

## 8 BMO

The space of functions of Bounded Mean Oscillation (BMO) plays an important role in Harmonic Analysis.

A function  $f$ , in  $L_1(loc)$  in  $R^d$  is said to be a **BMO** function if

$$\sup_{x,r} \inf_a \frac{1}{|B_{x,r}|} \int_{y \in B_{x,r}} |f(y) - a| dy = \|f\|_{BMO} < \infty \quad (8.1)$$

where  $B_{x,r}$  is the ball of radius  $r$  centered at  $x$ , and  $|B_{x,r}|$  is its volume.

**Remark.** The infimum over  $a$  can be replaced by the choice of

$$a = \bar{a} = \frac{1}{|B_{x,r}|} \int_{y \in B_{x,r}} f(y) dy$$

giving us an equivalent definition. We note that for any  $a$ ,

$$|a - \bar{a}| \leq \frac{1}{|B_{x,r}|} \int_{y \in B_{x,r}} |f(y) - a| dy$$

and therefore if  $a^*$  is the optimal  $a$ ,

$$|\bar{a} - a^*| \leq \|f\|_{BMO}$$

**Remark.** Any bounded function is in the class BMO and  $\|f\|_{BMO} \leq \|f\|_\infty$ .

**Theorem 8.1 (John-Nirenberg).** *Let  $f$  be a BMO function on a cube  $Q$  of volume  $|Q| = 1$  satisfying  $\int_Q f(x) dx = 0$  and  $\|f\|_{BMO} \leq 1$ . Then there are finite positive constants  $c_1, c_2$ , independent of  $f$ , such that, for any  $\ell > 0$*

$$|\{x : |f(x)| \geq \ell\}| \leq c_1 \exp\left[-\frac{\ell}{c_2}\right] \quad (8.2)$$

*Proof.* Let us define

$$F(\ell) = \sup_f |\{x : |f(x)| \geq \ell\}|$$

where the supremum is taken over all functions with  $\|f\|_{BMO} \leq 1$  and  $\int_Q f(x) dx = 0$ . Since  $\int_Q f(x) dx = 0$  implies that  $\|f\|_1 \leq \|f\|_{BMO} \leq 1$ ,  $F(\ell) \leq \frac{1}{\ell}$ . Let us subdivide the cube into  $2^d$  subcubes with sides one half the original cube. We pick a number  $a > 1$  and keep the cubes  $Q_i$  with  $\frac{1}{|Q_i|} \int_{Q_i} |f(x)| dx \geq a$ . We subdivide again those with  $\frac{1}{|Q_i|} \int_{Q_i} |f(x)| dx < a$  and keep going. In this manner we get an atmost countable collection of disjoint cubes that we enumerate as  $\{Q_j\}$ , that have the following properties:

1.  $\frac{1}{|Q_j|} \int_{Q_j} |f(x)| dx \geq a.$
2. Each  $Q_j$  is contained in a bigger cube  $Q'_j$  with sides double the size of the sides of  $Q_j$  and  $\frac{1}{|Q'_j|} \int_{Q'_j} |f(x)| dx < a.$
3. By the Lebesgue theorem  $|f(x)| \leq a$  on  $Q \cap (\bigcup_j Q_j)^c$ .

If we denote by  $a_j = \frac{1}{|Q_j|} \int_{Q_j} f(x) dx$ , we have

$$|a_j| \leq \frac{1}{|Q_j|} \int_{Q_j} |f(x)| dx \leq \frac{2^d}{|Q'_j|} \int_{Q'_j} |f(x)| dx \leq 2^d a$$

by property 2). On the other hand  $f - a_j$  has mean 0 on  $Q_j$  and BMO norm at most 1. Therefore (scaling up the cube to standard size)

$$\begin{aligned} |Q_j \cap \{x : |f(x)| \geq 2^d a + \ell\}| &\leq |Q_j \cap \{x : |f(x) - a_j| \geq \ell\}| \\ &\leq |Q_j| F(\ell) \end{aligned}$$

Summing over  $j$ , because of property 3),

$$|\{x : |f(x)| \geq 2^d a + \ell\}| \leq F(\ell) \sum_j |Q_j|$$

On the other hand property 1) implies that  $\sum_j |Q_j| \leq \frac{1}{a}$  giving us

$$F(2^d a + \ell) \leq \frac{1}{a} F(\ell)$$

which is enough to prove the theorem.  $\square$

**Corollary 8.1.** *For any  $p > 1$  there is a constant  $C_{d,p}$  depending only on the dimension  $d$  and  $p$  such that*

$$\sup_Q \frac{1}{|Q|} \int_Q |f(x) - \frac{1}{|Q|} \int_Q f(x) dx|^p dx \leq C_{d,p} \|f\|_{BMO}^p$$

The importance of BMO, lies partly in the fact that it is dual to  $\mathcal{H}_1$ .

