Real Numbers. Properties.

1. Field. Addition, 0 , additive inverse (Abelian Group) Multiplication, 1 , leaving 0 out (Abelian Group) Algera. Distributive $a(b+c)=a b+a c$. Add, subtract, multiply, and divide by anything other than 0 .

2. Ordered Field.

$$
\begin{gathered}
\mathbf{R} \backslash\{0\}=\mathbf{R}^{+} \cup \mathbf{R}^{-} \\
a, b \in \mathbf{R}^{+} \Rightarrow a+b, a b \in \mathbf{R}^{+}
\end{gathered}
$$

We say $a>b$ if $a-b \in \mathbf{R}^{+}$
Upper Bounds, Lower bounds,
Rationals \mathbf{Q} satisfy. But LUB, GLB exist only for \mathbf{R}.

3. Consequences.

Every bounded sequence has a convergent subsequence
Every bounded monotone sequence converges.
Any open covering of a bounded closed set has a finite sub cover.
We begin with integration. Riemann Integrals. Lebesgue integrals.
The notion of "length" of a set. Let us stick to the interval $[0,1]$ we try to define $\mu(A)$ which we think of the length of the set A. If A is an interval $[a, b] \subset[0,1]$ the $\mu(A)=b-a$.

Let us define for any set $A \subset[0,1], \mu^{*}(A)$ by

$$
\mu^{*}(A)=\inf \left[\sum_{j=1}^{\infty} \mu\left(I_{j}\right): \cup_{j} I_{j} \supset A\right]
$$

μ^{*} is finitely as well as countably subadditive.
Properties of μ^{*}.

1. $\mu^{*}(A \cup B) \leq \mu^{*}(A)+\mu^{*}(B)$
2. $\mu^{*}\left(\cup_{j} A_{j}\right) \leq \sum_{j} \mu^{*}\left(A_{j}\right)$
3. $\mu^{*}([a, b])=(b-a)$

The first two properties are easily proved. Cover A, B by intervals and the combined set of intervals covers $A \cup B$. Split ϵ into $\frac{\epsilon}{2}$ margin for each. For the countable case make the $\operatorname{margin} \frac{\epsilon}{2^{j}}$ for A_{j}. More precisely given $\epsilon>0$ there are intervals $\left\{I_{j, k}=\left(a_{j, k}, b_{j, k}\right)\right\}$ such that for each j

$$
\cup_{k} I_{j, k} \supset A_{j}
$$

and

$$
\sum_{k}\left(b_{j, k}-a_{j, k}\right) \leq \mu^{*}\left(A_{j}\right)+\epsilon 2^{-j}
$$

$$
\cup_{j, k} I_{j, k} \supset \cup_{j} A_{j}
$$

and

$$
\mu^{*}\left(\cup_{j} A_{j}\right) \leq \sum_{j, k}\left(b_{j, k}-a_{j, k}\right) \leq \sum_{j}\left[\mu^{*}\left(A_{j}\right)+\epsilon 2^{-j}\right]=\sum_{j} \mu^{*}\left(A_{j}\right)+\epsilon
$$

Finally if $\left\{\left(a_{j}, b_{j}\right)\right\}$ covers $[a, b]$ there is a finite sub cover.

$$
[a, b] \subset \cup_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

with out loss of generality we can assume

$$
a_{1}<a<a_{2}<b_{1}<a_{3}<\cdots<a_{n}<b_{n-1}<b<b_{n}
$$

and

$$
(b-a) \leq \sum_{i}\left(b_{i}-a_{i}\right)
$$

$\mu^{*}([a, b]) \geq(b-a)$. But $\mu^{*}([a, b]) \leq b-a$.
Let us define the class Σ of subsets of $[0,1] . E \in \Sigma$ if for every subset $A \subset[0,1]$

$$
\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)=\mu^{*}(A)
$$

Since

$$
\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

we only need to prove

$$
\mu^{*}(A) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

Properties of μ^{*} on Σ

1. Intervals $[a, b] \in \Sigma$
2. Σ is closed under finite as well as countable unions and complementation and therefore under countable intersections (σ-field.)
3. $\mu^{*}(E)$ on Σ is countably additive, i.e., if $\{E j\}$ are disjoint, then

$$
\mu^{*}\left(\cup_{j} E_{j}\right)=\sum_{j} \mu^{*}\left(E_{j}\right)
$$

The notion of length is well defined on Σ, extending it from intervals.
Proof.

