
1. Sanov’s Theorem

Here we consider a sequence of i.i.d. random variables with values in some complete
separable metric space X with a common distribution α. Then the sample distribution

βn =
1

n

n
∑

j=1

δxj

maps X n → M(X ) and the product measure αn will generate a measure Pn on the space
M(X ) which is the distribution of the empirical distribution. The law of large numbers
implies with a little extra work that Pn → δα, i.e. for large n, the empirical distribution
βn is very close to the true distribution α. Close here is in the sense of weak convergence.
We want to prove a large deviation result for {Pn}.

Theorem 1.1. The sequence {Pn} satisfies a large deviation principle on M(X ) with the
rate function I(β) given by

I(β) = hα(β) = h(α;β) = +∞

unless β << α and dβ
dα

| log dβ
dα

| is in L1(α). Then

I(β) =

∫

dβ

dα
log

dβ

dα
dα =

∫

log
dβ

dα
dβ

Before we begin the proof of the theorem we prove a lemma that is useful.

Lemma 1.2. Let α, β be two probability distributions on a measure space (X ,B). Let B(X )
be the space of bounded measurable functions on (X ,B). Then

I(β) = sup
f∈B(X )

[
∫

f(x)dβ(x) − log

∫

ef(x)dα(x)

]

Proof. The function x log x and ex − 1 are dual to each other in the sense that

x log x − x + 1 = sup
y

[x y − (ey − 1)]

ey − 1 = sup
x

[x y − (x log x − x + 1)]

If b(x) = dβ
dα

, then
∫

f(x)dβ =

∫

f(x)b(x)dα(x)

≤
∫

[

[b(x) log b(x) − b(x) + 1] + [ef(x) − 1]
]

dα(x)

= I(β) +

∫

ef(x)dα(x)

1
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Writing f(x) = f(x) − c + c and optimizing with respect to c,
∫

f(x)dβ ≤ inf
c

[I(β) + c +

∫

[ef(x)−c − 1]
]

dα(x)]

= I(β) + log

∫

ef(x)dα(x)

with the choice of c = log
∫

ef(x)dα(x). On the other hand if for every f ,
∫

f(x)dβ(x) ≤ C + log ef(x)dα(x)

taking f(x) = λ1A(x),

β(A) ≤ 1

λ
[C + log[eλα(A) + (1 − α(A))]

With λ = − log α(A),

β(A) ≤ C + 2

log 1
α(A)

proving β << α. Let b(x) = dβ
dα

.
∫

f(x)b(x)dα(x) ≤ C + log

∫

ef(x)dα(x)

Pick f(x) = log b(x). Log b(x) may not be a bounded function. But one can truncate and
pass to the limit. Note that (b log b)− is bounded. The trouble is only from the positive
part (b log b)+ and this is controlled by the upper bound. If X is a nice metric space, we can
replace B(X) by C(X) the space of bounded continuous functions. One can use Lusin’s
theorem to approximate b(x) by bounded continuous functions with respect to both α and
β and pass to the limit. We will the have

I(β) = sup
f∈C(X )

[
∫

f(x)dβ(x) − log

∫

ef(x)dα(x)

]

�

We now turn to the proof of the theorem.

Proof. First we note that I(β) is convex and lower semi-continuous in the topology of weak
convergence of probability distributions.

To prove that Dℓ = {β : I(β) ≤ ℓ} are compact sets, we need to produce a compact set

Kǫ such that β(Kc
ǫ ) ≤ ǫ for all β ∈ Dℓ. Let us pick Kǫ so that α(Kc

ǫ ) ≤ e−
ℓ+2

ǫ . Then for
any β ∈ Dℓ,

α(Kc
ǫ ) ≤

ℓ + 2

log 1
α(Kǫ)

≤ ǫ
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We now show that given any β and any ǫ > 0, there is an open set Uβ, a small neighborhood
around β so that

lim sup
n→∞

1

n
log Pn(Uβ) ≤ −I(β) + 2ǫ

First we pick f so that
∫

f(x) dβ(x) − log
∫

ef(x)dα(x) ≥ I(β) − ǫ Then

E[en
R

f(x)dβn(x)] = E[exp[f(x1) + f(x2) + · · · + f(xn)]] =

[
∫

ef(x)dα(x)