**Theorem 8.2.** *There are constants  $0 < c \leq C < \infty$  such that*

$$c \|f\|_{BMO} \leq \sup_{g: \|g\|_{\mathcal{H}_1} \leq 1} \left| \int f(x) g(x) dx \right| \leq C \|f\|_{BMO} \quad (8.3)$$

and every bounded linear functional on  $\mathcal{H}_1$  is of the above type.

The proof of the theorem depends on some lemmas.

**Lemma 8.1.** *The Riesz transforms  $R_i$  map  $L_\infty \rightarrow BMO$  boundedly. In fact convolution by any kernel of the form  $K(x) = \frac{\Omega(x)}{|x|^d}$  where  $\Omega(x)$  is homogeneous of degree zero, has mean 0 on  $S^{d-1}$  and satisfies a Hölder condition on  $S^{d-1}$  maps  $L_\infty \rightarrow BMO$  boundedly.*

*Proof.* Let us suppose that  $Q$  is the unit cube centered around the origin and denote by  $2Q$  the doubled cube. We write  $f = f_1 + f_2$  where  $f_1 = f\mathbf{1}_{2Q}$  and  $f_2 = f - f_1 = f\mathbf{1}_{(2Q)^c}$ .

$$g(x) = g_1(x) + g_2(x)$$

where

$$g_i(x) = \int_{R^d} K(x-y) f_i(y) dy$$

$$\int_Q |g_1(x)| dx \leq \|g_1\|_2 \leq \sup_{\xi} |\widehat{K}(\xi)| \|f_1\|_2 \leq 2^{\frac{d}{2}} \sup_{\xi} |\widehat{K}(\xi)| \|f\|_\infty$$

On the other hand with  $a_Q = \int_Q K(-y) f_2(y) dy$

$$\begin{aligned} \int_Q |g_2(x) - a_Q| dx &\leq \int_Q dx \int_{R^d} |K(x-y) - K(-y)| f_2(y) dy \\ &\leq \|f\|_\infty \int \int_{\substack{z \in Q \\ y \notin 2Q}} |K(x-y) - K(-y)| dx dy \\ &\leq \|f\|_\infty \sup_x \int_{|y| \geq 2|x|} |K(x-y) - K(-y)| dy \\ &\leq B \|f\|_\infty \end{aligned}$$

The proof for arbitrary cube is just a matter of translation and scaling. The Hölder continuity is used to prove the boundedness of  $\widehat{K}(\xi)$ .  $\square$

**Lemma 8.2.** *Any bounded linear function  $\Lambda$  on  $\mathcal{H}_1$  is given by*

$$\Lambda(f) = \sum_{i=0}^d \int (R_i f)(x) g_i(x) dx = - \int f(x) \sum_{i=0}^d (R_i g_i)(x) dx$$

where  $R_0 = \mathcal{I}$  and  $R_i$  for  $1 \leq i \leq d$  are the Riesz transforms.

*Proof.* The space  $\mathcal{H}_1$  is a closed subspace of the direct sum  $\bigoplus L_1(\mathbb{R}^d)$  of  $d+1$  copies of  $L_1(\mathbb{R}^d)$ . Hahn-Banach theorem allows us to extend  $\Lambda$  boundedly to  $\bigoplus L_1(\mathbb{R}^d)$  and the Riesz representation theorem gives us  $\{g_i\}$ . Finally  $g_0 + \sum_{i=1}^d R_i g_i$  is in BMO.  $\square$

**Lemma 8.3.** *If  $g \in BMO$  then*

$$\int_{\mathbb{R}^d} \frac{|g(y)|}{1+|y|^{d+1}} dy < \infty \quad (8.4)$$

and

$$G(t, x) = \int g(y) p(t, x-y) dy$$

exists where  $p(\cdot, \cdot)$  is the Poisson kernel for the half space  $t > 0$ . Moreover  $g(t, x)$  satisfies

$$\sup_x \int_{\substack{|y-x| \leq h \\ 0 < t \leq h}} t |\nabla G(t, y)|^2 dt dy \leq A \|g\|_{BMO}^2 h^d \quad (8.5)$$

for some constant independent of  $g$ . Here  $\nabla G$  is the full gradient in  $t$  and  $x$ .