1. Let A be arbitrary. Let $\mu^{*}(A)=m$. Then given $\epsilon>0$, there are intervals $\left\{I_{j}\right\}=$ $\left\{\left(a_{j}, b j\right)\right\}$ such that $A \subset \cup_{j}\left(a_{j}, b_{j}\right)$ and

$$
\sum_{j}\left(b_{j}-a_{j}\right) \leq m+\epsilon
$$

If $E=[a, b]$, then $E^{c} \subset[0, a] \cup[b, 1]=E_{1} \cup E_{2}$. Each I_{j} is the union of three essentially disjoint intervals $I_{j} \cap E, I_{j} \cap E_{1}$ and $I_{j} \cap E_{2}$. If $\left\{I_{j}\right\}$ covers A then $\left\{I_{j} \cap E\right\}$ covers $A \cap E$ and $\left\{I_{j} \cap E_{1}\right\}$ and $\left\{I_{j} \cap E_{2}\right\}$ together cover $A \cap E^{c}$. It is now clear that for any A,

$$
\begin{aligned}
m+\epsilon & \geq \sum_{j=1}^{\infty}\left[\mu^{*}\left(I_{j} \cap E_{1}\right)+\mu^{*}\left(I_{j} \cap E_{2}\right)+\mu^{*}\left(I_{j} \cap E_{3}\right)\right] \\
& \geq \mu^{*}(A \cap[a, b])+\mu^{*}\left(A \cap[a, b]^{c}\right)
\end{aligned}
$$

i.e. $[a, b] \in \Sigma$.
2. Since the definition is symmetric in E and E^{c} it follows that if $E \in \Sigma$ so does E^{c}. Assume

$$
\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)=\mu^{*}(A)
$$

for all A. Replace A by $A \cap F$ and by $A \cap F^{c}$, to get

$$
\mu^{*}(A \cap E \cap F)+\mu^{*}\left(A \cap E^{c} \cap F\right)=\mu^{*}(A \cap F)
$$

and

$$
\mu^{*}\left(A \cap E \cap F^{c}\right)+\mu^{*}\left(A \cap E^{c} \cap F^{c}\right)=\mu^{*}\left(A \cap F^{c}\right)
$$

for all A. Adding them

$$
\mu^{*}(A \cap E \cap F)+\mu^{*}\left(A \cap E^{c} \cap F\right)+\mu^{*}\left(A \cap E \cap F^{c}\right)+\mu^{*}\left(A \cap E^{c} \cap F^{c}\right)=\mu^{*}(A)
$$

We note that $(E \cap F) \cup\left(E^{c} \cap F\right) \cup\left(E \cap F^{c}\right)=E \cup F$ and $(E \cup F)^{c}=E^{c} \cap F^{c}$. Using sub additivity

$$
\mu^{*}(A \cap(E \cup F))+\mu^{*}\left(A \cap(E \cup F)^{c}\right) \leq \mu^{*}(A)
$$

which is the hard part. So $E \cup F \in \Sigma$. So does $E \cap F$. If E and F are disjoint, taking $A=A \cap(E \cup F)$

$$
\mu^{*}(A \cap E)+\mu^{*}(A \cap F)+\mu^{*}\left(A \cap(E \cup F)^{c}\right)=\mu^{*}(A)
$$

