
7 Hardy Spaces.

For 0 < p < ∞, the Hardy Space Hp in the unit disc D with boundary
S = ∂D consists of functions u(z) that are analytic in the disc {z : |z| < 1},
that satisfy

sup
0≤r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ < ∞ (7.1)

From the Poisson representation formula, valid for 1 > r′ > r ≥ 0

u(rei θ) =
r′2 − r2

2π

∫ 2π

0

u(r′ei (θ−ϕ))

r′2 − 2rr′ cos ϕ + r2
dϕ (7.2)

we get the monotonicity of the quantity M(r) =
∫ 2π

0
|u(rei θ)|pdθ, which is

obvious for p = 1 and requires an application of Hölder’s inequality for
p > 1. Actually M(r) is monotonic in r for p > 0. To see this we note
that g(rei θ) = log |u(rei θ)| is subharmonic and therefore, using Jensen’s
inequality,

r′2 − r2

2π

∫ 2π

0

exp[pg(r′ei (θ−ϕ))]

r′2 − 2rr′ cos ϕ + r2
dϕ

≥ exp[p
r′2 − r2

2π

∫ 2π

0

g(r′ei (θ−ϕ))

r′2 − 2rr′ cos ϕ + r2
dϕ]

≥ exp[pg(rei θ]

If 1 < p < ∞ and u(x, y) is a Harmonic function in D, from the bound (7.1),
we can get a weak radial limit f (along a subsequence if necessary) of u(r′ei θ)
as r′ → 1. In (7.2) we can let r′ → 1 keeping r and θ fixed. The Poisson
kernel converges strongly in Lq to

1

2π

1 − r2

1 − 2r cos ϕ + r2
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and we get the representation (7.2) for u(rei θ) (with r′ = 1) in terms of the
boundary function f on S.

u(rei θ) =
1 − r2

2π

∫ 2π

0

f(ei (θ−ϕ))

12 − 2r cos ϕ + r2
dϕ (7.3)

Now it is clear that actually

lim
r→1

u(rei θ) = f(θ)

in Lp. Since we can consider the real and imaginary parts seperately, these
considerations apply to Hardy functions in Hp as well. The Poisson kernel is
harmonic as a function of r, θ and has as its harmonic conjugate the function

1

2π

2R sin θ

1 − R cos θ + R2

with R = r
r′ . Letting R → 1, the imaginary part is see to be given by

convolution of the real part by

1

2π

2 sin θ

2(1 − cos θ)
=

1

2π
cot

θ

2

which tells us that the real and imaginary parts at any level |z| = r are
related through the Hilbert transform in θ. We need to normalize so that
Im u(0) = 0. It is clear that any function in the Hardy Spaces is essentially
determined by the boundary value of its real (or imaginary part) on S. The
conjugate part is then determined through the Hilbert transform and to be
in the Hardy class Hp, both the real and imaginary parts should be in Lp(R).
For p > 1, since the Hilbert transform is bounded on Lp, this is essentially
just the condition that the real part be in Lp. However, for p ≤ 1, to be
in Hp both the real and imaginary parts should be in Lp, which is stronger
than just requiring that the real part be in Lp.

We prove a factorization theorem for functions u(z) ∈ Hp for p in the
range 0 < p < ∞.

Theorem 7.1. Let u(z) ∈ Hp for some p ∈ (0,∞). Then there exists a
factorization u(z) = v(z)F (z) of u into two analytic functions v and F on
D with the following properties. |F (z)| ≤ 1 in D and the boundary value
F ∗(ei θ) = limr→1 F (rei θ) that exists in every Lp(S) satisfies |F ∗| = 1 a.e. on
S. Moreover F contains all the zeros of u so that v is zero free in D.
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Proof. Suppose u has just a zero at the origin of order k and no other zeros.
Then we take F (z) = zk and we are done. In any case, we can remove the zero
if any at 0 and are therefore free to assume that u(z) 6= 0. Suppose u has a
finite number of zeros, z1, . . . , zn. For each zero zj consider fzj

