Real Numbers. Properties.

1. Field. Addition, 0, additive inverse (Abelian Group) Multiplication, 1, leaving 0 out (Abelian Group) Algera. Distributive a(b + c) = ab + ac. Add, subtract, multiply, and divide by anything other than 0.

2. Ordered Field.

$$\mathbf{R} \setminus \{0\} = \mathbf{R}^+ \cup \mathbf{R}^-$$

$$a, b \in \mathbf{R}^+ \Rightarrow a + b, ab \in \mathbf{R}^+$$

We say a > b if $a - b \in \mathbf{R}^+$

Upper Bounds, Lower bounds, Rationals **Q** satisfy. But LUB, GLB exist only for **R**.

3. Consequences.

Every bounded sequence has a convergent subsequence Every bounded monotone sequence converges. Any open covering of a bounded closed set has a finite sub cover.

We begin with integration. Riemann Integrals. Lebesgue integrals.

The notion of "length" of a set. Let us stick to the interval [0,1] we try to define $\mu(A)$ which we think of the length of the set A. If A is an interval $[a,b] \subset [0,1]$ the $\mu(A) = b-a$.

Let us define for any set $A \subset [0, 1]$, $\mu^*(A)$ by

$$\mu^*(A) = \inf \left[\sum_{j=1}^{\infty} \mu(I_j) : \bigcup_j I_j \supset A\right]$$

 μ^* is finitely as well as countably subadditive.

Properties of μ^* .

1. $\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$ 2. $\mu^*(\cup_j A_j) \le \sum_j \mu^*(A_j)$ 3. $\mu^*([a, b]) = (b - a)$

The first two properties are easily proved. Cover A, B by intervals and the combined set of intervals covers $A \cup B$. Split ϵ into $\frac{\epsilon}{2}$ margin for each. For the countable case make the margin $\frac{\epsilon}{2^j}$ for A_j . More precisely given $\epsilon > 0$ there are intervals $\{I_{j,k} = (a_{j,k}, b_{j,k})\}$ such that for each j

$$\cup_k I_{j,k} \supset A_j$$

and

$$\sum_{k} (b_{j,k} - a_{j,k}) \le \mu^*(A_j) + \epsilon 2^{-j}$$

$$\cup_{j,k} I_{j,k} \supset \cup_j A_j$$

and

$$\mu^*(\cup_j A_j) \le \sum_{j,k} (b_{j,k} - a_{j,k}) \le \sum_j [\mu^*(A_j) + \epsilon 2^{-j}] = \sum_j \mu^*(A_j) + \epsilon$$

Finally if $\{(a_j, b_j)\}$ covers [a, b] there is a finite sub cover.

$$[a,b] \subset \cup_{i=1}^{n} (a_i,b_i)$$

with out loss of generality we can assume

$$a_1 < a < a_2 < b_1 < a_3 < \dots < a_n < b_{n-1} < b < b_n$$

and

$$(b-a) \le \sum_i (b_i - a_i)$$

$$\mu^*([a,b]) \ge (b-a)$$
. But $\mu^*([a,b]) \le b-a$.

Let us define the class Σ of subsets of [0,1]. $E \in \Sigma$ if for every subset $A \subset [0,1]$

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) = \mu^*(A)$$

Since

$$\mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

we only need to prove

$$\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Properties of μ^* on Σ

1. Intervals $[a, b] \in \Sigma$

2. Σ is closed under finite as well as countable unions and complementation and therefore under countable intersections (σ -field.)

3. $\mu^*(E)$ on Σ is countably additive, i.e., if $\{Ej\}$ are disjoint, then

$$\mu^*(\cup_j E_j) = \sum_j \mu^*(E_j)$$

The notion of length is well defined on Σ , extending it from intervals.

Proof.

1. Let A be arbitrary. Let $\mu^*(A) = m$. Then given $\epsilon > 0$, there are intervals $\{I_j\} = \{(a_j, b_j)\}$ such that $A \subset \bigcup_j (a_j, b_j)$ and

$$\sum_{j} (b_j - a_j) \le m + \epsilon$$

If E = [a, b], then $E^c \subset [0, a] \cup [b, 1] = E_1 \cup E_2$. Each I_j is the union of three essentially disjoint intervals $I_j \cap E$, $I_j \cap E_1$ and $I_j \cap E_2$. If $\{I_j\}$ covers A then $\{I_j \cap E\}$ covers $A \cap E$ and $\{I_j \cap E_1\}$ and $\{I_j \cap E_2\}$ together cover $A \cap E^c$. It is now clear that for any A,

$$m + \epsilon \ge \sum_{j=1}^{\infty} [\mu^*(I_j \cap E_1) + \mu^*(I_j \cap E_2) + \mu^*(I_j \cap E_3)]$$
$$\ge \mu^*(A \cap [a, b]) + \mu^*(A \cap [a, b]^c)$$

i.e. $[a, b] \in \Sigma$.