Taking $A=[0,1]$,

$$
\mu^{*}(E)+\mu^{*}(F)=\mu^{*}(E \cup F)
$$

Finally we want to prove that if E_{j} is a countable collection, mutually disjoint, and $E_{j} \in \mathcal{E}$ for every j, then $\cup_{j=1}^{\infty} E_{j}=E \in \Sigma$ and

$$
\mu^{*}(E)=\sum_{j=1}^{\infty} \mu^{*}\left(E_{j}\right)
$$

Let $F_{n}=\cup_{j=1}^{n} E_{j}$, then

$$
\sum_{j=1}^{n} \mu^{*}\left(A \cap E_{j}\right)+\mu^{*}\left(A \cap F_{n}^{c}\right)=\mu^{*}(A)
$$

and since $F_{n}^{c} \supset E^{c}$,

$$
\sum_{j=1}^{\infty} \mu^{*}\left(A \cap E_{j}\right)+\mu^{*}\left(A \cap F^{c}\right) \leq \mu^{*}(A)
$$

By subadditivity

$$
\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \leq \mu^{*}(A)
$$

Proves $E \in \Sigma$ and also

$$
\sum_{j=1}^{n} \mu^{*}\left(E_{j}\right) \leq \mu^{*}(E)
$$

and letting $n \rightarrow \infty$

$$
\sum_{j=1}^{\infty} \mu^{*}\left(E_{j}\right) \leq \mu^{*}(E)
$$

But the other side is true by sub-addivity. So μ^{*} is defined on Σ as a countably additive measure agreeing with length on $[0,1]$. This is Lebesgue measure. We will call it μ.
A class of sets is a σ-field if it is closed under countable unions and complementation. Given a collection \mathcal{A} there is a smallest σ-field containing \mathcal{A}, called the σ-field generated by \mathcal{A} denoted by $\sigma(\mathcal{A})$. If we denote by \mathcal{I} the collection of intervals the the Borel σ-field \mathcal{B} is $\sigma(\mathcal{I})$. The Lebesgue measure is defined on $\Sigma \supset \mathcal{B}$.

Fact. A monotone class is closed under increasing and decreasing limits. A monotone field is a σ-field and a σ-field is a monotone class. The smallest monotone class containing a field is the same as the σ-field generated by it. In particular if two measures agree on a field they agree on the σ-field generated by the field. Lebesgue measure is unique on \mathcal{B}.

Let \mathcal{F} be a field and $\mathcal{M}(\mathcal{F})$ be the monotone class generated by \mathcal{F}. Then $\mathcal{M}=\sigma(\mathcal{F})$. To see this let us define for sets E,

$$
\mathcal{M}(E)=\left\{F: E \cap F^{c}, F \cap E^{c}, E \cup F \in \mathcal{M}\right\}
$$

$\mathcal{M}(E)$ is a monotone class, and for $E \in \mathcal{F}$, contains \mathcal{F} and so contains \mathcal{M}. In other words if $E \in \mathcal{F}$ and $F \in \mathcal{M}$ then $E \cap F^{c}, F \cap E^{c}, E \cup F \in \mathcal{M}$. The relation is symmetric. Therefore if $F \in \mathcal{F}$ and $E \in \mathcal{M}$ then $E \cap F^{c}, F \cap E^{c}, E \cup F \in \mathcal{M}$. In other words $\mathcal{M}(E) \supset \mathcal{F}$ for $E \in \mathcal{M}$. Hence $\mathcal{M}(E) \supset \mathcal{M}$. Finally $E, F \in \mathcal{M}$ implies $E \cap F^{c}, F \cap E^{c}, E \cup F \in \mathcal{M}$ or \mathcal{M} is a field. $\mathcal{M}(\mathcal{F}) \supset \sigma(\mathcal{F})$ and $\mathcal{M}(\mathcal{F}) \subset \sigma(\mathcal{F})$.

Construction of measures.

A set function μ defined for $A \in \mathcal{F}$, a field of subsets of a space \mathbf{X}, satisfying

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

for sets A_{i} that are pairwise disjoint and $\left\{A_{i}\right\}, A \in \mathcal{F}$, is called a countably additive measure on \mathcal{F}. A countably additive measure μ on \mathcal{F} extends uniquely as a countably additive measure to $\sigma(\mathcal{F})$, the σ-field generated by \mathcal{F}.