(z) =
z−zj

1−zz̄j
. A

simple calculation yields |z−zj | = |1−zz̄j | for |z| = 1. Therefore |fzj
(z)| = 1

on S and |fzj
(z)| < 1 in D. We can write u(z) = v(z)Πn

i=1fzj
(z). Clearly the

factorization u = Fv works with F (z) = Πfzi
(z). If u(z) is analytic in D, we

can have a countable number of zeros accumulating near S. We want to use
the fact that u ∈ Hp for some p > 0 to control the infinite product Π∞

i=1fzi
(z),

that we may now have to deal with. Since log |u(z)| is subharmonic and we
can assume that u(0) 6= 0

−∞ < c = log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ

for r < 1. If we take a finite number of zeros z1, . . . , zk and factor u(z) =
Fk(z)vk(z) where Fk(z) = Πk

1fzi
(z) is continuous on D ∪ S and |Fk(z)| = 1

on S, we get

log |vk(0)| ≤ lim sup
r→1

1

2π

∫ 2π

0

log |vk(re
i θ)|dθ

= lim sup
r→1

1

2π

∫ 2π

0

log |u(rei θ)|dθ

≤ sup
0<r<1

1

2π

∫ 2π

0

|u(rei θ)|dθ

≤ C

uniformly in k. In other words

−
∑

log |fzi
(0)| ≤ − log |u(0)| + C

Denoting C − c by C1,∑
(1 − |zj|) ≤

∑
− log |zj| ≤ C1

One sees from this that actually the infinite product F (z) = Πjfzj
(z)e−i aj
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converges. with proper phase factors aj . We write −zj = |zj |e−i aj . Then

1 − fzi
(z)e−i aj = 1 +

z − zj

1 − zz̄j

|zj |
zj

=
zj − z|zj |2 + z|zj | − zj |zj|

zj(1 − zz̄j)

=
(1 − |zj|)(zj + z|zj |)

zj(1 − zz̄j)

Therefore |1 − fzj
(z)e−i aj | ≤ C(1 − |zj |)(1 − |z|)−1 and if we redefine Fn(z)

by

Fn(z) = Πn
j=1fzj

(z)e−i aj

we have the convergence

lim
n→∞

Fn(z) = F (z) = Π∞
j=1fzj

(z)e−i aj

uniformly on compact subsets of D as n → ∞. It follows from |Fn(z)| ≤ 1

on D that |F (z)| ≤ 1 on D. The functions vn(z) = u(z)
Fn(z)

are analytic in D

(as the only zeros of Fn are zeros of u) and are seen easily to converge to
the limit v = u

F
so that u = Fv. Moreover Fn(z) are continuous near S and

|Fn(z)| ≡ 1 on S. Therefore,

sup
0<r<1

1

2π

∫ 2π

0

|vn(re
i θ)|pdθ = lim sup

r→1

1

2π

∫ 2π

0

|vn(rei θ)|pdθ

= lim sup
r→1

1

2π

∫ 2π

0

|u(rei θ)|p
|Fn(rei θ)|pdθ

= lim sup
r→1

1

2π

∫ 2π

0

|u(rei θ)|pdθ

= sup
0<r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ

Since vn(z) → v(z) uniformly on compact subsets of D, by Fatou’s lemma,

sup
0<r<1

1

2π

∫ 2π

0

|v(rei θ)|pdθ ≤ sup
0<r<1

1

2π

∫ 2π

0

|u(rei θ)|pdθ (7.4)
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In other words we have succeeded in writing u = Fv with |F (z)| ≤ 1, re-
moving all the zeros of u, but v still satsfying (7.4). In order to complete
the proof of the theorem it only remains to prove that |F (z)| = 1 a.e. on S.
From (7.4) and the relation u = vF , it is not hard to see that