2. Since the definition is symmetric in E and E^c it follows that if $E \in \Sigma$ so does E^c . Assume

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) = \mu^*(A)$$

for all A. Replace A by $A \cap F$ and by $A \cap F^c$, to get

$$\mu^*(A \cap E \cap F) + \mu^*(A \cap E^c \cap F) = \mu^*(A \cap F)$$

and

$$\mu^*(A \cap E \cap F^c) + \mu^*(A \cap E^c \cap F^c) = \mu^*(A \cap F^c)$$

for all A. Adding them

$$\mu^{*}(A \cap E \cap F) + \mu^{*}(A \cap E^{c} \cap F) + \mu^{*}(A \cap E \cap F^{c}) + \mu^{*}(A \cap E^{c} \cap F^{c}) = \mu^{*}(A)$$

We note that $(E \cap F) \cup (E^c \cap F) \cup (E \cap F^c) = E \cup F$ and $(E \cup F)^c = E^c \cap F^c$. Using sub additivity

$$\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c) \le \mu^*(A)$$

which is the hard part. So $E \cup F \in \Sigma$. So does $E \cap F$. If E and F are disjoint, taking $A = A \cap (E \cup F)$

$$\mu^*(A \cap E) + \mu^*(A \cap F) + \mu^*(A \cap (E \cup F)^c) = \mu^*(A)$$

Taking A = [0, 1],

$$\mu^{*}(E) + \mu^{*}(F) = \mu^{*}(E \cup F)$$

Finally we want to prove that if E_j is a countable collection, mutually disjoint, and $E_j \in \mathcal{E}$ for every j, then $\bigcup_{j=1}^{\infty} E_j = E \in \Sigma$ and

$$\mu^*(E) = \sum_{j=1}^{\infty} \mu^*(E_j)$$

Let $F_n = \bigcup_{j=1}^n E_j$, then

$$\sum_{j=1}^{n} \mu^*(A \cap E_j) + \mu^*(A \cap F_n^c) = \mu^*(A)$$

and since $F_n^c \supset E^c$,

$$\sum_{j=1}^{\infty} \mu^*(A \cap E_j) + \mu^*(A \cap F^c) \le \mu^*(A)$$

By subadditivity

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$$

Proves $E \in \Sigma$ and also

$$\sum_{j=1}^n \mu^*(E_j) \le \mu^*(E)$$

and letting $n \to \infty$

$$\sum_{j=1}^{\infty} \mu^*(E_j) \le \mu^*(E)$$

But the other side is true by sub-addivity. So μ^* is defined on Σ as a countably additive measure agreeing with length on [0, 1]. This is Lebesgue measure. We will call it μ .

A class of sets is a σ -field if it is closed under countable unions and complementation. Given a collection \mathcal{A} there is a smallest σ -field containing \mathcal{A} , called the σ -field generated by \mathcal{A} denoted by $\sigma(\mathcal{A})$. If we denote by \mathcal{I} the collection of intervals the Borel σ -field \mathcal{B} is $\sigma(\mathcal{I})$. The Lebesgue measure is defined on $\Sigma \supset \mathcal{B}$.

Fact. A monotone class is closed under increasing and decreasing limits. A monotone field is a σ -field and a σ -field is a monotone class. The smallest monotone class containing a field is the same as the σ -field generated by it. In particular if two measures agree on a field they agree on the σ -field generated by the field. Lebesgue measure is unique on \mathcal{B} .