Repeat the proof for Lebesgue measure with slight changes.
A semiring \mathcal{S} of subsets of a set \mathbf{X} satisfies, $A, B \in \mathcal{S}$ implies $A \cap B \in \mathcal{S} . \mathbf{X} \in \mathcal{S} . A, B \in \mathcal{S}$, $A \subset B$ implies $B-A=A_{1} \cup \cdots \cup A_{k}$ where $\left\{A_{i}\right\}$ are disjoint and $A_{i} \in \mathcal{S}$ for $1 \leq i \leq k$.

A set function μ defined for $A \in \mathcal{S}$, a semiring of subsets of a space \mathbf{X}, satisfying

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

for sets A_{i} that are pairwise disjoint and $\left\{A_{i}\right\}, A \in \mathcal{S}$, is called a countably additive measure on \mathcal{S}. A countably additive measure μ on \mathcal{S} extends uniquely as a countably additive measure to $\sigma(\mathcal{S})$, the σ-field generated by \mathcal{S}.
Disjoint union of sets from \mathcal{S} is a field $\mathcal{F}(\mathcal{S})$ and μ extends naturally as

$$
\mu\left(\cup_{i=1}^{k} A_{i}\right)=\sum_{i=1}^{k} \mu\left(A_{i}\right)
$$

for disjoint unions. μ is countably additive on $\mathcal{F}(\mathcal{S})$ and extends uniquely to $\sigma(\mathcal{F}(\mathcal{S}))$.

Integration.

What is the class of functions that we can integrate? Given (\mathbf{X}, Σ).
A function $f: \mathbf{X} \rightarrow R$ is measurable if for any $E \in \mathcal{B}(R)$,

$$
f^{-1}(E)=\{x: f(x) \in E\} \in \Sigma
$$

Enough to check

$$
f^{-1}(I)=\{x: f(x) \in I\} \in \Sigma
$$

for intervals I of the form $(-\infty, a), a \in R$.
If f and g are measurable then so are $f+g, f g$ and $\frac{1}{f}$. For example

$$
\{x: f(x)+g(x)<a\}=\cup_{q \in Q}[\{x: f(x)<q\} \cap\{x: g(x)<a-q\}]
$$

where Q are the rationals.
More generally a map $f: \mathbf{X} \rightarrow \mathbf{Y}$ is measurable relative to (\mathbf{X}, Σ) and $(\mathbf{Y}, \mathcal{E})$ if for every $E \in \mathcal{E}$

$$
f^{-1}(E)=\{x: f(x) \in E\} \in \mathcal{E}
$$

If $f: \mathbf{X} \rightarrow \mathbf{Y}$ and $g: \mathbf{Y} \rightarrow \mathbf{Z}$ are measurable relative to $(\mathbf{X}, \Sigma),(\mathbf{Y}, \mathcal{E})$ and $(\mathbf{Z}, \mathcal{F})$, then so is $g \circ f: \mathbf{X} \rightarrow \mathbf{Z}$.

Let $f_{n}(x)$ be a sequence of measurable maps from $(\mathbf{X}, \Sigma) \rightarrow(R, \mathcal{B})$. Then

$$
C=\left\{x: \lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad \text { exists }\right\}
$$

is a measurable set and $f(x)$ restricted to C is measurable.

$$
\begin{gathered}
C=\cap_{k} \cup_{\ell} \cap_{\substack{n \geq \ell \\
m \geq \ell}}\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{k}\right\} \\
C \cap\{x: f(x) \leq a\}=C \cap \cap_{k} \cup_{\ell} \cap_{n \geq \ell}\left\{x: f_{n}(x) \leq a+\frac{1}{k}\right\}
\end{gathered}
$$