lim
r→1

1

2π

∫ 2π

0

|v(rei θ)|p(1 − |F (rei θ)|p)dθ = 0

Since F (rei θ) is known to have a boundary limit F ∗ to show that |F ∗| = 1
a.e. all we need is to get uniform control on the Lebesgue measure of the set
{θ : |v(rei θ)| ≤ δ}. It is clearly sufficient to get a bound on

sup
0<r<1

1

2π

∫ 2π

0

| log |v(rei θ)||dθ

Since log+ v can be dominated by |v|p with any p > 0, it is enough to get a

lower bound on 1
2π

∫ 2π

0
log |v(rei θ)|dθ that is uniform as r → 1. Clearly

1

2π

∫ 2π

0

log |v(rei θ)|dθ ≥ log |u(0)|

is sufficient.

Theorem 7.2. Suppose u ∈ Hp. Then limr→1 u(rei θ) = u∗(eiθ) exists in the
following sense

lim
r→1

∫ 2π

0

|u(rei,θ) − u∗(ei θ)|pdθ = 0

Moreover, if p ≥ 1, u has the Poisson kernel representation in terms of u∗.

Proof. If u ∈ Hp, according to Theorem 7.1, we can write u = vF with
v ∈ Hp which is zero free and |F | ≤ 1. Choose an integer k such that kp > 1.
Since v is zero free v = wk for some w ∈ Hkp. Now w(rei θ) has a limit w∗ in
Lkp(S). Since |F | ≤ 1 and has a radial limit F ∗ it is clear the u has a limit
u∗ ∈ Lp(S) given by u∗ = (w∗)kF ∗. If 0 < p ≤ 1 to show convergence in
the sense claimed above, we only have to prove the uniform integrability of
|u(rei θ)|p = |w(rei θ)|kp which follows from the convergence of w in Lkp(S).
If p ≥ 1 it is easy to obtain the Poisson representation on S by taking the
limit as r → 1 from the representation on |z| = r which is always valid.
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We can actually prove a better version of Theorem 7.1. Let u ∈ Hp for
some p > 0, be arbitrary but not identically zero. We can start with the
inequality

−∞ < log |u(r0e
i θ0)| ≤ r2 − r2

0

2π

∫ 2π

0

log |u(rei (θ0−ϕ))|
r2 − 2rr0 cos ϕ + r2

0

dϕ (7.5)

where z0 = r0e
i θ0 is such that r0 = |z0| < 1 and |u(z0)| > 0. We can use the

uniform integrability of log+ |u(rei θ)| as r → 1, and conclude from Fatou’s
lemma that ∫ 2π

0

| log |u(ei (θ0−ϕ))||
1 − 2r0 cos ϕ + r2

0

dϕ < ∞

Since the Poisson kernel is bounded above as well as below (away from zero)
we conclude that the boundary function u(ei θ) satisfies

∫ 2π

0

| log |u(ei θ)||dθ < ∞

We define f(rei θ) by the Poisson integral

f(rei θ) =
1 − r2

4π

∫ 2π

0

log |u(ei (θ−ϕ))|
1 − 2r cos ϕ + r2

dϕ

to be Harmonic with boundary value log |u(ei θ)|. From the inequality (7.5)
it follows that f(rei θ) ≥ log |u(rei θ)| We then take the conjugate harmonic
function g so that w(·) given by w(rei θ) = f(rei θ) + ig(rei θ) is analytic. We
define v(z) = ew(z) so that log |v| = f . We can write u = Fv that produces a
factorization of u with a zero free v and F with |F (z)| ≤ 1 on D. Since the
boundaru values of log |u| and log |v| match on S, the boundary values of F
which exist must satisfy |F | = 1 a.e. on S. We have therefore proved

