
Real Numbers. Properties.

1. Field. Addition, 0, additive inverse (Abelian Group) Multiplication, 1, leaving 0 out
(Abelian Group) Algera. Distributive a(b + c) = ab + ac. Add, subtract, multiply, and
divide by anything other than 0.

2. Ordered Field.

R\{0} = R+ ∪R−

a, b ∈ R+ ⇒ a+ b, ab ∈ R+

We say a > b if a− b ∈ R+

Upper Bounds, Lower bounds,
Rationals Q satisfy. But LUB, GLB exist only for R.

3. Consequences.

Every bounded sequence has a convergent subsequence
Every bounded monotone sequence converges.
Any open covering of a bounded closed set has a finite sub cover.

We begin with integration. Riemann Integrals. Lebesgue integrals.

The notion of ”length” of a set. Let us stick to the interval [0, 1] we try to define µ(A)
which we think of the length of the set A. If A is an interval [a, b] ⊂ [0, 1] the µ(A) = b−a.

Let us define for any set A ⊂ [0, 1], µ∗(A) by

µ∗(A) = inf
[

∞
∑

j=1

µ(Ij) : ∪jIj ⊃ A
]

µ∗ is finitely as well as countably subadditive.

Properties of µ∗.

1. µ∗(A ∪B) ≤ µ∗(A) + µ∗(B)

2. µ∗(∪jAj) ≤
∑

j µ
∗(Aj)

3. µ∗([a, b]) = (b− a)

The first two properties are easily proved. Cover A,B by intervals and the combined set
of intervals covers A ∪B. Split ǫ into ǫ

2 margin for each. For the countable case make the
margin ǫ

2j for Aj. More precisely given ǫ > 0 there are intervals {Ij,k = (aj,k, bj,k)} such
that for each j

∪kIj,k ⊃ Aj

and
∑

k

(bj,k − aj,k) ≤ µ∗(Aj) + ǫ2−j
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∪j,kIj,k ⊃ ∪jAj

and
µ∗(∪jAj) ≤

∑

j,k

(bj,k − aj,k) ≤
∑

j

[µ∗(Aj) + ǫ2−j ] =
∑

j

µ∗(Aj) + ǫ

Finally if {(aj , bj)} covers [a, b] there is a finite sub cover.

[a, b] ⊂ ∪n
i=1(ai, bi)

with out loss of generality we can assume

a1 < a < a2 < b1 < a3 < · · · < an < bn−1 < b < bn

and
(b− a) ≤

∑

i

(bi − ai)

µ∗([a, b]) ≥ (b− a). But µ∗([a, b]) ≤ b− a.

Let us define the class Σ of subsets of [0, 1]. E ∈ Σ if for every subset A ⊂ [0, 1]

µ∗(A ∩E) + µ∗(A ∩Ec) = µ∗(A)

Since
µ∗(A) ≤ µ∗(A ∩E) + µ∗(A ∩ Ec)

we only need to prove
µ∗(A) ≥ µ∗(A ∩E) + µ∗(A ∩ Ec)

Properties of µ∗ on Σ

1. Intervals [a, b] ∈ Σ

2. Σ is closed under finite as well as countable unions and complementation and therefore
under countable intersections (σ−field.)

3. µ∗(E) on Σ is countably additive, i.e., if {Ej} are disjoint, then

µ∗(∪jEj) =
∑

j

µ∗(Ej)

The notion of length is well defined on Σ, extending it from intervals.

Proof.

1. Let A be arbitrary. Let µ∗(A) = m. Then given ǫ > 0, there are intervals {Ij} =
{(aj, bj)} such that A ⊂ ∪j(aj , bj) and

∑

j

(bj − aj) ≤ m+ ǫ
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If E = [a, b], then Ec ⊂ [0, a] ∪ [b, 1] = E1 ∪ E2. Each Ij is the union of three essentially
disjoint intervals Ij ∩E, Ij ∩E1 and Ij ∩E2. If {Ij} covers A then {Ij ∩E} covers A ∩E

and {Ij ∩ E1} and {Ij ∩E2} together cover A ∩ Ec. It is now clear that for any A,

m+ ǫ ≥

∞
∑

j=1

[µ∗(Ij ∩E1) + µ∗(Ij ∩E2) + µ∗(Ij ∩ E3)]

≥ µ∗(A ∩ [a, b]) + µ∗(A ∩ [a, b]c)

i.e. [a, b] ∈ Σ.

