Homework Set 8. Due April 12, 2004.

1. Let ${\mathcal L}$ be the Black and Scholes generator

$$\mathcal{L} = \frac{1}{2} \sum_{i,j} a_{i,j} x_i x_j D_{x_i} D_{x_j} + \sum_j \mu_j x_j D_{x_j}$$

If u(t,x) is bounded on $\mathbb{R}^d \times [0,T]$ by $\mathbb{C}(1+\|x\|)^k$ for some k and is a smooth solution of

 $u_t = \mathcal{L}u$

with u(0, x) = 0 for all x, then show that $u(t, x) \equiv 0$.

2. Show that the solution of the one dimensional SDE

$$dx(t) = x^{2}(t)dt + d\beta(t), x(0) = 0$$

becomes infinite at a finite (random) time τ . Can you get an upper bound on $E[\tau]$?