Hereafter we will be concerned with a countably additive measure μ on a space X defined for $E \in \Sigma$, a σ-field of subsets of X. We assume that $\mu(X)<\infty$. In fact $\mu(X)=1$.
A sequence of measurable functions f_{n} can converge to f in different senses.
A sequence of bounded measurable functions $f_{n}(\cdot)$ converges uniformly to $f(\cdot)$ if

$$
\lim _{n \rightarrow \infty} \sup _{x \in X}\left|f_{n}(x)-f(x)\right|=0
$$

A sequence of measurable functions $f_{n}(\cdot)$ converges pointwise to $f(\cdot)$ if for each $x \in X$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

A sequence of measurable functions $f_{n}(\cdot)$ converges almost everywhere to $f(\cdot)$ if

$$
\mu\left[x: \lim _{n \rightarrow \infty} f_{n}(x)=f(x)\right]=1
$$

i.e. $f_{n}(x) \rightarrow f(x)$ except possibly for x in an exceptional set of measure 0 .

A sequence of measurable functions $f_{n}(\cdot)$ converges in measure to $f(\cdot)$ if for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \mu\left[x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right]=0
$$

Uniform convergence \Rightarrow Pointwise convergence \Rightarrow Almost everywhere convergence \Rightarrow Convergence in measure.
Lemma. If $f_{n}(\cdot) \rightarrow f(\cdot)$ in measure then there is a subsequence n_{j} such that $f_{n_{j}}(x) \rightarrow f(x)$ almost everywhere.
Proof. We use repeatedly the observation that if a_{n} is nonnegative and $a_{n} \rightarrow 0$ there is a subsequence $a_{n_{j}}$ such that $\sum_{j} a_{n_{j}}<\infty$. By diagonalization we can choose a subsequence such that for every integer $k \geq 1$,

$$
\sum_{j} \mu\left[x:\left|f_{n_{j}}(x)-f(x)\right| \geq \frac{1}{k}\right]<\infty
$$

Denoting by $E_{j, k}$ the set $\left[x:\left|f_{n_{j}}(x)-f(x)\right| \geq \frac{1}{k}\right]$, we have

$$
\mu\left[\cap_{\ell} \cup_{j \geq \ell} E_{j, k}\right] \leq \lim _{\ell \rightarrow \infty} \sum_{j \geq \ell} \mu\left[E_{j, k}\right]=0
$$

which is the same as

$$
\mu\left[x: \limsup _{n \rightarrow \infty}\left|f_{n_{j}}(x)-f(x)\right| \geq \frac{1}{k}\right]=0
$$

for every k.
Problem 1. Find a sequence $f_{n}(x)$ on $[0,1]$ such that $f_{n}(\cdot) \rightarrow 0$ in measure with respect to the Lebesgue measure but $\lim \sup _{n} f_{n}(x)=1$ for every x.

We will now consider integrals of unbounded measurable functions. First nonnegative functions. If $f \geq 0$ and measurable we define

$$
\int f d \mu=\sup _{\substack{0 \leq g \leq f \\ g \text { bounded }}} \int g d \mu
$$

i.e the supremum of integrals of nonnegative bounded measurable functions dominated by f. Note that if f is bounded then $g=f$ is the best choice and we recover $\int f d \mu$. Of course the supremum need not be finite. If it is finite $f \geq 0$ is said to be integrable. Otherwise not integrable.
Lemma. If $f_{1}, f_{2} \geq 0, \int\left(f_{1}+f_{2}\right) d \mu=\int f_{1} d \mu+\int f_{2} d \mu$.
Proof. If $g_{1} \leq f_{1}$ and $g_{2} \leq f_{2}$, then $g_{1}+g_{2} \leq f_{1}+f_{2}$ and the integral is additive for bounded measurable functions. $g=g_{1}+g_{2}$ is an admissible choice. Conversely if $g \leq f_{1}+f_{2}$ is given on $f_{1}+f_{2}=0$ we can take $g_{1}=g_{2}=0$ and on $f_{1}+f_{2}>0$ we define $g_{1}=\frac{g f_{1}}{f_{1}+f_{2}}, g_{2}=\frac{g f_{2}}{f_{1}+f_{2}}$ so that $g_{1} \leq f_{1}$ and $g_{2} \leq f_{2}$ and $g_{1}+g_{2}=g$.
Fatou's Lemma. If $f_{n} \geq 0$ and $f_{n} \rightarrow f$, then