A simple function takes values a_{1}, \ldots, a_{k} on k disjoint sets E_{1}, \ldots, E_{k} that are in Σ and whose union is \mathbf{X}. Any linear combination of two simple functions is again a simple function.
Any bounded measurable function is a uniform limit of simple functions. Let f be bounded by M and let $\epsilon>0$ be given. Divide $[-M, M]$ into $k=\left[\frac{M}{\epsilon}\right]+1$ intervals $\left\{I_{j}\right\}$ of size at most 2ϵ and let a_{1}, \ldots, a_{k} be their mid points. Define $f_{\epsilon}(x)=a_{j}$ on $\left\{x: f(x) \in I_{j}\right\}$. Then $\sup _{x}\left|f_{\epsilon}(x)-f(x)\right| \leq \epsilon$ and f is uniformly approximated by f_{ϵ}.
Clearly the integral of a simple function f equal to a_{i} on E_{i} is

$$
\sum_{i=1}^{k} a_{i} \mu\left(E_{i}\right)
$$

Any bounded measurable function can be approximated uniformly by simple functions and the integrals have a limit that does not depend on the approximations used. Integral is linear and

$$
\begin{aligned}
\left|\int_{\mathbf{X}} f(x) d \mu\right| & \leq \sup _{x}|f(x)| \mu(\mathbf{X}) \\
\mid \int_{\mathbf{X}}[f(x)-g(x)] d \mu & \leq \int_{\mathbf{X}}|f(x)-g(x)| d \mu \rightarrow 0
\end{aligned}
$$

if $\sup _{x}|f(x)-g(x)| \rightarrow 0$.
The integral is defined for class of bounded measurable functions $\mathbf{B}(\mathbf{X}) . L(f)=\int_{\mathbf{X}} f(x) d \mu$ satisfies for $f, g \in \mathbf{B}(\mathbf{X})$ and $a, b \in R$

$$
L(a f+b g)=a L(f)+b L(g)
$$

$$
\begin{gathered}
f \geq 0 \Rightarrow L(f) \geq 0 \\
|L(f)| \leq \mu(\mathbf{X}) \sup _{x \in \mathbf{X}}|f(x)|
\end{gathered}
$$

Can define for $A \in \Sigma$

$$
\int_{A} f(x) d \mu=\int_{\mathbf{X}} \chi_{A}(x) f(x) d \mu(x)
$$

and

$$
\left|\int_{A} f(x) d \mu\right| \leq \mu(\mathbf{A}) \sup _{x \in A}|f(x)|
$$

We know that if f_{n} are measurable and $\left|f_{n}\right| \leq M$ and $f_{n}(x) \rightarrow f(x)$ for each x then f is measurable and $|f| \leq M . \int f_{n} d \mu$ and $\int f d \mu$ are all well defined.

Bounded Convergence Theorem.

$$
\lim _{n \rightarrow \infty} \int_{\mathbf{X}} f_{n}(x) d \mu=\int_{\mathbf{X}} f(x) d \mu
$$

Proof. We saw that

$$
\mu\left[\cap_{\ell} \cup_{n \geq \ell}\left\{x:\left|f_{n}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right]=0
$$

Therefore by countable additivity

$$
\mu\left[\cup_{n \geq \ell}\left\{x:\left|f_{n}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right] \rightarrow 0
$$

and

$$
\mu\left[\left\{x:\left|f_{\ell}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right] \rightarrow 0
$$

as $\ell \rightarrow \infty$ for every k.

$$
\begin{aligned}
& \left|\int f_{\ell}(x) d \mu-\int f(x) d \mu\right| \leq \int\left|f_{\ell}(x)-f(x)\right| d \mu \\
& \quad=\int_{\left\{x:\left|f_{\ell}(x)-f(x)\right| \leq \frac{1}{k}\right\}}\left|f_{\ell}(x)-f(x)\right| d \mu+\int_{\left\{x:\left|f_{\ell}(x)-f(x)\right| \geq \frac{1}{k}\right\}}\left|f_{\ell}(x)-f(x)\right| d \mu \\
& \quad \leq \frac{1}{k} \mu(\mathbf{X})+2 M \mu\left[\left\{x:\left|f_{\ell}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right]
\end{aligned}
$$

Let $\ell \rightarrow \infty$ and then $k \rightarrow \infty$.