2. Since the definition is symmetric in E and Ec it follows that if E ∈ Σ so does Ec.
Assume

µ∗(A ∩E) + µ∗(A ∩Ec) = µ∗(A)

for all A. Replace A by A ∩ F and by A ∩ F c, to get

µ∗(A ∩E ∩ F ) + µ∗(A ∩ Ec ∩ F ) = µ∗(A ∩ F )

and

µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F c) = µ∗(A ∩ F c)

for all A. Adding them

µ∗(A ∩E ∩ F ) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F c) = µ∗(A)

We note that (E ∩ F ) ∪ (Ec ∩ F )∪ (E ∩ F c) = E ∪ F and (E ∪ F )c = Ec ∩ F c. Using sub
additivity

µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c) ≤ µ∗(A)

which is the hard part. So E ∪ F ∈ Σ. So does E ∩ F . If E and F are disjoint, taking
A = A ∩ (E ∪ F )

µ∗(A ∩E) + µ∗(A ∩ F ) + µ∗(A ∩ (E ∪ F )c) = µ∗(A)

Taking A = [0, 1],

µ∗(E) + µ∗(F ) = µ∗(E ∪ F )

Finally we want to prove that if Ej is a countable collection, mutually disjoint, and Ej ∈ E
for every j, then ∪∞

j=1Ej = E ∈ Σ and

µ∗(E) =

∞
∑

j=1

µ∗(Ej)
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Let Fn = ∪n
j=1Ej, then

n
∑

j=1

µ∗(A ∩Ej) + µ∗(A ∩ F c
n) = µ∗(A)

and since F c
n ⊃ Ec,

∞
∑

j=1

µ∗(A ∩Ej) + µ∗(A ∩ F c) ≤ µ∗(A)

By subadditivity
µ∗(A ∩E) + µ∗(A ∩Ec) ≤ µ∗(A)

Proves E ∈ Σ and also
n
∑

j=1

µ∗(Ej) ≤ µ∗(E)

and letting n → ∞
∞
∑

j=1

µ∗(Ej) ≤ µ∗(E)

But the other side is true by sub-addivity. So µ∗ is defined on Σ as a countably additive
measure agreeing with length on [0, 1]. This is Lebesgue measure. We will call it µ.

A class of sets is a σ−field if it is closed under countable unions and complementation.
Given a collection A there is a smallest σ−field containing A, called the σ−field generated
by A denoted by σ(A). If we denote by I the collection of intervals the the Borel σ−field
B is σ(I). The Lebesgue measure is defined on Σ ⊃ B.

Fact. A monotone class is closed under increasing and decreasing limits. A monotone field
is a σ−field and a σ−field is a monotone class. The smallest monotone class containing a
field is the same as the σ−field generated by it. In particular if two measures agree on a
field they agree on the σ−field generated by the field. Lebesgue measure is unique on B.

Let F be a field and M(F) be the monotone class generated by F . Then M = σ(F). To
see this let us define for sets E,

M(E) = {F : E ∩ F c, F ∩ Ec, E ∪ F ∈ M}

M(E) is a monotone class, and for E ∈ F , contains F and so containsM. In other words if
E ∈ F and F ∈ M then E∩F c, F ∩Ec, E∪F ∈ M. The relation is symmetric. Therefore
if F ∈ F and E ∈ M then E ∩ F c, F ∩ Ec, E ∪ F ∈ M. In other words M(E) ⊃ F for
E ∈ M. Hence M(E) ⊃ M. Finally E, F ∈ M implies E ∩F c, F ∩Ec, E ∪F ∈ M or M
is a field. M(F) ⊃ σ(F) and M(F) ⊂ σ(F).
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Construction of measures.

A set function µ defined for A ∈ F , a field of subsets of a space X, satisfying

µ(∪∞
i=1Ai) =

∞
∑

i=1

µ(Ai)

for sets Ai that are pairwise disjoint and {Ai}, A ∈ F , is called a countably additive
measure on F . A countably additive measure µ on F extends uniquely as a countably
additive measure to σ(F), the σ−field generated by F .

Repeat the proof for Lebesgue measure with slight changes.

A semiring S of subsets of a set X satisfies, A,B ∈ S implies A∩B ∈ S. X ∈ S. A,B ∈ S,
A ⊂ B implies B − A = A1 ∪ · · · ∪Ak where {Ai} are disjoint and Ai ∈ S for 1 ≤ i ≤ k.

A set function µ defined for A ∈ S, a semiring of subsets of a space X, satisfying

µ(∪∞
i=1Ai) =

∞
∑

i=1

µ(Ai)

for sets Ai that are pairwise disjoint and {Ai}, A ∈ S, is called a countably additive
measure on S. A countably additive measure µ on S extends uniquely as a countably
additive measure to σ(S), the σ−field generated by S.