$$
\int f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Proof.. Let g be bounded and $0 \leq g \leq f$. Then $\min \left\{g, f_{n}\right\} \rightarrow \min \{g, f\}=g$. But $\min \left\{g, f_{n}\right\} \leq f_{n}$. Also $\min \left\{g, f_{n}\right\}$ is uniformly bounded by a bound for g. Therefore for any such g

$$
\int g d \mu=\lim _{n} \int \min \left\{g, f_{n}\right\} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Taking sup over g,

$$
\int f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Monotone Convergence Theorem. Let $f_{n} \geq 0, f_{n} \uparrow f$ then $\int f_{n} d \mu \rightarrow \int f d \mu$ as $n \rightarrow \infty$. Clearly $0 \leq f \leq g$ implies $\int f d \mu \leq \int g d \mu$. Therefore $\int f_{n} d \mu \leq \int f d \mu$ and by Fatou's lemma $\lim \inf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int f d \mu$. Follows that

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

Similarly if $f_{n} \geq 0, f_{n} \downarrow f$ and if f_{n} is integrable for some n, say $n=1$, then $\int f_{n} d \mu \rightarrow$ $\int f d \mu$ as $n \rightarrow \infty$. Consider $g_{n}=f_{1}-f_{n} \uparrow f_{1}-f$. Therefore $\int\left(f_{1}-f_{n}\right) d \mu \rightarrow \int\left(f_{1}-f\right) d \mu$. But $\int\left(f_{1}-f_{n}\right) d \mu+\int f_{n} d \mu=\int f_{1} d \mu$. If $\int f_{1} d \mu<\infty$ it follows that $\lim _{n \rightarrow \infty} \int f_{n} d \mu=$ $\int f d \mu$.
If f is not non negative then $f=f^{+}-f^{-}$where $f^{+}=\max \{f, 0\}$ and $f^{-}=-\min \{f, 0\}$. f is integrable only if both f^{+}and f^{-}are integrable and $\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu$. Note that f is integrable if and only if $|f|$ is integrable and $\int|f| d \mu=\int f^{+} d \mu+\int f^{-} d \mu$.

Verify that $\int f d \mu=\Lambda(f)$ is linear. i.e if f and g are integrable so is $f+g$ and $\int(f+g) d \mu=$ $\int f d \mu+\int g d \mu . f=f^{+}-f^{-}$and $g=g^{+}-g^{-} .|f|,|g|$ are integrable and so $|f+g| \leq|f|+|g|$ is integrable too. $f+g=\left(f^{+}+g^{+}\right)-\left(f^{-}+g^{-}\right)=(f+g)^{+}-(f+g)^{-}$

$$
\left(f^{+}+g^{+}\right)-(f+g)^{+}=\left(f^{-}+g^{-}\right)-(f+g)^{-}=h \geq 0
$$

We see that

$$
\begin{aligned}
\int(f+g) d \mu & =\int(f+g)^{+} d \mu-\int(f+g)^{-} d \mu=\int\left[(f+g)^{+}+h\right] d \mu-\int\left[(f+g)^{-}+h\right] d \mu \\
& =\int\left(f^{+}+g^{+}\right) d \mu-\int\left(f^{-}+g^{-}\right) d \mu=\int f d \mu+\int g d \mu
\end{aligned}
$$

Dominated Convergence theorem.

If $f_{n} \rightarrow f$ in measure and $\sup _{n}\left|f_{n}(x)\right| \leq g(x)$ with g integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$
Proof. $g(x)+f_{n}(x) \geq 0$ and $g+f_{n} \rightarrow g+f$. By Fatou's lemma, $\int(g+f) d \mu \leq$ $\lim \inf \int(g+f) d \mu$. Since $\int g d \mu<\infty$ we can subtract it from both sides to conclude

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int f d \mu
$$

Since $g(x)-f_{n}(x) \geq 0$ as well, it works with $-f_{n}$ replacing f_{n}.

$$
\limsup _{n \rightarrow \infty} \int f_{n} d \mu \leq \int f d \mu
$$

Problem 2.

Consider $f_{n}(x)=n^{p} x^{n}(1-x)$ on $[0,1] . \lim _{n \rightarrow \infty} f_{n}(x)=0$ for $x \in[0,1]$. Determine the values of p for which $\int_{[0,1]} f_{n}(x) d x \rightarrow 0$. Are these the same as those for which $\sup _{n} f_{n}(x)$ is integrable on $[0,1]$?

Uniform Integrability.