]n

If Uβ = {γ : |
∫

f(x)dβ −
∫

f(x)dγ(x)| < ǫ}, then by Tchebechev’s inequality

lim sup
n→∞

1

n
log Pn(Uβ) ≤ −

∫

f(x) dβ + ǫ + log

∫

ef(x)dα(x) ≤ −I(β) + 2ǫ

If D is any compact subset of M(X ), then since D can be covered by a finite number of
Uβ we can conclude that for any compact D ⊂ M(X )

lim sup
n→∞

1

n
log Pn(D) ≤ − inf

β∈D
I(β) + 2ǫ

Since ǫ is arbitrary we actually have

lim sup
n→∞

1

n
log Pn(D) ≤ − inf

β∈D
I(β)

If we can show that for any ℓ < ∞ there is some compact set Dℓ ⊂ M(X ) such that

lim sup
n→∞

1

n
log Pn(Dc

ℓ) ≤ −ℓ

then it would follow that for any closed set C

lim sup
n→∞

1

n
log Pn(C) ≤ − inf

β∈C
I(β)

by writing P (C) ≤ P (C ∩ Dℓ) + P (Dc
ℓ). Then

lim sup
n→∞

1

n
log Pn(C) ≤ max{− inf

β∈C
I(β),−ℓ}

and by letting ℓ → ∞ we would get the upper bound. Let us pick Kj so that α(Kc
j ) ≤ ǫj .

Let

D = {γ : γ(Kc
j ) ≤ δj forall j ≥ 1}

Pn(Dc) ≤
∞

∑

j=1

P [βn(Kc
j ) ≥ δj ]

=
∑

j

[B(n, ǫj) ≥ nδj]

≤
∑

j

[ǫje
θj + (1 − ǫj)]

ne−nθj δj
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Since we can choose δj ↓ 0, ǫj ↓ 0 and θj ↑ ∞ arbitrarily, we can do it in such a way that
∑

j

[ǫje
θj + (1 − ǫj)]

ne−nθj δj ≤ e−ℓ n

For instance δj = 1
j
, θj = j(ℓ + log 2 + j), ǫj = e−θj will do it.

To prove the lower bound, we tilt the measure from Pn to Qn based on i.i.d with β for
each component. Let Uβ be a neighborhood around β.

Pn(Uβ) =

∫

βn∈Uβ

[b(x1)b(x2) · · · b(xn)]−1dβ(x1) · · · dβ(xn)

If b(x) = 0 on a set of positive α measure we would still have a lower bound

Pn(Uβ) ≥
∫

βn∈Uβ

[b(x1)b(x2) · · · b(xn)]−1dβ(x1) · · · dβ(xn)

In any case

Pn(Uβ) ≥
∫

βn∈Uβ

|
R

log b(x) βn(dx)−I(β)|≤ǫ

[b(x1)b(x2) · · · b(xn)]−1dβ(x1) · · · dβ(xn)

≥ e−n[I(β)+ǫ]

∫

βn∈Uβ

|
R

log b(x) βn(dx)−I(β)|≤ǫ

dβ(x1) · · · dβ(xn)

= e−n[I(β)+ǫ](1 + o(1))

by the law of large numbers. This completes the proofs of both upper and lower bounds. �

Sanov’s theorem has the following corollary.

Corollary 1.3. Let {Xi} be i.i.d.r.v with values in a separable Banach space X with a
common distribution α. Assume

E[eθ‖X‖] < ∞
for all θ > 0. Then the mean 1

n

∑n
i=1 Xi satisfies a large deviation principle with rate

function

H(x) = sup
y∈X ∗

[< y, x > − log

∫

e<y,x> dα(x)]

Before starting on the proof let us establish a certain formula.