Disjoint union of sets from S is a field F(S) and µ extends naturally as

µ(∪k
i=1Ai) =

k
∑

i=1

µ(Ai)

for disjoint unions. µ is countably additive on F(S) and extends uniquely to σ(F(S)).

Integration.

What is the class of functions that we can integrate? Given (X,Σ).

A function f : X → R is measurable if for any E ∈ B(R),

f−1(E) = {x : f(x) ∈ E} ∈ Σ

Enough to check
f−1(I) = {x : f(x) ∈ I} ∈ Σ

for intervals I of the form (−∞, a), a ∈ R.

If f and g are measurable then so are f + g, fg and 1
f
. For example

{x : f(x) + g(x) < a} = ∪q∈Q[{x : f(x) < q} ∩ {x : g(x) < a− q}]
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where Q are the rationals.

More generally a map f : X → Y is measurable relative to (X,Σ) and (Y, E) if for every
E ∈ E

f−1(E) = {x : f(x) ∈ E} ∈ E

If f : X → Y and g : Y → Z are measurable relative to (X,Σ), (Y, E) and (Z,F), then
so is g ◦ f : X → Z.

Let fn(x) be a sequence of measurable maps from (X,Σ) → (R,B). Then

C = {x : lim
n→∞

fn(x) = f(x) exists}

is a measurable set and f(x) restricted to C is measurable.

C = ∩k ∪ℓ ∩ n≥ℓ

m≥ℓ

{x : |fn(x)− fm(x)| ≤
1

k
}

C ∩ {x : f(x) ≤ a} = C ∩ ∩k ∪ℓ ∩n≥ℓ{x : fn(x) ≤ a+
1

k
}

A simple function takes values a1, . . . , ak on k disjoint sets E1, . . . , Ek that are in Σ and
whose union is X. Any linear combination of two simple functions is again a simple
function.

Any bounded measurable function is a uniform limit of simple functions. Let f be bounded
by M and let ǫ > 0 be given. Divide [−M,M ] into k = [M

ǫ
] + 1 intervals {Ij} of size at

most 2ǫ and let a1, . . . , ak be their mid points. Define fǫ(x) = aj on {x : f(x) ∈ Ij}. Then
supx |fǫ(x)− f(x)| ≤ ǫ and f is uniformly approximated by fǫ.

Clearly the integral of a simple function f equal to ai on Ei is

k
∑

i=1

aiµ(Ei)

Any bounded measurable function can be approximated uniformly by simple functions and
the integrals have a limit that does not depend on the approximations used. Integral is
linear and

|

∫

X

f(x)dµ| ≤ sup
x

|f(x)|µ(X)

|

∫

X

[f(x)− g(x)]dµ ≤

∫

X

|f(x)− g(x)|dµ → 0

if supx |f(x)− g(x)| → 0.

The integral is defined for class of bounded measurable functions B(X). L(f) =
∫

X
f(x)dµ

satisfies for f, g ∈ B(X) and a, b ∈ R

L(af + bg) = aL(f) + bL(g)
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f ≥ 0 ⇒ L(f) ≥ 0

|L(f)| ≤ µ(X) sup
x∈X

|f(x)|

Can define for A ∈ Σ
∫

A

f(x)dµ =

∫

X

χA(x)f(x)dµ(x)

and

|

∫

A

f(x)dµ| ≤ µ(A) sup
x∈A

|f(x)|

We know that if fn are measurable and |fn| ≤ M and fn(x) → f(x) for each x then
f is measurable and |f | ≤ M .

∫

fndµ and
∫

fdµ are all well defined.

Bounded Convergence Theorem.

lim
n→∞

∫

X

fn(x)dµ =

∫

X

f(x)dµ

Proof. We saw that

µ[∩ℓ ∪n≥ℓ {x : |fn(x)− f(x)| ≥
1

k
}] = 0

Therefore by countable additivity

µ[∪n≥ℓ{x : |fn(x)− f(x)| ≥
1

k
}] → 0

and

µ[{x : |fℓ(x)− f(x)| ≥
1

k
}] → 0

as ℓ → ∞ for every k.

|

∫

fℓ(x)dµ−

∫

f(x)dµ| ≤

∫

|fℓ(x)− f(x)|dµ

=

∫

{x:|fℓ(x)−f(x)|≤ 1

k
}

|fℓ(x)− f(x)|dµ+

∫

{x:|fℓ(x)−f(x)|≥ 1

k
}

|fℓ(x)− f(x)|dµ

≤
1

k
µ(X) + 2Mµ[{x : |fℓ(x)− f(x)| ≥

1

k
}]

Let ℓ → ∞ and then k → ∞.
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