A collection \mathcal{A} of intgrable functions $\{f\}$ is said to be uniformly integrable if

1. $\sup _{f \in A} \int|f| d \mu \leq C<\infty$
2. Given any $\epsilon>0$ there is a $\delta>0$ such that for any $E \in \Sigma$ with $\mu(E)<\delta$

$$
\sup _{f \in \mathcal{A}} \int_{E}|f| d \mu<\epsilon
$$

Lemma. If f is integrable then for any $\epsilon>0$, there is a $\delta>0$ such that, if $\mu(E)<\delta$, $\int_{E}|f(x)| d \mu<\epsilon$.

Proof. Can assume $f \geq 0$. Then $f_{n}=\min \{f, n\} \uparrow f$ and $\int\left|f-f_{n}\right| d \mu \rightarrow 0$. Pick k such that $\int\left|f-f_{k}\right| d \mu<\frac{\epsilon}{2}$. f_{k} is bounded by k. If $\mu(E)<\frac{\epsilon}{2 k}$, then

$$
\int_{E} f d \mu=\int_{E}\left(f-f_{k}\right) d \mu+\int_{E} f_{k} d \mu \leq \int\left(f-f_{k}\right) d \mu+k \mu(E) \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Lemma. Let $f_{n} \geq 0$, and $f_{n} \rightarrow f$ in measure. f_{n}, f are integrable. Then the following are equivalent.

1. $\int\left|f_{n}-f\right| d \mu \rightarrow 0$
2. $\left\{f_{n}\right\}$ are uniformly integrable.
3. $\int f_{n} d \mu \rightarrow \int f d \mu$

Proof. $\mathbf{1} \Rightarrow \mathbf{2}$. Let $\epsilon>0$ be given. Since f is integrable there is $\delta_{0}>0$ such that $\mu(E)<\delta_{0}$ implies $\int_{E} f d \mu \leq \frac{\epsilon}{2}$. There is k such that for $n \geq k, \int_{E}\left|f_{n}-f\right| d \mu \leq \frac{\epsilon}{2}$ and therefore for any such $E, \int_{E} f_{n} d \mu \leq \epsilon$. Since f_{1}, \ldots, f_{k} are integrable for a given ϵ there are $\delta_{1}, \ldots, \delta_{k}$ that work. Since k is finite $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k}\right\}$ works.
$\mathbf{2} \Rightarrow \mathbf{3}$. We saw earlier that for any $\epsilon>0$ as $n \rightarrow \infty$

$$
\mu\left[x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right]=\mu\left[E_{n}\right] \rightarrow 0
$$

Uniform integrability of f_{n} and the integrability of f imply that $\int_{E_{n}}\left|f_{n}-f\right| d \mu \rightarrow 0$. The integral over E_{n}^{c} is at most $\epsilon \mu(X)$ and $\epsilon>0$ is arbitrary.
3. $\boldsymbol{\Rightarrow}$ 2. If not (along a subsequence) there are sets E_{n} with $\mu\left[E_{n}\right] \rightarrow 0$ but $\int_{E_{n}} f_{n} d \mu \geq$ $\epsilon>0$. Let $g_{n}=f_{n}\left(1-\chi_{E_{n}}\right)(x)$. Then $g_{n} \rightarrow f$ in measure because it differs from f_{n} only on E_{n} and $\mu\left[E_{n}\right] \rightarrow 0$. By Fatou's lemma

$$
\int f d \mu \leq \liminf _{n \rightarrow \infty} \int g_{n} d \mu=\liminf _{n \rightarrow \infty}\left[\int f_{n} d \mu-\int_{E_{n}} f_{n} d \mu\right] \leq \int f d \mu-\epsilon
$$

A contradiction.
$\mathbf{2} . \Rightarrow \mathbf{1}$. If $f_{n} \rightarrow f$ in measure then the set

$$
\left\{x:\left|f_{n}(x)\right| \geq k\right\} \subset\left\{x:\left|f_{n}(x)-f(x)\right| \geq 1\right\} \cup\{x:|f(x)| \geq k-1\}
$$

Let $\epsilon>0$ be given. $\mu\left[\left\{x:\left|f_{n}(x)-f(x)\right| \geq 1\right\}\right]<\frac{\epsilon}{2}$ for $n \geq n_{0}$. Choose k such that $\mu\{x:|f(x)| \geq k-1\}]<\frac{\epsilon}{2}$. Then $\mu\left[\left\{x:\left|f_{n}(x)\right| \geq k\right\}\right] \leq \epsilon$ for $n \geq n_{0}$. In other words

$$
\lim _{k \rightarrow \infty} \sup _{n} \mu\left[x:\left|f_{n}(x)\right| \geq k\right]=0
$$

Replace f_{n} by $\min \left\{f_{n}, k\right\}$. Use bounded convergence theorem. Use uniform integrability to control the integral of f_{n} on the set where it is larger than k, which has small measure.

