and 2.
Q3. Show that it is not possible for both the function f and its Fourier transform \hat{f} to have compact support on R.

Q4. Show that if f, \widehat{f} are Fourier transforms $\|f\|_{2}=\|\widehat{f}\|_{2}=1$, then

$$
\left(\int x^{2}|f(x)|^{2} d x\right)\left(\int y^{2}|\widehat{f}(y)|^{2} d y\right) \geq \frac{1}{4}
$$

Q5. Show that every permutation group has exactly rwo one dimensional representations, the identity and the signature.

Q6. How many inequivalent representations does the permutation group of 4 elements have and what are their dimensions?

