
1. Markov Chains.

Let us switch from independent to dependent random variables. Suppose X1, · · · ,Xn, · · ·
is a Markov Chain on a finite state spacce F consisting of points x ∈ F . The Markov Chain
will be assumed to have a stationary transition probability given by a stochastic matrix
π = π(x, y), as the probability for transition from x to y. We will assume that all the
entries of π are positive, imposing thereby a strong irreducibility condition on the Markov
Chain. Under these conditions there is a unique invariant or stationary distribution p(x)
satisfying

∑

x

p(x)π(x, y) = p(y).

Let us suppose that V (x) : F → R is a function defined on the state space with a mean
value of m =

∑

x V (x)p(x) with respect to the invariant distribution. By the ergodic
theorem, for any starting point x,

lim
n→∞

Px

[

| 1
n

∑

j

V (Xj) − m| ≥ a
]

= 0

where a > 0 is arbitrary and Px denotes, as is customary, the measure corresponding to
the Markov Chain initialized to start from the point x ∈ F . We expect the rates to be
exponential and the goal as it was in Cramer’s theorem, is to calculate

lim
n→∞

1

n
log Px

[ 1

n

∑

j

V (Xj) ≥ a
]

for a > m. First, let us remark that for any V

lim
n→∞

1

n
log Ex

[

exp[V (X1) + V (X2) · · · + V (Xn)]

]

= log σ(V )

exists where σ(V ) is the eigenvalue of the matrix

πV = πV (x, y) = π(x, y)eV (x)

with the largest modulus, which is positive. Such an eigenvalue exists by Frobenius theory
and is characterized by the fact that the eigenvector has positive entries. To see this we
only need to write down the formula

Ex

[

exp[V (X1) + V (X2) · · · + V (Xn)]

]

=
∑

y

[πV ]n(x, y)

that is easily proved by induction. The geometric rate of growth of any of the entries of
the n-th power of a positive matrix is of course given by the Frobenius eigenvalue σ. Once
we know that

lim
n→∞

1

n
log Ex

[

exp[V (X1) + V (X2) · · · + V (Xn)]

]

= log σ(V )

1
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we can get an upper bound by Tchebychev’s inequality

lim sup
n→∞

1

n
log Px

[

V (X1) + V (X2) · · · + V (Xn) ≥ a

]

≤ log σ(V ) − a

or repalcing V by λV with λ > 0

lim sup
n→∞

1

n
log Px

[

V (X1) + V (X2) · · · + V (Xn) ≥ a

]

≤ log σ(λV ) − aλ

Since we can optimize over λ ≥ 0 we can obtain

lim sup
n→∞

1

n
log Px

[

V (X1) + V (X2) · · · + V (Xn) ≥ a

]

≤ −h(a) = − sup
λ≥0

[λa − log σ(λV )]

By Jensen’s inequality

σ(λV ) = lim
n→∞

1

n
log EPx

[

exp
[

λ[V (X1) + V (X2) · · · + V (Xn)]
]

]

≥ lim
n→∞

1

n
EPx

[

λ[V (X1) + V (X2) · · · + V (Xn)]

]

= λm

Therefore

h(a) = sup
λ≥0

[λa − log σ(λV )] = sup
λ∈R

[λa − log σ(λV )]

For the lower bound we can again perform the trick of Cramér to change the measure from
Px to a Qx such that under Qx the event in question has probability nearly 1. The Radon
Nikodym derivative of Px with respect to Qx will then control the large deviation lower
bound. Our plan then is to replace π by π̄ such that π̄(x, y) has an invariant measure q(x)
with

∑

x V (x)q(x) = a. If Qx is the distribution of the chain with transition probability π̄

then

Px[E] =

∫

E

RndQx

where

Rn = exp
[

∑

j

log
π(Xj ,Xj+1)

π̄(Xj ,Xj+1)

]

This provides us a lower bound for the probbaility

− lim inf
n→∞

1

n
log Px

[

V (X1) + V (X2) · · · + V (Xn) ≥ a

]

≤ J(π̄)

where

J(π̄) = lim
n→∞

1

n
EQ

x [− log Rn]

=
∑

x,y

log
π̄(x, y)

π(x, y)
π̄(x, y)q(x)
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The last step comes from applying the ergodic theorem for the π̄ chain with q(·) as the
invariant distribution to the average

− 1

n
log Rn =

1

n

n
∑

j=1

log
π̄(Xj ,Xj+1)

π(Xj ,Xj+1)

Since any π̄ with
∑

x V (x)q(x) = a will do where q(·) is the corresponding invariant mea-
sure, the lower bound we have is quickly improved to

lim
n→∞

1

n
log Px

[

V (X1) + V (X2) · · · + V (Xn) ≥ a

]

≥ − inf
π̄

P

V (x)q(x)=a

J(π̄)

If we find the λ such that λa − log σ(λV ) = h(a) then for such a choice of λ

a =
σ′(λV )

σ(λV )

and we take π(x, y)eλV (y) as our nonnegative matrix. We can find for the eigenvalue σ a
column eigenvector f and a row eigenvector g. We define

π̄(x, y) =
1

σ
π(x, y)eλV (y) f(y)

f(x)

One can check that π̄ is a stochastic matrix with invariant measure q(x) = g(x)f(x)
(properly normalized). An elemenatary perturbation argument involving eigenvalues gives
the relationship

a =
∑

x

q(x)V (x)

and

J =
∑

x,y

[− log σ + λV (y) + log f(y) − log f(x)]π̄(x, y)q(x)

= λa − log σ

= h(a)

thereby matching the upper bound. We have therefore proved the following theorem.