Lemma 1.4. Let α be a probability distribution on X with
∫

eθ|z|dα(z) < ∞ for all θ > 0.
Let

M(y) =

∫

e〈y,z〉dα(z)

and

H(x) = sup
y∈X ∗

[〈y, x〉 − log M(y)]
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Then

H(x) = inf
b:

R

zb(z) dα(z)=x

∫

b(z) log b(z) dα(z)

Remark 1.5. The proof will depend on the following minmax theorem from convex anal-
ysis. Let F (x, y) be a function on X × Y, which is convex and lower semi continuous in
y for each x and concave and upper semi continuous in x for each y. Let C1 ⊂ X and
C2 ⊂ Y be closed convex subsets. Let either C1 or C2 be compact or let either all the level
sets Dℓ

x = {y : F (x, y) ≤ ℓ} or all the level sets Dℓ
y = {x : F (x, y) ≥ ℓ} be compact. Then

inf
y∈C2

sup
x∈C1

F (x, y) = sup
x∈C1

inf
y∈C2

F (x, y)

Proof. We consider the function

F (y, b(·)) = 〈y, x〉 −
∫

〈y, z〉b(z)dα(z) +

∫

b(z) log b(z)dα(z)

on X ∗ × N , where N is the set of b(z) that are nonnegative,
∫

b(z) dα(z) = 1 and
∫

b(z) log b(z)dα(z) < ∞.

sup
y

inf
b

F (y, b(·)) = sup
y

[〈y, x〉 − log M(y)] = H(x)

while

sup
y

[

〈y, x〉 −
∫

〈y, z〉dα(z)
]

= ∞

unless x =
∫

z dα(z), in which case it is 0. Therefore

inf
b

sup
y

F (y, b(·)) = inf
b:

R

zb(z) dα(z)=x

∫

b(z) log b(z) dα(z)

It is not hard to verify the conditions for the minmax theorem to be applicable. �

Proof. (of corollary) Step 1. First we assume that ‖Xi‖ is bounded by ℓ. Suppose βn

is a sequence of probability measures supported in the ball of radius ℓ and βn converges
weakly to β. If xn =

∫

zdβn(z) then < y, xn >→< y, x >=
∫

zdβ(z) for each y ∈ X ∗. By
Prohorov’s condition there is a compact set Kǫ that has probability at least (1 − ǫ) under
all the βn as well as β. If xǫ

n =
∫

Kǫ z dβn(z), xn is in the convex hull of Kǫ and 0, which is
compact. More over ‖xǫ

n − xn‖ ≤ ǫℓ. This is enough to conclude that ‖xn − x‖ → 0.

Step 2. We truncate and write X = Y ℓ + Zℓ where Xℓ is supported in the ball of radius

ℓ. Since E[eθ‖Zℓ‖] → 1 as ℓ → ∞ for all θ > 0, we see that

lim sup
ℓ→∞

lim sup
n→∞

1

n
log P [

1

n

n
∑

j=1

‖Zℓ
j‖ ≥ ǫ] ≤ lim sup

ℓ→∞
inf
θ>0

[−θǫ + log E[eθ‖Zℓ‖] = −∞

Step 3. Finally

P [
1

n

n
∑

j=1

Xj ∈ C] ≤ P [
1

n

n
∑

j=1

Y ℓ
j ∈ Cǫ] + P [

1

n

n
∑

j=1

‖Zℓ
j‖ ≥ ǫ]
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If we denote by

Hℓ(x) = sup
y∈X ∗

[< y, x > − log E[e<y,Y ℓ>]]

then

lim sup
n→∞

1

n
log P [

1

n

n
∑

j=1

Xj ∈ C] ≤ max{− inf
x∈Cǫ

Hℓ(x), lim sup
n→∞

log P [
1

n

n
∑

j=1

‖Zℓ
j‖ ≥ ǫ]}

≤ − lim inf
ǫ→0

lim inf
ℓ→∞

inf
x∈Cǫ

Hℓ(x)

= − inf
x∈C

H(x)

The last step needs the fact that if for some xℓ ∈ Cǫ, Hℓ(xℓ) is bounded, then xǫ
ℓ is a

compact sequence and any limit point xǫ will be in Cǫ and as ǫ → 0 this will produce
a limit point in x ∈ C with H(x) ≤ lim infǫ→0 lim infℓ→∞ Hℓ(xǫ

ℓ). The following lemma
justifies the step.

