Homework Set 3. Due March 1.

1. Consider a Markov process $x(t)$ on the set $\{1,2\}$ where the transitions occur from $1 \rightarrow 2$ at rate λ and from $2 \rightarrow 1$ at rate μ. Write down differential equations for the transition probabilities $\left\{\pi_{i, j}(t): i, j=1,2\right\}$. Solve them and calculate $\pi_{i, j}(t)$. Does the limit $\lim _{t \rightarrow \infty} \pi_{i, j}(t)=q_{i, j}$ exist ? What is it? Could you have guessed it?
2. A simple random walk is $S_{n}=X_{1}+X_{2}+\cdots+X_{n}, S_{0}=0$ where $\left\{X_{i}\right\}$ are independent and equal ± 1 with probability $\frac{1}{2}$. The reflection principle says that for any ineger $k \geq 1$

$$
P\left[\sup _{1 \leq j \leq n} S_{j} \geq k\right]=2 P\left[S_{n} \geq k+1\right]+P\left[S_{n}=k\right]
$$

Write down the equation to be satisfied by

$$
u(n, k)=P\left[\sup _{1 \leq j \leq n} S_{j} \geq k\right]
$$

and check that $2 P\left[S_{n} \geq k+1\right]+P\left[S_{n}=k\right]$ satisfies it.

