8 BMO

The space of functions of Bounded Mean Oscillation (BMO) plays an impor-
tant role in Harmonic Analysis.
A function f, in L;(loc) in R? is said to be a BMO function if

sup inf [F(y) = aldy = [lull Bro < o0 (8.1)

x,r a |B§U77'| yGBx,r

where B, , is the ball of radius r centered at z, and |B,,| is its volume.
Remark. The infimum over a can be replaced by the choice of

1

B ‘Bx’r’ yEBx,r

f(y)dy

a=a

giving us an equivalent definition. We note that for any a,

o —al < £ (y) — aldy

’Bx/r‘ yEBx,r

and therefore if a* is the optimal a,

@ —a"[ < |[fllBano
Remark. Any bounded function is in the class BMO and || f|| a0 < || f]]oo-

Theorem 8.1 (John-Nirenberg). Let f be a BMO function on a cube Q
of volume |Q| = 1 satisfying fQ f(z)dz = 0 and ||f|lpmo < 1. Then there
are finite positive constants cyi, ca, independent of f, such that, for any ¢ > 0

o @) 2 ] < e expl——] (82

2
Proof. Let us define

F(t) = sup {z: /(=) = ¢}

where the supremum is taken over all functions with || f|lgmo < 1 and

Jo fx)dz = 0. Since [, f(v)dz = 0 implies that [|f|i < [[fllsmo < 1,
F) < %. Let us subdivide the cube into 2¢ subcubes with sides one half
the original cube. We pick a number a > 1 and keep the cubes @; with
ﬁfQi |f(z)|dz > a. We subdivide again those with ‘Q—i' Jo 1f(@)|dz < a
and keep going. In this manner we get an atmost countable collection of dis-

joint cubes that we enumerate as {Q);}, that have the following properties:
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1. @f% |f(x)|dz > a.

2. Each @); is contained in a bigger cube @} with sides double the size of
the sides of Q; and 17 [, |f(2)]dz < a.

3. By the Lebesgue theorem |f(z)| <a on Q N (U;Q;)°.

If we denote by a; = ﬁ fQ, f(z)dz, we have

|a;| <

e < o [ 1f@lde < 2%
Qj j| Q)

1
Q] Q

by property 2). On the other hand f — a; has mean 0 on ); and BMO norm
at most 1. Therefore (scaling up the cube to standard size)

QN {z:[f(2)] 2 2%+ ] < QN {z: |f(2) —a5] > £}
< |Q4]F' ()

Summing over j, because of property 3),

{os 1f@)] = 2+ B < FOY 1)

On the other hand property 1) implies that } [Q;| < 1 giving us
1

F(2'a+0) < —F(0)

which is enough to prove the theorem. O

Corollary 8.1. For any p > 1 there is a constant Cy, depending only on
the dimension d and p such that

1 1
sup 1o /Q @) - 5 /Q F(@)dalPdz < Capll fBaro

The importance of BMO, lies partly in the fact that it is dual to H;.

Theorem 8.2. There are constants 0 < ¢ < C < 0o such that

cllfllsmo < sup !/f(x)g(x)dx\ < C[fllsmo (8.3)

g:llgllw, <1

and every bounded linear functional on Hy is of the above type.
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The proof of the theorem depends on some lemmas.

Lemma 8.1. The Riesz transforms R; map Lo, — BMO boundedly. In fact
convolution by any kernel of the form K(x) = gf(ﬁ where Q(z) is homoge-

neous of degree zero, has mean 0 on S and satisfies a Holder condition on
Sl maps Lo, —BMO boundedly.

Proof. Let us suppose that () is the unit cube centered around the origin and
denote by 2@ the doubled cube. We write f = f; + f, where f; = flsg and

fo=f—fi= [1pg)-.
9(x) = gi(z) + g2()

where

gi(x) = K(z —y)fi(y)dy

Rd

/Q 91() do < flga]l2 < sup (KO ]l < 28 sup K]]I 1l

On the other hand with ag = fQ K(—y) fa(y)dy

/Q 92(2) — aqlda

/ K —y) ~ K(-y)lfoly)dy

<1l / / y) — K (—y)\dzdy

y¢2Q

< [1]loe sup / K ) — KCplay
T y|>2|x

< B[ flls

The proof for arbitrary cube is just a matter of translation and scaling. The
Hoélder continuity is used to prove the boundedness of K(€). O