Theorem 7.3. Any u in Hp, with p > 0, can be factored as u = Fv with
the following properties: |F | ≤ 1 on D, |F | = 1 on S, v is zero free in D and
log |v|, which is harmonic in D, is given by the Poisson formula in terms
of its boundary value log |v(ei θ)| = log |u(ei θ)| which is in L1(S). Such a
factorization is essentially unique, the only ambiguity being a mutiplicatve
constant of absolute value 1.
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Remark. The improvement over Theorem 7.1 is that we have made sure
that log |v| is not only Harmonic in D but actually takes on its boundary
value in the sense L1(S). This provides the uniqueness that was missing
before. As an example consider the Poisson kernel itself.

u(z) = e
z+1
z−1

|u(z)| < 1 on D, u(rei θ) → ei cot θ
2 as r → 1. Such a factor is without zeros

and would be left alone in Theorem 7.1, but removed now.
There are characterizations of the factor F that occurs in u = vF . Let

us suppose that u ∈ H2 is not identically zero.. If we denote by H∞, the
space of all bounded analytic functions in D, clearly if H ∈ H∞ and u ∈ H2,
then Hu ∈ H2. We denote by K the closure in H2 of Hu as H varies over
H∞. It is clear that K = H2 if and only if K contains any and therefore all
of the units i.e. invertible elements in H2. In any case since u ≡ 0 is ruled
out, let us pick a ∈ D, a 6= 0 such that |u(a)| > 0 and take ka ∈ K to be the
orthogonal projection of fa(z) = 1

1−āz
in K. Note that by Cauchy’s formula

for any v ∈ H2,

1

2π

∫ 2π

0

fa(ei θ)v(ei θ)dθ =
1

2πi

∫ 2π

0

1

ei θ − a
v(ei θ)dei θ = v(a) (7.6)

Then (fa − ka) ⊥ K. Writing the orthogonality relations in terms of the
boundary values, and noting that znka ∈ K for n ≥ 0,∫ 2π

0

[fa(ei θ) − ka(ei θ)]ei nθka(e
i θ)dθ =< fa − ka, z

nka >= 0 (7.7)

On the other hand for n ≥ 0, since znka ∈ H2, by (7.6)∫ 2π

0

fa(ei θ)ei nθka(e
i θ)dθ = 2πanka(a)

Combining with equation (7.7) we get for n ≥ 0,∫ 2π

0

ei nθ|k(ei θ)|2dθ = 2πka(a)an

But |k|2 is real and therefore ka(a) must be real and

∫ 2π

0

ei nθ|k(ei θ)|2dθ =




2πka(a)an if n > 0

2πka(a) if n = 0

2πka(a)ān if n < 0
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This implies that |ka(e
i θ)|2 ≡ cPa(e

i θ) on S where Pa is the Poisson kernel.
If c = 0, it follows that fa ⊥ K, which in turn implies by (7.6) that

< fa, u >= 2πu(a) = 0

which is not possible because of the choice of a. We claim that {kaH} as H
varies over H2 is all of K. If not, let v ∈ K be such that v ⊥ kaH for all
H ∈ H2. We have then, for n ≥ 0, taking H = zn,∫ 2π

0

ka(ei θ)e−i nθv(ei θ)dθ =< v, kaz
n >= 0

For n = −m < 0, zmv ∈ K and∫ 2π

0

ka(ei θ)e−i nθv(ei θ)dθ =< zmv, ka >=< zmv, fa >= 2πamv(a)

Now Fourier inversion gives

ka(ei θ)v(ei θ) = v(a)
∞∑

m=1

ame−i m θ = v(a)
ae−i θ

1 − ae−i θ

= c1(a)
1

ei θ − a
= c2(a)Pa(e

i θ)(e−i θ − ā)

Multiplying by ka and remembering that |ka|2 = cPa, we obtain (kav)(ei θ) =
c3(a)(e−i θ − ā) This leads to

v(ei θ) =
ka(e

i θ)

e−i θ − ā
=

ka(e
i θ)ei θ

1 − āei θ

Therefore v = kaH with H(z) = z
1−āz

∈ H2 contradicting v ⊥ Hka for all
H ∈ H2 and forcing v to be 0. We are nowready to prove the following
theorem.