Lemma 1.6. Let {µσ}, σ ∈ S, be a collection of probability measures on X satisfying, the
tightness condition that for any given ǫ > 0, there exists a compact set Kǫ ⊂ X , such that
µσ(Kǫ) ≥ 1 − ǫ for all σ ∈ S,and

sup
σ∈S

∫

eθ‖z‖dµσ(z) = m(θ) < ∞

for every θ > 0. Let

Hσ(x) = sup
y∈X ∗

[< y, x > − log

∫

e<y,z> dµσ(z)]

Then the set Dℓ = ∪σ∈S{x : Hσ(x) ≤ ℓ} has a compact closure in X .

Proof. If Hσ(xσ) ≤ ℓ then there exists bσ such that
∫

bσ(z) log bσ(z) dµσ(z) ≤ ℓ and xσ =
∫

zdβσ(z) =
∫

z bσ(z)dµσ(z). From the entropy bound I(βσ) ≤ ℓ and the tightness of
{µσ} it follows that {βσ} is tight and

∫

‖z‖dβσ(z) uniformly integrable. Therefore {xσ} is
compact. �

This concludes the proof of the corollary �

Gaussian distributions on a Banach space are defined by a mean and covariance. Sup-
pose X is a Gaussian random variable with mean 0 and some covariance B(y1, y2) =
E[〈y1,X〉〈y2,X〉]. Then the distribution of X1 +X2 + · · ·+Xn is the same as that of

√
nX.

If there is a large deviation principle for 1
n

∑n
j=1 Xj, this gives a Gaussian tail behavior for

X.

lim sup
λ→∞

1

λ2
log P [X ∈ λC] ≤ − inf

x∈C
H(x)

where

H(x) = sup
y∈X ∗

[〈y, x〉 − 1

2
B(y, y)]
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According to our result we only need to check that E[eθ‖X‖] < ∞ for all θ > 0. There is a
simple argument due to Fernique which shows that any Gaussian distribution on a Banach

space must necessarily be such that E[eθ‖X‖2
] < ∞ for some θ > 0. The proof uses the

independence of X + Y and X − Y . If ‖X‖ ≥ ℓ and ‖Y ‖ ≤ a we must have ‖X + Y ‖ and
‖X − Y ‖ ≥ ℓ − a. Therefore

P [‖X + Y ‖ ≥ ℓ − a ∩ ‖X − Y ‖ ≥ ℓ − a] = P [‖X‖ ≥ ℓ − a√
2

]2 ≥ P [‖X‖ ≥ ℓ]P [‖Y ‖ ≤ a]

We can pick a so that P [‖Y ‖ ≤ a] ≥ 1
2 . We then have

P [‖X‖ ≥ ℓ] ≤ 2P [‖X‖ ≥ ℓ − a√
2

]2

or

P [‖X‖ ≥
√

2ℓ + a] ≤ 2P [‖X‖ ≥ ℓ]2.

Iterating this inequality will give the necessary bound. Define ℓn+1 =
√

2ℓn + a. Then for
T (ℓ) = P [‖X‖ ≥ ℓ] we have

T (ℓn+1) ≤ 2[T (ℓn)]2 ≤ [2T (ℓ1)]
2n

With proper choice of a and ℓ1, ℓn ≃ C 2
n
2 and T (ℓn) ≤ δ2n

for some δ < 1. That does it.

2. Schilder’s Theorem.

One of the advantages in formulating the large deviation principle in fairly general terms
is the ability to apply it in several infinite dimensional contexts. The first such example is
result concerning the behavior of Brownian motion with a small parameter. Let us consider
the family of stochastic process {xǫ(t)} defined by

xǫ(t) =
√

ǫ β(t)

or equivalently

xǫ(t) = β(ǫt)

for t in some fixed time interval, say [0, 1] where β(·) is the standard Brownian motion.
The distributions of xǫ(·) induce a family of scaled Wiener processes on C[0, 1] that we
denote by Qǫ. We are interested in establishing an LDP for Qǫ as ǫ → 0. The rate function
will turn out to be

