Linear Algebra, Fall 04.

Answers to the final.

Q1. Let

$$
\begin{aligned}
\Delta(x) & =\operatorname{det}\left(\begin{array}{ccc}
x+1 & 1 & 0 \\
x & x & x-1 \\
x+1 & 1 & x-1
\end{array}\right) \\
& =(x+1)[x(x-1)-(x-1)]-[x(x-1)-(x-1)(x+1)] \\
& =(x+1)(x-1)^{2}-\left[x^{2}-x-x^{2}+1\right] \\
& =(x+1)(x-1)^{2}+(x-1) \\
& =x^{2}(x-1)
\end{aligned}
$$

$\Delta(x)=0$ if and only if $x=0$ or 1 . Therefore If $x \neq 0,1$ the rank is 3 . If $x=0,1$ the rank is at most 2 . Set $x=0$. Since

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & -1 \\
1 & 1 & -1
\end{array}\right)
$$

has a 2×2 minor that is nonzero the rank is 2 . Similarly if $x=1$,

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
2 & 1 & 0
\end{array}\right)
$$

has rank 2 as well.
Q2. A and B are both nilpotent. B is in the canonical Jordan form. Rank of A is 1 . So it has a 2 dimensional null space. A^{2} must therefore have 3 dimensional null space or $A^{2}=0$. Same is true for B. So the dimensions of null spaces of powers of A and B go the same way 2,3 . Hence they have the same Jordan form.

Q3. Diagonalize A. Let $\left\{d_{i}\right\}$ be the eigenvalues.

$$
O A O^{-1}=D=\operatorname{diag}\left\{d_{1}, \cdots, d_{n}\right\}
$$

Cleraly

$$
O^{-1} \sqrt{D} O
$$

where \sqrt{D} is $\operatorname{diag}\left\{\sqrt{d}_{1}, \cdots, \sqrt{d}_{n}\right\}$ will do it. For uniqueness note that if we diagonalize B, then A is diagonalized as well with eigenvalues given by squares of the eigenvalues of B. Since B is positive semidefinite the eigen values of B have to be the positive square roots of the eigenvalues of A with the same eigenspaces.
Q4. Cleraly

$$
\langle A(x+k y),(x+k y)\rangle=\langle A x, x\rangle+2 k\langle A x, y\rangle+k^{2}\langle A y, y\rangle \geq 0
$$

for all k. This yields,

$$
\langle A x, y\rangle^{2} \leq\langle A x, x\rangle\langle A y, y\rangle
$$

If $\langle A x, x\rangle=0$, then so is $\langle A x, y\rangle$ for all y from the above. This means $A x=0$.
Q5. If A is indefinite, we can assume that it has at least one positive and one negative eigen value. Take all other components to be 0 . Then

$$
\begin{gathered}
\langle A x, x\rangle=\lambda_{1} x_{1}^{2}-\lambda_{2} x_{2}^{2} \\
A x=\left(\lambda_{1} x_{1},-\lambda_{2} x_{2}, 0, \cdots, 0\right)
\end{gathered}
$$

Need $\lambda_{1} x_{1}^{2}=\lambda_{2} x_{2}^{2}$ and $x_{1}^{2}+x_{2}^{2}=1$. Solve for x_{1} and x_{2}.