Theorem 7.4. Let u ∈ H2 be arbitrary and nontrivial. Then 1 belongs to
the span of {znu : n ≥ 0} if and only if

log |u(0)| =
1

2π

∫ 2π

0

log |u(ei θ)| dθ (7.8)
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Proof. Let ‖pn(z)u(z) − 1‖H2 → 0 for some polynomials pn(·). Then

log |pn(0)| ≤ 1

2π

∫ 2π

0

log |pn(e
i θ)| dθ

Since log |pn(ei θ)u(ei θ)| → 0 as n → ∞ in measure on S and
log+ |pn(ei θ)u(ei θ)| is uniformly integrable,

lim sup
n→∞

1

2π

∫ 2π

0

log |pn(ei θ)u(ei θ)| dθ ≤ 0

This implies

log |u(0)| ≥ 1

2π

∫ 2π

0

log |u(ei θ)| dθ

The reverse inequality is always valid and we are done with one half. As for
the converse, If the span of {znu : n ≥ 0 is K ⊂ H2 is a proper subspace,
there is k such that u = kv for some v ∈ H2 with |k|2(ei θ) = cPa(e

i θ), the
Poisson kernel for some a ∈ D. For the Poisson kernel it is easy to verify
that

log |Pa(0)| <
1

2π

∫ 2π

0

log |Pa(e
i θ)| dθ

for any a ∈ D. Therefore we cannot have (7.8) satisfied.

Suppose f(eiθ) ≥ 0 is a weight that is in L1(S). We consider the Hilbert
Space H = L2(S, f) of functions u that are square integrable with respect to

the weight f , i.e. g such that
∫ 2π

0
|g(eiθ)|2f(eiθ)dθ < ∞. The trigonometric

functions {einθ : −∞ < n < ∞} are still a basis for H , though they may
no longer orthogonal. We define Hk = span{ei n θ : n ≥ k}. It is clear the
Hk ⊃ Hk+1 and mutiplication by e±iθ is a unitary map U±1 of H onto itself
that sends Hk onto Hk±1. We are interested in calculating the orthogonal
projection e0(e

i θ) of 1 into H1 along with the residual error ‖e1(e
i θ) − 1‖2

2.
There are two possibilities. Either 1 ∈ H1 in which case H0 = H1 and hence
Hk = H for all k, or H0 is spanned by H1 and a unit vector u0 ∈ H0 that is
orthogonal to H1. If we define uk = Uku0, then H = ⊕∞

j=−∞uj ⊕ H∞ where
H∞ = ∩kHk. In a nice situation we expect that H∞ = {0}. However if
1 ∈ H1 as we saw H∞ = H . If f(ei θ) ≡ c then of course uk = ei k θ.
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Theorem 7.5. Let us suppose that∫ 2π

0

log f(ei θ)dθ > −∞ (7.9)

Then H∞ = {0} and the residual error is given by

‖e0(e
i θ) − ei θ‖2

2 = 2π exp[
1

2π

∫ 2π

0

log f(ei θ)dθ] > 0 (7.10)

Proof. We will split the proof into several steps.