I(f) =
1

2

∫ 1

0
[f ′(t)]2dt

if f(0) = 0 and f(·) is absolutely continuous in t with a square integrable derivative f ′(·).
Otherwise

I(f) = +∞
The main theorem of this section due to M.Schilder is the following

Theorem 2.1. The family Qǫ satisfies an LDP with rate function I(·).
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Proof. First let us note that as soon as we have a bound on the rate function say I(f) ≤ ℓ,
then f satisfies a Holder inequality

|f(t) − f(s)| = |
∫ t

s

f ′(σ) dσ| ≤ |t − s| 12
(

∫ t

s

[f ′(σ)]2dσ

)

1
2

≤
√

2ℓ |t − s| 12 .

The lower semi-continuity of I(·) is obvious and since f(0) = 0, by the Ascoli-Arzela
theorem, the level sets are totally bounded and hence compact.

Now let us turn to the proof of the upper bound. Suppose C ⊂ Ω is a closed subset of
the space Ω = C[0, 1]. For any f in Ω and for any positive integer N , let us divide the
interval [0, 1] in to N equal subintervals and construct the piecewise linear approximation

fN = πNf by matching fN = f at the points { j
N

: 0 ≤ j ≤ N} and interpolating linearly

in between. An elementary calculation yields I(πNf) = 1
2

∑N−1
j=0 [f( j+1

N
)− f( j

N
)]2. We can

estimate Qǫ(C) by

Qǫ(C) = Qǫ[f ∈ C] ≤ Qǫ[fN ∈ Cδ] + Qǫ[ ‖fN − f‖ ≥ δ ]

where ‖ ‖ is the supremum norm on Ω, and Cδ is the δ neighborhood of the closed set C

in the uniform metric. If we denote by

ℓδ = inf
f∈Cδ

I(f) and ℓ = inf
f∈C

I(f)

by the compactness of the level sets and the lower semicontinuity of I(·) it follows that

ℓδ ↑ ℓ as δ ↓ 0

Clearly

Qǫ[fN ∈ Cδ] ≤ Qǫ[IN (f) ≥ ℓδ].

We know that, under Qǫ, 2IN is essentially a sum of squares of N independent identically
distributed Gaussians with mean 0, and has a scaled χ2 distribution with N degrees of
freedom.

Qǫ[IN (f) ≥ ℓδ] = (
1

ǫ
)N

1

Γ(N
2 )

∫ ∞

ℓδ

u
N
2
−1 exp[−u

ǫ
] du

It is elementary to conclude that for fixed N and δ

lim sup
ǫ→0

ǫ log Qǫ[IN (f) ≥ ℓδ] ≤ −ℓδ.

As for the second term Qǫ[ ‖fN − f‖ ≥ δ ],

‖fN − f‖ ≤ 2 sup
0≤j≤N

sup
j
N
≤t≤ j+1

N

|f(t) − f(
j

N
)|
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and the events { sup j
N
≤t≤ j+1

N

|f(t) − f( j
N

)| ≥ δ
2 } all have the same probability;

Qǫ

[

sup
j
N
≤t≤ j+1

N

|f(t) − f(
j

N
)| ≥ δ

2

]

= Qǫ

[

sup
0≤t≤ 1

N

|f(t)| ≥ δ

2

]

≤ 2Qǫ

[

sup
0≤t≤ 1

N

f(t) ≥ δ

2

]

(by symmetry)

= 4Qǫ

[

f(
1

N
) ≥ δ

2

]

(by reflection principle)

We can now easily estimate Qǫ[ ‖fN − f‖ ≥ δ ] by

Qǫ[ ‖fN − f‖ ≥ δ ] ≤ 4NQǫ

[

f(
1

N
) ≥ δ

2

]

and for fixed N and δ,

lim sup
ǫ→0

ǫ log Qǫ

[

‖fN − f‖ ≥ δ
]

≤ −Nδ2

8

Now combining both terms

lim sup
ǫ→0

ǫ log Qǫ[C] ≤ − inf{ℓδ,
Nδ2

8
}

Since N and δ are arbitrary we can let N → ∞ first and then let δ → 0, to get the upper
bound

lim sup
ǫ→0

ǫ log Qǫ[C] ≤ −ℓ

and we are done.