Lemma 8.2. Any bounded linear function A on H1 15 given by

Z/Rf Daade =~ [ £ (i) o)

where Ry =7 and R; for 1 <i <d are the Riesz tmnsforms.
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Proof. The space H; is a closed subspace of the direct sum &L, (R?) of d+ 1
copies of Li(R?). Hahn-Banach theorem allows us to extend A boundedly
to ®L;(RY) and the Riesz representation theorem gives us {g;}. Finally

go+ 2% Rig; is in BMO. O

Lemma 8.3. If g € BMO then

/ Mdy < 00 (8.4)

a1+ ‘y‘dJrl

and
G(t,x) = /g(y)p(t,x —y)dy

exists where p(-,-) is the Poisson kernel for the half space t > 0. Moreover
g(t, x) satisfies

P /yz<h tVG(t,y)Pdtdy < Allgl[fuoh (8.5)

x
0<t<h

for some constant independent of g. Here VG 1is the full gradient in t and x.

Proof. First let us estimate | Rd T +\ ‘d‘ﬂdx If we denote by @), the cube of
side 2" around the origin

9(2)] / lg(x / z)|
S Sl A R G0 @l
/Rd 1+ |z|d+t T ‘x’dJrl $+Z Oninos 1+ 2|7 x
|g<x>|dx+2—2n<dﬂ> AL

n+1

‘g( ‘dl’ + Z 2n(d+1) / ‘g(l’) - anJrl’dx

Qo n+l

Z|an+1|
n+1)d ‘&n 1‘
< [, o +lslomo 3 G + 3 5
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where

1
ant1 < 570 / g(x)dx
2(n+1)d Qnin

Moreover
1 d
lasg —aq| = = [ lg(x) — axgldx < 2°%|g|[Bmo
QI Jo

and this provides a bound of the form

lag.| < Crllgllswo + / lg(a)de

0

establishing (8.4). We now turn to proving (8.5). Again because of the
homogeneity under translations and rescaling, we can assume that z = 0
and h = 1. So we only need to control

[, VGt Pty < Alglo

o<t<1

We denote by Q4 the cube |z| < 2 and write g as

g=aqg, + (gl _aQ4) + 92

where g1 = glq,, 92 = g — g1 = glq;. Since constants do not contribute to
(8.5), we can assume that ag, = 0, and therefore the integral fQ4 lg(x)|dx can
be estimated in terms of ||g||ppo. An easy calculation, writing G = G + G2
yields

l9()]

dr < A
: 1+ ’x‘d+1 T > ||gHBMO

VGt )] < /Q

As for the Gy contribution in terms of the Fourier transform we can control
it by

x R 20-20E15 () 2dedt = | [6,(6)]2
| [ nvcraay = [ [ nepe g ©rasa = [ @k

which is controlled by ||g||smo because of the John-Nirenberg theorem. [
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Lemma 8.4. Any function g whose Poisson intgeral G satisfies (8.5) defines
a bounded linear functional on H;.

Proof. The idea of the proof is to write

/ /Rd tVG(t, x)VF(t, x)dtd:c—4/ / te 2| e 2 F(&)g(&)dedt
» F(&)(€)de

f(x)g(x)dx
Rd
and concentrate on

/ / 1|V G(t, 2)|| Vo F(t, 7)|dtdx
0 R4

We need the auxiliary function

(Spu)(x // th d|Vu|2dydt]
lz—y|<t<h

Clearly (Spu)(x) is increasing in h and we show in the next lemma that
1o Fll < Cl 14,
Let us assume it and complete the proof. Define
h(z) = sup{h: (SpF)(x) < MC}
then
(Shwy F)(x) < MC

In addition it follows from (8.5) that

sup/ (SR F)(z)*dx < Ch*
ly—z|<h

y,h
Now h(z) < h means (S, F)(x) > MC and therefore

Ch?

oo =yl < hohle) < B} < o
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By the proper choice of M, we can be sure that
{x : |z —y| < h,h(x) > h}| > ch?

Now we complete the proof.