Step 1. We write f(ei θ) = |uei θ)|2, where u is the boundary value of a
function u(rei θ)) in H2. Note that, if this were possible. according to The-
orem 7.1 one can assume with out loss of generality that u(0) 6= 0 and for
0 < r < 1

−∞ < log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ

We can let r → 1, use the domination of log+ |u| by |u| and Fatou’s lemma
on log− |u|. We get

−∞ < log |u(0)| ≤ 1

2π

∫ 2π

0

log |u(rei θ)|dθ =
1

4π

∫ 2π

0

log |f(rei θ)|dθ

We see that the condition (7.9) is necessary for the representation that we
seek. We begin with the function 1

2
log f ∈ L1(S) and construct u(rei θ) given

by the Poisson formula

F (rei θ) =
1 − r2

4π

∫ 2π

0

log f(ei (θ−ϕ))

1 − 2r cos ϕ + r2
dϕ

to be Harmonic with boundary value 1
2
log f . We then take the conjugate

harmonic function G so that w(·) given by w(rei θ) = F (rei θ) + iG(rei θ) is
analytic. We define u(z) = ew(z).∫ 2π

0

|u(rei θ)|2dθ =

∫ 2π

0

exp[2F (rei θ)]dθ

≤
∫ 2π

0

1 − r2

2π

∫ 2π

0

f(ei (θ−ϕ))

1 − 2r cos ϕ + r2
dϕdθ

=

∫ 2π

0

f(ei θ)dθ
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Therefore u ∈ H2 and limr→1 u(rei θ) = u(ei θ) exists in L2(S). Clearly

|u(ei θ)| = exp[lim
r→1

F (rei θ)] =
√

f(ei θ)

and f = |u|2 on S. It is easily seen that u(z) =
∑

n≥0 anzn with

∑
n≥0

|an|2 =
1

2π

∫ 2π

0

f(ei θ)dθ

Step 2. Our representation has the additional property that u(z) is zero free
in D and satifies (7.8). Suppose h(rei θ) is any function in H2 with boundary
value h(ei θ) with |h| =

√
f that also satsifies

log |h(0)| =
1

2π

∫ 2π

0

1

2
log fdθ

then

log |h(0)| ≤ 1

2π

∫ 2π

0

log |h(rei θ)|dθ

By Fatou’s lemma applied to log− |h| as r → 1 we get

lim sup
r→1

1

2π

∫ 2π

0

log |h(rei θ)|dθ ≤ 1

2π

∫ 2π

0

1

2
log f(ei θ)dθ

Therefore equality holds in Fatou’s lemma implying the uniform integrabilty
as well as the convergence in L1(S) of log |h(rei θ)| to 1

2
log f(ei θ) as r → 1.

In particular for 0 < r < 1,

log |h(0)| =
1

2π

∫ 2π

0

log |h(rei θ)|dθ

and hence h is zero free in D. Consequently, for 0 ≤ r < r′ < 1

log |h(rei θ)| =
r′2 − r2

2π

∫ 2π

0

log |h(rei (θ−ϕ))|
r′2 − 2r′r cos dϕ + r2

dϕ

We can let r′ → 1 use the convergence of log |h(rei θ)| to 1
2
log f in L1(S) to

conclude

log |h(rei θ)| =
1 − r2

4π

∫ 2π

0

log f(θ − ϕ)

1 − 2r cos dϕ + r2
dϕ
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Therfore the representation of f(ei θ) = |u(ei θ)|2, with u(ei θ) the boundary
value of u ∈ H2 that satisfies condition (7.8) is unique to within a multiplica-
tive constant of absolute value 1. The significance of making the choice of
u so that the condition (7.8) is valid, is that we can conclude that {zju(z)}
spans all of H2.

Step 3. Consider the mapping from L2(S, dθ) into L2(S, f) that sends

g(ei θ) → g(ei θ)
u(ei θ)