Let \mathcal{F} be a field and $\mathcal{M}(\mathcal{F})$ be the monotone class generated by \mathcal{F} . Then $\mathcal{M} = \sigma(\mathcal{F})$. To see this let us define for sets E,

$$\mathcal{M}(E) = \{F : E \cap F^c, F \cap E^c, E \cup F \in \mathcal{M}\}$$

 $\mathcal{M}(E)$ is a monotone class, and for $E \in \mathcal{F}$, contains \mathcal{F} and so contains \mathcal{M} . In other words if $E \in \mathcal{F}$ and $F \in \mathcal{M}$ then $E \cap F^c$, $F \cap E^c$, $E \cup F \in \mathcal{M}$. The relation is symmetric. Therefore if $F \in \mathcal{F}$ and $E \in \mathcal{M}$ then $E \cap F^c$, $F \cap E^c$, $E \cup F \in \mathcal{M}$. In other words $\mathcal{M}(E) \supset \mathcal{F}$ for $E \in \mathcal{M}$. Hence $\mathcal{M}(E) \supset \mathcal{M}$. Finally $E, F \in \mathcal{M}$ implies $E \cap F^c$, $F \cap E^c$, $E \cup F \in \mathcal{M}$ or \mathcal{M} is a field. $\mathcal{M}(\mathcal{F}) \supset \sigma(\mathcal{F})$ and $\mathcal{M}(\mathcal{F}) \subset \sigma(\mathcal{F})$.

Construction of measures.

A set function μ defined for $A \in \mathcal{F}$, a field of subsets of a space **X**, satisfying

$$\mu(\cup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}\mu(A_i)$$

for sets A_i that are pairwise disjoint and $\{A_i\}, A \in \mathcal{F}$, is called a countably additive measure on \mathcal{F} . A countably additive measure μ on \mathcal{F} extends uniquely as a countably additive measure to $\sigma(\mathcal{F})$, the σ -field generated by \mathcal{F} .

Repeat the proof for Lebesgue measure with slight changes.

A semiring S of subsets of a set \mathbf{X} satisfies, $A, B \in S$ implies $A \cap B \in S$. $\mathbf{X} \in S$. $A, B \in S$, $A \subset B$ implies $B - A = A_1 \cup \cdots \cup A_k$ where $\{A_i\}$ are disjoint and $A_i \in S$ for $1 \leq i \leq k$.

A set function μ defined for $A \in S$, a semiring of subsets of a space **X**, satisfying

$$\mu(\cup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}\mu(A_i)$$

for sets A_i that are pairwise disjoint and $\{A_i\}, A \in S$, is called a countably additive measure on S. A countably additive measure μ on S extends uniquely as a countably additive measure to $\sigma(S)$, the σ -field generated by S.

Disjoint union of sets from S is a field $\mathcal{F}(S)$ and μ extends naturally as

$$\mu(\cup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$$

for disjoint unions. μ is countably additive on $\mathcal{F}(\mathcal{S})$ and extends uniquely to $\sigma(\mathcal{F}(\mathcal{S}))$.

Integration.

What is the class of functions that we can integrate? Given (\mathbf{X}, Σ) .

A function $f : \mathbf{X} \to R$ is *measurable* if for any $E \in \mathcal{B}(R)$,

$$f^{-1}(E) = \{x : f(x) \in E\} \in \Sigma$$

Enough to check

$$f^{-1}(I) = \{x : f(x) \in I\} \in \Sigma$$

for intervals I of the form $(-\infty, a), a \in \mathbb{R}$.

If f and g are measurable then so are f + g, fg and $\frac{1}{f}$. For example

$$\{x: f(x) + g(x) < a\} = \cup_{q \in Q} [\{x: f(x) < q\} \cap \{x: g(x) < a - q\}]$$

where Q are the rationals.

More generally a map $f : \mathbf{X} \to \mathbf{Y}$ is measurable relative to (\mathbf{X}, Σ) and $(\mathbf{Y}, \mathcal{E})$ if for every $E \in \mathcal{E}$

$$f^{-1}(E) = \{x : f(x) \in E\} \in \mathcal{E}$$

If $f : \mathbf{X} \to \mathbf{Y}$ and $g : \mathbf{Y} \to \mathbf{Z}$ are measurable relative to (\mathbf{X}, Σ) , $(\mathbf{Y}, \mathcal{E})$ and $(\mathbf{Z}, \mathcal{F})$, then so is $g \circ f : \mathbf{X} \to \mathbf{Z}$.

