
In many problems we are faced with making optimal choices. This requires either
maximizing (or minimizing a function). There are methods for doing it often with the
help of calculus. There are efficient numerical methods as well. They work in principle for
functions of several variables. However as the number of variables increase it gets harder
and soon nearly impossible.

Dynamic programming, is a natural way of facing this problem in special cases. Let
us formulate the problem as follows. There is system in a state x ∈ X. We can take action
u ∈ U . These are called controls. The actions have rewards and consequences. The reward
is a pay off f(x, u) that depends on the state x as well as the control u. the consequence
is that the control moves the state to a new state x′ = g(x, u) that depends on the control
and the old state. We now go on from x′ as before. Recursively

xj+1 = g(xj, uj+1)

rj = f(xj, uj+1)

The total reward is

Rn = f(x0, u1) + · · ·+ f(xn−1, un) + H(xn)

where H is the reward or value inherent in the final state. This is finite time horizon
problem involving n time steps. We could formulate the discounted infinite time horizon
problem as well with a total reward of

R =

∞∑
j=0

ρj f(xj, uj+1)

R is a complicated function of x0 and the controls u1, . . . , un, in the finite horizon case
and a function of infinite number of variables u1, u2, . . . , in the infinite horizon case. The
idea of Dynamic programming is very simple. Suppose n = 1. We have only one period
and we have to do the optimization problem

sup
u

[f(x, u) + Hn(g(x, u)]

where Hn = H. Let us denote by u(x) the optimizing value and Hn−1(x) the optimum
value. Note that Hn−1(x) is the value of a state with one period left. Now iterate

sup
u

[f(x, u) + Hj+1(g(x, u))] = Hj(x)

with u = uj+1(x) being the optimizing control. Then the problem is solved by u = uj(x)
expressing the best control as a function of time and the current state. H0(x) provides the
optimum value. The infinite horizon discounted problem is simpler. If we solve

sup
u

[ρH(g(x, u)) + f(x, u)] = H(x)
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for both H and u (by iteration starting from some H) then u = u(x) is the best policy and
provides a value H(x). In the finite horizon case it is obvious that we have the answer.
But the infinite horizon needs some thought. Let us suppose that H(x) is the optimum
value for all possible choices of controls. If we use u we have a reward of f(x, u) and we
end up at g(x, u). The best we can do now is ρH(g(x, u)) keeping in mind the discount.
So the total payoff is

ρH(g(x, u)) + f(x, u)

and we should optimize here for the best payoff. Hence H solves the equation.

sup
u

[ρH(g(x, u)) + f(x, u)] = H(x)

Does H exist? Growth conditions are needed. If the value defined as the supremum over
all payoffs is finite then H exists. Is it unique? If the solution H does not grow too
fast and ρnH(xn) → 0 for any choice of controls, then it is unique. Any such solution is
implementable.

The transformation x → g(x, u) need not be deterministic. Could involve a random
component as well. So we have a transition probability π(u, x, dx′) that depends on the
control. Now the problems are modified:

Hj(x) = sup
u

[f(x, u) +

∫
π(u, x, dx′)Hj+1(x

′)]

Optimizing expected values. Infinite Horizon case

H(x) = sup
u

[f(x, u) + ρ

∫
π(u, x, dx′)H(x′)]

Examples: f(x, u) = f(u) a concave function. g(x, u) = x + a− u. u is the consumption.
a is the income. f is the utility. Add a discount that encourages consumption now while
the concavity of f discourages excessive consumption.

H(x) = sup
0≤u≤x

[f(u) + ρH(x + a− u)]

If the income is random i.i.d

H(x) = sup
0≤u≤x

[f(u) + ρ

∫
H(x + a− u)φ(a)da]
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Continuous time problems.

Consider the ODE
dx(t) =

∑
j

uj(t)bj(x(t))dt

where u is the control. x(0) = x and at time T , the pay off is

∫ T

0

c(x(t),u(t))dt + f(x(T ))

Derivation of the equation: Suppose at time t we have an optimal value V (t, x) if we start
from x. If we start at time t− h we could try the control u = {uj} during (t− h, h) and
the payoff will be roughly

V (t− h, x) = hc(x,u) + V (t, x + h
∑

j

ujbj(x))

Yields
Vt + sup

u

[c(x,u) + Vx

∑
j

ujbj(x)] = 0, V (T, x) = f(x)

This is a nonlinear first order PDE. Smooth solutions may not exist. If there is a smooth
solution then it solves the problem. Because for any choice of u(t) and the corresponding
solution x(t) of the ODE

d

dt
[V (t, x(t)) +

∫ t

0

c(x(s),u(s))ds]

= Vt + Vx

dx

dt
+ c(x(t),u(t))

≤ 0

Therefore

V (0, x) ≥ V (T, x(T )) +

∫ T

0

c(x(s),u(s))ds

= f(x(T )) +

∫ T

0

c(x(s),u(s))ds

for ANY choice of u. On the other hand with the optimizing choice of u we have equality.
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Example: Consider the problem

dx

dt
= u(t), |u| ≤ 1, T = 1, f(x) = cos x, c = 0

You are free to travel with speed up to 1 to get to a large value of cos x. Formally the
equation is

Vt + |Vx| = 0, V (T, x) = cos x

Clearly
V (t, x) = sup

|y−x|≤(1−t)

[cos y]

In particular V is not continuously differentiable. On the other hand the verification lemma
needs smoothness. Are there solutions (that are not C1) that are spurious? How to tell
the true one from spurious ones?

You can add noise and replace ODE by SDE say by adding a BM. Then the equations
become

Vt + sup
u

[c(x,u) + Vx

∑
j

bj(x)uj ] +
1

2
uxx, V (T, x) = f(x)

These are more likely to have smooth solutions. The verification now uses Itô’s formula.
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