*Proof.* First let us estimate  $\int_{\mathbb{R}^d} \frac{|g(x)|}{1+|x|^{d+1}} dx$ . If we denote by  $Q_n$  the cube of side  $2^n$  around the origin

$$\begin{aligned} \int_{\mathbb{R}^d} \frac{|g(x)|}{1+|x|^{d+1}} dx &\leq \int_{Q_0} \frac{|g(x)|}{1+|x|^{d+1}} dx + \sum_n \int_{Q_{n+1} \cap Q_n^c} \frac{|g(x)|}{1+|x|^{d+1}} dx \\ &\leq \int_{Q_0} |g(x)| dx + \sum_n \frac{1}{2^{n(d+1)}} \int_{Q_{n+1}} |g(x)| dx \\ &\leq \int_{Q_0} |g(x)| dx + \sum_n \frac{1}{2^{n(d+1)}} \int_{Q_{n+1}} |g(x) - a_{n+1}| dx \\ &\quad + \sum_n \frac{|a_{n+1}|}{2^n} \\ &\leq \int_{Q_0} |g(x)| dx + \|g\|_{BMO} \sum_n \frac{2^{(n+1)d}}{2^{n(d+1)}} + \sum_n \frac{|a_{n+1}|}{2^n} \end{aligned}$$

where

$$a_{n+1} \leq \frac{1}{2^{(n+1)d}} \int_{Q_{n+1}} g(x) dx$$

Moreover

$$|a_{2Q} - a_Q| = \frac{1}{|Q|} \int_Q |g(x) - a_{2Q}| dx \leq 2^d \|g\|_{BMO}$$

and this provides a bound of the form

$$|a_{Q_n}| \leq Cn \|g\|_{BMO} + \int_{Q_0} |g(x)| dx$$

establishing (8.4). We now turn to proving (8.5). Again because of the homogeneity under translations and rescaling, we can assume that  $x = 0$  and  $h = 1$ . So we only need to control

$$\int_{\substack{|y| < 1 \\ 0 < t < 1}} t |\nabla G(t, y)|^2 dt dy \leq A \|g\|_{BMO}^2$$

We denote by  $Q_4$  the cube  $|x| \leq 2$  and write  $g$  as

$$g = a_{Q_4} + (g_1 - a_{Q_4}) + g_2$$

where  $g_1 = g \mathbf{1}_{Q_4}$ ,  $g_2 = g - g_1 = g \mathbf{1}_{Q_4^c}$ . Since constants do not contribute to (8.5), we can assume that  $a_{Q_4} = 0$ , and therefore the integral  $\int_{Q_4} |g(x)| dx$  can be estimated in terms of  $\|g\|_{BMO}$ . An easy calculation, writing  $G = G_1 + G_2$  yields

$$|\nabla G_2(t, y)| \leq \int_{Q_4^c} \frac{|g(x)|}{1 + |x|^{d+1}} dx \leq A \|g\|_{BMO}$$

As for the  $G_1$  contribution in terms of the Fourier transform we can control it by

$$\int_0^\infty \int_{R^d} t |\nabla G|^2 dt dy = \int_0^\infty \int_{R^d} t |\xi|^2 e^{-2t|\xi|} |\widehat{g}_1(\xi)|^2 d\xi dt = \int_{R^d} |\widehat{g}_1(\xi)|^2 d\xi$$

which is controlled by  $\|g\|_{BMO}$  because of the John-Nirenberg theorem.  $\square$

**Lemma 8.4.** *Any function  $g$  whose Poisson integral  $G$  satisfies (8.5) defines a bounded linear functional on  $\mathcal{H}_1$ .*

*Proof.* The idea of the proof is to write

$$\begin{aligned} 2 \int_0^\infty \int_{R^d} t \nabla G(t, x) \nabla F(t, x) dt dx &= 4 \int_0^\infty \int_{R^d} t e^{-2t|\xi|} |\xi|^2 \widehat{f}(\xi) \bar{\widehat{g}}(\xi) d\xi dt \\ &= \int_{R^d} \widehat{f}(\xi) \bar{\widehat{g}}(\xi) d\xi \\ &= \int_{R^d} f(x) g(x) dx \end{aligned}$$

and concentrate on

$$\int_0^\infty \int_{R^d} t |\nabla_x G(t, x)| |\nabla_x F(t, x)| dt dx$$

We need the auxiliary function

$$(S_h u)(x) = \left[ \int \int_{|x-y| < t < h} t^{1-d} |\nabla u|^2 dy dt \right]^{\frac{1}{2}}$$