For the lower bound, in order to show that for open sets G ⊂ Ω

lim inf
ǫ→0

ǫ log Qǫ(G) ≥ − inf
g∈G

I(g),

because there is always a neighborhood Ng of g with g ∈ Ng ⊂ G, it is sufficient to show
that, for any g ∈ Ω and N ∋ g,

lim inf
ǫ→0

ǫ log Qǫ(N) ≥ −I(g).

Actually for any g with I(g) < ∞, and for any neighborhood N ∋ g and any δ > 0 there

exist a smooth h ∈ N with a neighborhood Ñ satisfying h ∈ Ñ ⊂ N and I(h) ≤ I(g)+δ. So
for the purpose of establishing the lowere bound there is no loss of generality in assuming
that g is smooth. If we denote by Qǫ,g the measure that is obtained from Qǫ by the
translation f → f − g mapping Ω → Ω, then

Qǫ[f : ‖f − g‖ < δ] = Qǫ,g[f : ‖f‖ < δ] =

∫

‖f‖<δ

dQǫ,g

dQǫ
(f) dQǫ.

Cameron-Martin formula evaluates the Radon-Nikodym derivative

dQǫ,g

dQǫ
(f) = exp

[

− 1

ǫ

∫ 1

0
g′(t)df(t) − 1

2ǫ

∫ 1

0
[g′(t)]2dt

]
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The second term in the exponentiel is a constant and comes out of the integral as exp [− I(g)
ǫ

].
As for the integral

∫

‖f‖<δ

exp
[

− 1

ǫ

∫ 1

0
g′(t)df(t)

]

dQǫ

we first note that, because g is smooth we can integrate by parts to rewrite the ”df” integral
as

∫ 1

0
g′(t)df(t) = g′(1)f(1) −

∫ 1

0
f(t)g′′(t)dt.

We restrict the integration to the set {‖f‖ < δ} ∩ {f :
∫ 1
0 g′(t)df(t) ≤ 0} and use the

symmetry of Qǫ under f → −f to conclude that
∫

‖f‖<δ

exp
[

− 1

ǫ

∫ 1

0
g′(t)df(t)

]

dQǫ ≥
1

2
Qǫ[ ‖f‖ < δ ].

Clearly, as ǫ → 0, Qǫ[ ‖f‖ < δ ] → 1 and it follows that

lim inf
ǫ→0

ǫ log Qǫ[f : ‖f − g‖ < δ] ≥ −I(g)

and the proof of the lower bound is complete. �

Remark 2.2. A calculation involving the covariance min(s, t) of the Brownian Motion and

its formal inverse quadratic form
∫ 1
0 [f ′(t)]2dt will allow us to write a formal expression

dQǫ = exp
[

− 1

2ǫ

∫ 1

0
[f ′(t)]2dt

]

Πt df(t)

from which our rate function can be guessed. But the above density is with respect to
an infinite dimensional Lebesgue measure that does not exist, and the density itself is
an expression of doubtful meaning, since almost surely the Brownian paths are nowhere
differentiable. Nevertheless the LDP is valid as we have shown. In fact the LDP we
established for Gaussian distributions on a Banach space is applicable here and is not
difficult to calculate for the covariance min{s, t} of Brownian motion

sup[

∫ T

0
f(t)g(t)dt − 1

2

∫ T

0

∫ T

0
min(s, t)g(s)g(t)dsdt] =

1

2

∫ T

0
[f ′(t)]2dt

provided f(0) = 0 and f ′ exists in L2[0, T ].

Remark 2.3. This method of establishing the upper bound for some approximations that
are directly carried out and controlling the error by super-exponential estimates will be a
recurring theme. Similarly the lower bound is often established for a suitably dense set of
smooth points. The trick of Cramer involving change of measure so that the large deviation
becomes normal and getting a lower bound in terms of the Radon-Nikodym derivative will
also be a recurring theme.