Let $f_n(x)$ be a sequence of measurable maps from $(\mathbf{X}, \Sigma) \to (R, \mathcal{B})$. Then

$$C = \{x : \lim_{n \to \infty} f_n(x) = f(x) \text{ exists}\}$$

is a measurable set and f(x) restricted to C is measurable.

$$C = \bigcap_{k} \bigcup_{\ell} \bigcap_{\substack{n \ge \ell \\ m \ge \ell}} \{ x : |f_{n}(x) - f_{m}(x)| \le \frac{1}{k} \}$$
$$C \cap \{ x : f(x) \le a \} = C \cap \bigcap_{k} \bigcup_{\ell} \bigcap_{n \ge \ell} \{ x : f_{n}(x) \le a + \frac{1}{k} \}$$

A simple function takes values a_1, \ldots, a_k on k disjoint sets E_1, \ldots, E_k that are in Σ and whose union is **X**. Any linear combination of two simple functions is again a simple function.

Any bounded measurable function is a uniform limit of simple functions. Let f be bounded by M and let $\epsilon > 0$ be given. Divide [-M, M] into $k = [\frac{M}{\epsilon}] + 1$ intervals $\{I_j\}$ of size at most 2ϵ and let a_1, \ldots, a_k be their mid points. Define $f_{\epsilon}(x) = a_j$ on $\{x : f(x) \in I_j\}$. Then $\sup_x |f_{\epsilon}(x) - f(x)| \le \epsilon$ and f is uniformly approximated by f_{ϵ} .

Clearly the integral of a simple function f equal to a_i on E_i is

$$\sum_{i=1}^{k} a_i \mu(E_i)$$

Any bounded measurable function can be approximated uniformly by simple functions and the integrals have a limit that does not depend on the approximations used. Integral is linear and

$$\begin{aligned} |\int_{\mathbf{X}} f(x)d\mu| &\leq \sup_{x} |f(x)|\mu(\mathbf{X})| \\ |\int_{\mathbf{X}} [f(x) - g(x)]d\mu &\leq \int_{\mathbf{X}} |f(x) - g(x)|d\mu \to 0 \end{aligned}$$

 $\text{if } \sup_x |f(x) - g(x)| \to 0.$

The integral is defined for class of bounded measurable functions $\mathbf{B}(\mathbf{X})$. $L(f) = \int_{\mathbf{X}} f(x) d\mu$ satisfies for $f, g \in \mathbf{B}(\mathbf{X})$ and $a, b \in R$

$$L(af + bg) = aL(f) + bL(g)$$

$$f \ge 0 \Rightarrow L(f) \ge 0$$
$$|L(f)| \le \mu(\mathbf{X}) \sup_{x \in \mathbf{X}} |f(x)|$$

Can define for $A\in \Sigma$

$$\int_{A} f(x)d\mu = \int_{\mathbf{X}} \chi_A(x)f(x)d\mu(x)$$

and

$$\left|\int_{A} f(x)d\mu\right| \le \mu(\mathbf{A}) \sup_{x \in A} |f(x)|$$

We know that if f_n are measurable and $|f_n| \leq M$ and $f_n(x) \to f(x)$ for each x then f is measurable and $|f| \leq M$. $\int f_n d\mu$ and $\int f d\mu$ are all well defined.

Bounded Convergence Theorem.

$$\lim_{n \to \infty} \int_{\mathbf{X}} f_n(x) d\mu = \int_{\mathbf{X}} f(x) d\mu$$

Proof. We saw that

$$\mu[\cap_{\ell} \cup_{n \ge \ell} \{x : |f_n(x) - f(x)| \ge \frac{1}{k}\}] = 0$$

Therefore by countable additivity

$$\mu[\cup_{n\geq\ell}\{x:|f_n(x)-f(x)|\geq\frac{1}{k}\}]\to 0$$

and

$$\mu[\{x: |f_{\ell}(x) - f(x)| \ge \frac{1}{k}\}] \to 0$$

as $\ell \to \infty$ for every k.

$$\begin{split} |\int f_{\ell}(x)d\mu - \int f(x)d\mu| &\leq \int |f_{\ell}(x) - f(x)|d\mu \\ &= \int_{\{x:|f_{\ell}(x) - f(x)| \leq \frac{1}{k}\}} |f_{\ell}(x) - f(x)|d\mu + \int_{\{x:|f_{\ell}(x) - f(x)| \geq \frac{1}{k}\}} |f_{\ell}(x) - f(x)|d\mu \\ &\leq \frac{1}{k}\mu(\mathbf{X}) + 2M\mu[\{x:|f_{\ell}(x) - f(x)| \geq \frac{1}{k}\}] \end{split}$$

Let $\ell \to \infty$ and then $k \to \infty$.