Clearly  $(S_h u)(x)$  is increasing in  $h$  and we show in the next lemma that

$$\|S_\infty F\|_1 \leq C \|f\|_{\mathcal{H}_1}$$

Let us assume it and complete the proof. Define

$$h(x) = \sup \{h : (S_h F)(x) \leq MC\}$$

then

$$(S_{h(x)} F)(x) \leq MC$$

In addition it follows from (8.5) that

$$\sup_{y,h} \int_{|y-x| \leq h} |(S_h F)(x)|^2 dx \leq Ch^d$$

Now  $h(x) < h$  means  $(S_h F)(x) > MC$  and therefore

$$|\{x : |x-y| < h, h(x) < h\}| \leq \frac{Ch^d}{M^2}$$

By the proper choice of  $M$ , we can be sure that

$$|\{x : |x - y| < h, h(x) \geq h\}| \geq ch^d$$

Now we complete the proof.

$$\begin{aligned} & \int_0^\infty \int_{R^d} t |\nabla_x G(t, x)| |\nabla_x F(t, x)| dt dx \\ & \leq C \int_0^\infty \int_{R^d} \int_{|y-x| < t \leq h(y)} t^{1-d} |\nabla_x G(t, x)| |\nabla_x F(t, x)| dt dx dy \\ & \leq \int_{R^d} dy \left( \int_0^\infty \int_{|y-x| < t \leq h(y)} t^{1-d} |\nabla_x G(t, x)|^2 dx dt \right)^{\frac{1}{2}} \\ & \quad \times \left( \int_0^\infty \int_{|y-x| < t \leq h(y)} t^{1-d} |\nabla_x F(t, x)|^2 dx dt \right)^{\frac{1}{2}} \\ & \leq M \int_{R^d} (S_\infty F)(y) dy \leq M \|f\|_{\mathcal{H}_1} \end{aligned}$$

□

**Lemma 8.5.** *If  $f \in \mathcal{H}_1$  then  $|(S_\infty F)(x)|_1 \leq C \|f\|_{\mathcal{H}_1}$ .*

*Proof.* This is done in two steps.

**Step 1.** We control the nontangential maximal function

$$U^*(x) = \sup_{y, t: |x-y| \leq kt} |U(t, y)|$$

by

$$\|U^*\|_1 \leq C_k \|u\|_{\mathcal{H}_1}$$

If  $U_0(x) \in \mathcal{H}_1$  then  $U_0$  and its  $n$  Riesz transforms  $U_1, \dots, U_n$  can be recognized as the full gradient of a Harmonic function  $W$  on  $R_+^{n+1}$ . Then  $V = (U_0^2 + \dots + U_n^2)^{\frac{p}{2}}$  can be verified to be subharmonic provided  $p > \frac{n-1}{n-2}$ . This depends on the calculation

$$\begin{aligned} \Delta V &= \frac{p}{2} \frac{p-2}{2} V^{\frac{p}{2}-2} \|\nabla V\|^2 + \frac{p}{2} V^{\frac{p}{2}-1} \Delta V \\ &= p V^{\frac{p}{2}-2} \left[ (p-2) \left\| \sum_j U_j \nabla U_j \right\|^2 + V \sum_j \|\nabla U_j\|^2 \right] \\ &\geq 0 \end{aligned}$$

provided either  $p \geq 2$ , or if  $0 < p < 2$ ,

$$\|H\xi\|^2 \leq \frac{1}{2-p} \operatorname{Tr} (H^*H)\|\xi\|^2 \quad (8.6)$$

where  $H$  is the Hessian of  $W$  with trace 0 and  $\xi = (U_0, \dots, U_n)$ . Then if  $\{\lambda_j\}$  are the  $n+1$  eigenvalues of  $H$ , and  $\lambda_0$  is the one with largest modulus, the remaining ones have an average of  $-\frac{\lambda_0}{n}$  and therefore

$$\operatorname{Tr} (H^*H) = \sum \lambda_j^2 \geq (1 + \frac{1}{n})\lambda_0^2$$

This means that for equation (8.6) to hold we only need  $\frac{n}{n+1} \leq \frac{1}{2-p}$  or  $p \geq \frac{n-1}{n+1}$ . In any case there is a choice of  $p = p_n < 1$  that is allowed.

