1. If $T: X \rightarrow X$ is $I+F$ where I is identity and F is an operatorof finite rank, show that its index is 0 by explicit calculation.
2. Let $H=\left\{f: f=\sum_{k=0}^{\infty} a_{k} e^{i k x}\right\}$ where $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$. $H \subset L_{2}[S]$ with $S=\{z$: $|z|=1\}$. $P: L_{2}(S) \rightarrow H$ is the orthogonal projection onto H. If $f(s)$ is a continuous function $S \rightarrow C$ with $f(s) \neq 0$ for any $s \in S$ then show that $g \rightarrow P \frac{1}{f} P f g$ is fedholm nad calculate its index. The map $T_{f}: H \rightarrow H$ is mutiplication of $g \in H$, i.e. a function with nonengative Fourier coefficients by a smooth function f projecting out the negative frequencies, mutiplying by $\frac{1}{f}$ and projecting out again the negative frequencies.