Theorem 1.1. For any Markov Chain with a transition probability matrix π with positive

entries, the probability distribution of 1
n

∑n
j=1 V (Xj) satisfies an LDP with a rate function

h(a) = sup
λ

[λa − log σ(λV )]

There is an interesting way of looking at σ(V ). If V (x) = log u(x)
(πu)(x) then f(x) = (πu)(x)

is a column eigenfunction for πV with eigenvalue σ = 1. Therefore

log σ(log
u

πu
) = 0
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and because log σ(V + c) = log σ(V ) + c for any constant c, log σ(V ) is the amount c by
which V has to be shifted so that V − c is in the class

M = {V : V = log
u

πu
}

We now turn our attention to the number of visits

Ln
x =

n
∑

j=1

χx(Xj)

to the state x or

ℓn
x =

1

n
Ln

x

the proportion of time spent in the state x. If we view {ℓx;x ∈ F} as a point in the
space P of probability measures on F , then we get a distribution νn

x for any starting point
x and time n. The ergodic theorem asserts that νn

x converges weakly to the degenerate
distribution at p(x), the invariant measure for the chain. In fact we have actually proved
the large deviation principle for νn

x .

Theorem 1.2. The distributions νn
x of the empirical distributions satisfy an LDP with a

rate function

I(q) = sup
V ∈M

∑

x

q(x)V (x)

Proof. Upper Bound. Let q ∈ P be arbitrary. Suppose V ∈ M. Then

EPx [exp[
∑

V (Xi)](πu)(Xn+1)] = (πu)(x)

Therefore

lim sup
n→∞

1

n
log Ex

[

exp[

n
∑

j=1

V (Xj)]
]

≤ 0

which implies that

lim sup
U↓q

lim sup
n→∞

1

n
log νn

x [U ] ≤ −
∑

x

q(x)V (x)

where U are neighborhoods of q that shrink to U . Since the space P is compact this provides
immediately the upper bound in the LDP with the rate function I(q). The lower bound is
a matter of finding a π̄ such that q(x) is the invariant measure for π̄ and J(π̄) = I(q). One
can do the variational problem of minimizing J(π̄) over those π̄ that have q as an invariant
measure. The minimum is attained at a point where

π̄(x, y) = π(x, y)
f(y)

(πf)(x)
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with q as the invariant measure for π̄. Since q(x) is the the invariant distribution for π̄ an
easy calculation gives

J =
∑

x,y

[log f(y) − log(πu)(x)]π̄(x, y)q(x)

=
∑

x

[log f(x) − log(πu)(x)]q(x)

=
∑

x

V (x)q(x) for some V ∈ M

≤ I(q)

Since we already have the upper bound with I(·) we are done. �

Remark 1.3. It is important to note that in the special case of IID random variables
with a finite set of possible values we can take π(x, y) = π(y) and for any V (x) the matrix

π(y)eV (y) is of rank one with the nonzero eigenvalue being equal to σ(V ) =
∑

x eV (x)π(x)
and the analysis reduces to the one of Cramer. In particular

I(q) =
∑

x

q(x) log
q(x)

π(x)

is the relative entropy with respect to π(·).
Remark 1.4. A similar analysis can be done for the continuous time Markov chains as
well. Suppose we have a Markov chain, again on the finite state space F , with transition
probabilities π(t, x, y) given by π(t) = exp[tA] where the infinitesiaml generator or the rate
matrix A satisfies a(x, y) ≥ 0 for x 6= y and

∑

y∈F a(x, y) = 0. For any function V : F → R

the operator (A + V ) defined by

(A + V )f(x) =
∑

y

a(x, y)f(y) + V (x)f(x)

has the property that the eigenvalue with the largest real part is real and if we make the
strong irreducibility asssumption as before i.e. a(x, y) > 0 for x 6= y, then this eigenvalue
is unique and is characterized by having row ( or equivalently) column eigenfunctions
that are positive. We denote this eigenvalue by θ(V ). If u > 0 is a positive function
on F , then Au + (−Au

u
)u = Au − Au = 0. Therefore for V = −Au

u
, the vector u is a

column eigenvector for the eigenvalue 0 and for such V , θ(V ) = 0. If we now denote by
[M = V : V = −Au

u
for some u > 0} then θ(V ) is the unique constant such that V −θ ∈ M.

We can now have the exact analogues of the descrete case and with the rate function

I(q) = sup
V ∈M

∑

x

q(x)V (x)

we have an LDP for the empirical measures

ℓx(t) =
1

t

∫ t

0
χx(X(s))ds
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that represent the proportion of time spent in the state x ∈ F .

Remark 1.5. In the special case when A is symmetric one can explicitly calculate

I(q) = −
∑

x,y

a(x, y)
√

q(x)
√

q(y).

The large deviation theory gives the asymptotic relation

lim
t→∞

1

t
log E

[

exp
[

∫ t

0
V (X(s))ds

]]

= sup
q(·)∈P

[

∑

x

q(x)V (x) − I(q)

]

= sup
f :f≥0
‖f‖2=1

∑

x

V (x)[f(x)]2 +
∑

x,y

a(x, y)f(x)f(y)

= sup
f :‖f‖2=1

∑

x

V (x)[f(x)]2 +
∑

x,y

a(x, y)f(x)f(y)

Notice that the Dirichlet form
∑

x,y a(x, y)f(x)f(y) can be rewritten as 1
2

∑

x,y a(x, y)[f(x)−
f(y)]2 and replacing f by |f | lowers the Dirichlet form and so we have dropped the as-
sumption that f ≥ 0. This is the familiar variational formula for the largest eigenvalue of
a symmetric matrix.