Now consider the subharmonic function  $V$ . If we denote by  $h(t, x)$  the Poisson integral of the boundary values of  $h(0, x) = V(0, x)$ ,

$$V(t, x) \leq h(t, x)$$

and we have

$$U^*(x) = \sup_{(y,t): \|x-y\| \leq kt} U(t, y) \leq \sup_{(y,t): \|x-y\| \leq kt} V[(t, y)]^{\frac{1}{p}} \leq \sup_{(y,t): \|x-y\| \leq kt} h[(t, y)]^{\frac{1}{p}}$$

By maximal inequality, valid because  $\frac{1}{p} > 1$ ,

$$\|U^*\|_1 \leq \|h^*\|_{\frac{1}{p}}^p \leq C_{k,p} \|h(0, x)\|_{\frac{1}{p}}^p = C_{k,p} \|V(0, x)\|_{\frac{1}{p}}^p \leq C_k \|U\|_{\mathcal{H}_1}$$

**Step 2.** It is now left to control  $\|(S_\infty U)(x)\|_1 \leq C\|U^*\|_1$ . We use the room between the regions  $|x - y| \leq t$  in the definition of  $S$  and the larger regions  $|x - y| \leq kt$  used in the definition of  $U^*$  to control  $S$  through  $U$ . Let us pick  $k = 4$ . Let  $\alpha > 0$  be a number. Consider the set  $E = \{x : |U^*(x)| \leq \alpha\}$  and  $B = E^c = \{x : |U^*(x)| > \alpha\}$ . We denote by  $G$  the union  $G = \bigcup_{x \in E} \{(t, y) : |x - y| \leq t\}$ . We want to estimate

$$\begin{aligned} \int_E |S_\infty U|^2(x) dx &= \int \int \int_{\substack{x \in E \\ |x-y| \leq t}} t^{1-d} |\nabla U|^2(t, y) dx dt dy \\ &\leq C \int_G t |\nabla U|^2(t, y) dt dy \\ &\leq C \int_G t (\Delta U^2)(t, y) dt dy \\ &\leq C \int_{\partial G} [|t \frac{\partial U^2}{\partial n}(t, y)| + |U^2(t, y) \frac{\partial t}{\partial n}(t, y)|] d\sigma \end{aligned}$$

by Greens's theorem. We have cheated a bit. We have assumed some smoothness on  $\partial G$ . We have assumed decay at  $\infty$  so there are no contributions from  $\infty$ . We can assume that we have initially  $U(0, x) \in L_2$  so the decay is valid. We can approximate  $G$  from inside by regions  $G_\epsilon$  with smooth boundary. The boundary consists of two parts.  $B_1 = \{t = 0, x \in E\}$  and  $B_2 = \{x \in E^c, t = \phi(x)\}$ . Moreover  $|\nabla \phi| \leq 1$ . We will show below that  $t|\nabla U(t, y)| \leq C\alpha$  in  $G$ . On  $B_1$  one can show that  $t|U||\nabla U| \rightarrow 0$  and  $U^2 \frac{\partial t}{\partial n} \rightarrow U^2$ . Moreover  $d\sigma \simeq dx$ . The contribution from  $B_1$  is therefore bounded by  $\int_E |U(0, x)|^2 dx \leq \int_E |U^*(0, x)|^2 dx$ . On the other hand on  $B_2$  since it is still true that  $d\sigma = dx$ , using the bound  $t|\nabla U| \leq C\alpha$ ,  $|\frac{\partial t}{\partial n}| \leq 1$ , we see that the contribution is bounded by  $C\alpha^2 |E^c|$ . Putting the pieces together we get

$$\begin{aligned} \int_E |S_\infty U|^2(x) dx &\leq C\alpha^2 T_{U^*}(\alpha) + C \int_E |U^*|^2(x) dx \\ &\leq C\alpha^2 T_{U^*}(\alpha) + C \int_0^\alpha z T_{U^*}(z) dz \end{aligned}$$

where  $T_{U^*}(z) = \text{mes}\{x : |U^*(x)| > z\}$ . Finally since  $\text{mes}(E^c) = T_{U^*}(\alpha)$

$$\text{mes}\{x : |S_\infty U(x)| > \alpha\} \leq CT_{U^*}(\alpha) + \frac{C}{\alpha^2} \int_0^\alpha z T_{U^*}(z) dz$$

Integrating with respect to  $\alpha$  we obtain

$$\|S_\infty U\|_1 \leq C\|U^*\|_1$$

**Step 3.** To get the bound  $t|\nabla U| \leq C\alpha$  in  $G$ , we note that any  $(t, x) \in G$  has a ball around it of radius  $t$  contained in the set  $\cup_{x \in E} \{y : |x - y| \leq 4t\}$  where  $|U| \leq \alpha$  and by standard estimates, if a Harmonic function is bounded by  $\alpha$  in a ball of radius  $t$  then its gradient at the center is bounded by  $\frac{C\alpha}{t}$ .  $\square$