. Since the integrability of log f implies that f and there-
fore u is almost surely nonzero on S, this map is a unitary isomorphism.
Whereas any u with |u|2 = f would be enough, our u has a special property.
It is the boundary value of a function u(rei θ) ∈ H2, that satisfies (7.8). Con-
sider g(ei θ) = a0. In the isomorphism it goes over to a0

u
. Its inner product

with ei k θ with k ≥ 1 is given by∫ 2π

0

[
a0

u(ei θ)
]e−i k θu(ei θ)ū(ei θ)dθ = a0

∫ 2π

0

ū(ei θ)e−i k θdθ = 0

This shows that a0

u
⊥ H1. We claim that the decomposition 1 = a0

u
+ u−a0

u
is

the decomposition of 1 into its components in (H0 ∩H⊥
1 )⊕H1. The residual

error is given by 2π|a0|2 which is equal to 2π exp[2u(0)] and agrees with
(7.10). We now establish our claim to complete the proof. We need to check
that a0

u
∈ H0 and u−a0

u
∈ H1. In our isomorphism 1 → 1

u
and for n ≥ 0,

znu → ei nθ. We know that the span of {znu(z) : n ≥ 0} in H2 is all of H2.
Therefore 1

u
∈ H0. To complete the proof of our claim we need to verify that

u − a0 is in the span of {znu : n ≥ 1}. This is easy because u − a0 = zv(z)
for some v ∈ H2. Finally the same agument shows that the norm of the
projection of 1 onto Hk equals 2π

∑∞
i=k |ai|2 which tends to 0 as k → ∞.

This proves 1 ⊥ H∞. In fact since U±nH∞ = H∞, it follows that ei nθ ⊥ H∞
for every n. Therefore H∞ = {0}.
Consider the problem of approximating a function f0 ∈ L2(µ) by linear com-
inations

∑
j≤−1 ajfj. We assume a stationarity in the form ρn =

∫
fjfn+jdµ

which is independent of j. Of course ρn = ρ−n is a positive definite function
and by Bochner’s theorem ρn =

∫ 2π

0
ei nθdF (θ) for some nonnegative mea-

sure F on S. The object to be minimized is
∫ |f0 −

∑
j≤−1 ajfj |2dµ over all

possible a−1, . . . , a−k, . . . . By Bochner’s theorem this is equal to

inf
{aj :j≤−1}

∫ 2π

0

|1 −
∑
j≤−1

aje
i jθ|2dF (θ)
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If dF (θ) = f(θ)dθ, by the reality of ρn, f(θ) is symmetric, and we can
replace j ≤ −1 by j ≥ 1. Then this is exactly the problem we considered.
The minimum is equal to 2π exp[ 1

2π

∫ 2π

0
log f(θ)dθ] and we know how to find

the minimizer.

Suppose now f(t) ≥ 0 is a weight on R with
∫ ∞
−∞ f(t)dt < ∞. Let Ha be the

span of {eibt : b ≤ a} in L2[R, f ]. For a < 0, what is the projection ea(·) of 1
in Ha and what is the value of

∫ ∞
−∞ |1 − ea(t)|2f(t)dt?

The natural condition on f is
∫ ∞
−∞

log f(t)
1+t2

dt > −∞. Then the Poisson integral

F (x, y) =
y

2π

∫ ∞

−∞

f(t)

y2 + (x − t)2
dt

defines a harmonic function F in the upper half plane C+ = {(x, y) : y > 0}
with boundary value 1

2
log f on R = {(x, y) : y = 0} and F can be the

real part of an analytic function w = F + iG on C+. The function u = ew

defines an analytic function on C+ with boundary value u∗ and f(t) = |u∗|2.
Moreover u∗ is the Fourier transform of v in L2(R) that is supported on
(−∞, 0). One can again set up an isomorphism between L2[R, 1] and L2[R, f ]
by sending g → bg

u∗ (ĝ is the Fourier transform of g). This maps v → 1 and
v(·−a) → eiat. The projecton is seen to be the image of v1(−∞,a)(·) with the

error being
∫ 0

a
|v|2(t)dt.

Example: Suppose f(t) = 1
1+t2

. The factorization f = |u∗|2 is produced by
u∗(t) = (i + t)−1. This produces v(t) = et1(−∞,0)(t). The projection is the
Fourier transform of va(t) = et1(−∞,a)(t) which is seen to be eaeiat.
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