/ / 1V, G(t, 2)|| VL F(t, z)|dtdz
0 R4

SO/ / / VLGt 2)| |V F(t, )| dtdady
0 JRI Jly—z|<t<h(y)
< / dy( / / 174V, G (¢, 7)|2dwdt) 2

R? 0 J]y—z|<t<h(y)

< ( / / -4, F(t, o) Pdadt)s
0 ly—z|<t<h(y)

<M [ (S<F) )y < Ml

Lemma 8.5. If f € H; then |(SeoF) ()1 < O fll2, -

Proof. This is done in two steps.

Step 1. We control the nontangential maximal function

U'(z) = sup |U(t,y)]

y,t:|z—y|<kt
by
1U 1 < Chllulln,

If Up(z) € Hy then Uy and its n Riesz transforms Uy, ..., U, can be rec-
ognized as the full gradient of a Harmonic function W on RTI. Then
V = (U3 +---+U?)% can be verified to be subharmonic provided p > 2=1.
This depends on the calculation

—2_ P
AV =P Sy oy )P4 Dyioay
2 2 2
_ pvh- [<p— NS UV VY HVUJ-H?]
J

>0
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provided either p > 2, or if 0 < p < 2,
1 *
17N < s, (H*H)|¢]” (8.6)

where H is the Hessian of W with trace 0 and § = (U, ... ,U,). Then if
{\;} are the n + 1 eigenvalues of H, and A is the one with largest modulus,
the remaining ones have an average of —)‘—Tf and therefore

H)y=> X>(1+-

This means that for equation (8.6) to hold we only need -t~ < 2% orp >
P

In any case there is a choice of p = p,, < 1 that is allowed
Now consider the subharmonic function V. If we denote by h(t,z) the
Poisson integral of the boundary values of h(0,z) = V (0, z),

V(t,z) < h(t,x)

n+1

and we have

B =
B =

U(z)= sup Ult,y) < sup  VI[(t,y)] sup  h[(t,y)]

(y,1):l|lz—yl|<kt (y,1):l|lz—yl|<kt (y,t):llw*yllékt

By maximal inequality, valid because }D > 1,
1T < 1P7115 < Crpllh(0,2) [y = CrpllV (0, 2) 1 < CillUlln,

Step 2. It is now left to control ||(SsU) ()|l < C||U*||1. We use the room
between the regions |z — y| < ¢ in the defintion of S and the larger regions
|z — y| < kt used in the definition of U* to control S through U. Let us pick
k =4. Let « > 0 be a number. Consider the set £ = {z : |[U*(z)| < a and
B = FE°={x:|U"(x)| > a}. We denote by G the union G = U,cp{(¢,y) :
|z —y| < t}. We want to estimate

/|s UP( dx—/// VU, y)dadtdy

—y|<t

C/t!VU\ (t,y)dtdy
< C’/ t(AU?)(t,y)dtdy

<0 [ WG]+ () o )l

on
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by Greens’s theorem. We have cheated a bit. We have assumed some smooth-
ness on 0G. We have assumed decay at oo so there are no contributions
from co. We can assume that we have initially U(0,z) € Ly so the decay
is valid. We can approximate GG from inside by regions G. with smooth
boundary. The boundary consists of two parts. B; = {t = 0,2 € E}
and By = {x € E°t = ¢(x)}. Moreover |V¢| < 1. We will show below
that t|VU(t,y)] < Ca in G. On B; one can show that ¢t|U||VU| — 0 and
U 22_72 — U?. Moreover do ~ dx. The contribution from B; is therefore
bounded by [, |U(0,z)]*dz < [, |U*(0,z)[*dz. On the other hand on B,
since it is still true that do = dz, using the bound ¢|VU| < Ca, [2£] < 1, we
see that the contribution is bounded by C'a?| E¢|. Putting the pieces together
we get

/ 1S U (z)dr < CoTy (o) + C’/ |U**(z)dx
E B
< 0Ty (a) + C/ 2Ty« (2)dz
0

where Ty« (z) = mes{z : |U*(x)| > z}. Finally since mes(E°) = Ty+(«)

mes{z : [S,.U(z)| > a} < CTy«(a) + %/ 2Ty (2)dz
0

Integrating with respect to a we obtain

15Ul < CIU

Step 3. To get the bound ¢|VU| < Ca in G, we note that any (¢,x) € G has
a ball around it of radius ¢ contained in the set Uycp{y : | — y| < 4t} where
|U| < o and by standard estimates, if a Harmonic function is bounded by «
in a ball of radius ¢ then its gradient at the center is bounded by % O
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