A signed measure on (X, Σ) is a countably additive set function $\mu(A)$ that can take both positive and negative values. We assume that $\sup _{A \in \Sigma}|\mu(A)|<\infty$.
Example. For $A \in \Sigma, \mu(A)=\mu_{1}(A)-\mu_{2}(A)$ where μ_{1} and μ_{2} are non negative measures on Σ.
Theorem. Any signed measure μ can be expressed as the difference of two nonnegative measures μ_{1}, μ_{2} with $\mu_{1} \perp \mu_{2}$ in the sense that there are sets $X_{1}, X_{2} \in \Sigma$ such that $X_{1} \cap X_{2}=\emptyset$ and $\mu_{1}\left(X_{1}^{c}\right)=0$ and $\mu_{2}\left(X_{2}^{c}\right)=0$
Theorem. An equivalent version of the theorem is that there are two subsets $X_{1}, X_{2} \in \Sigma$ with $X_{1} \cap X_{2}=\emptyset$ and $X_{1} \cup X_{2}=X$ such that $\mu(A) \geq 0$ for all $A \in \Sigma, A \subset X_{1}$ and $\mu(A) \leq 0$ for all $A \in \Sigma, A \subset X_{2}$.
Proof. A set A is totally positive if $\mu(B) \geq 0$ for all $B \subset A, B \in \Sigma$. If $\mu(A)>0$ but A is not totally positive then there is a set $B_{1} \subset A$ with $\mu\left(B_{1}\right)<0$. Then $\mu\left(A \backslash B_{1}\right)=\mu(A)-$ $\mu\left(B_{1}\right)>\mu(A)$. We can choose B_{1} such that $\mu\left(B_{1}\right) \leq \frac{1}{2} \inf _{B \subset A} \mu(B)$. Define $A_{1}=A \backslash B_{1}$ and proceed in a similar fashion. We either arrive at a totally positive set at a finite stage, or we have a decreasing sequence A_{k} with $\mu\left(A_{k}\right) \geq \mu(A)-\sum_{j=1}^{k} \inf _{B \subset A_{j-1}} \mu(B)$ This forces $\sum_{j=1}^{\infty} \inf _{B \subset A_{j-1}} \mu(B)$ to converge and consequently $\inf _{B \subset A_{j-1}} \mu(B) \rightarrow 0$. Therefore If $A^{+}=\cap_{j} A_{j}$ then $\inf _{B \subset A^{+}} \mu(B)=0$ and A^{+}is totally positive. We have shown that if $\mu(A)>0$, it has a subset A^{+}that is totally positive with $\mu\left(A^{+}\right) \geq \mu(A)$.
Any finite or countable union of totally positive sets is totally positive. Any subset of the union can be written as a disjoint union of subsets of the individual totally positive sets.
Let us choose the largest totally positive set, i.e. one with the largest measure. Its complement must be totally negative. Proves the second version.
Uniqueness of sets to within sets of measure zero in the second version and uniqueness of measures in the first.

Suppose $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are four measures $\mu_{1} \perp \mu_{2}, \mu_{3} \perp \mu_{4}, \mu_{1}-\mu_{2}=\mu_{3}-\mu_{4}$ the we must show that $\mu_{1}=\mu_{3}$ and $\mu_{2}=\mu_{4}$. We can re write it as $\mu_{1}+\mu_{4}=\mu_{2}+\mu_{3} . \mu_{1}, \mu_{2}$ are concentrated on disjoint sets E, E^{c} and μ_{3}, μ_{4} on disjoint sets F, F^{c}. On $E \cap F, \mu_{2}$ and μ_{4} are 0 , so implying $\mu_{1}=\mu_{3}$ on subsets of $E \cap F$. On $E \cap F^{c}, \mu_{2}$ and μ_{3} are 0 making $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=0$. Similarly on $E^{c} \cap F$ they are all 0 . Finally on $E^{c} \cap F^{c}$ we have $\mu_{1}=\mu_{2}=0$ and $\mu_{3}=\mu_{4}$. Makes $E=F$ to with in a set of measure 0 under μ_{1} and μ_{2}.
One way of generating new measures from old ones is to define for $A \in \Sigma$

$$
\lambda(A)=\int_{A} f(x) d \mu=\int \chi_{A}(x) f(x) d \mu
$$

where $f(x)$ is integrable with respect to $\mu . \quad f=f^{+}-f^{-}$and $\lambda=\lambda^{+}-\lambda^{-}$where $f^{+}(x)=\max \{f(x), 0\}, f^{-}(x)=-\min \{f(x), 0\}$ and $\lambda^{ \pm}(A)=\int_{A} f^{ \pm} d \mu$. λ is countably additive, by the dominated convergence theorem.

Given a nonnegative countably additive measure μ and a signed countably additive measure λ on (X, Σ) when can we find a measurable function f such that for all $A \in \Sigma$

$$
\lambda(A)=\int_{A} f(x) d \mu
$$

A signed measure λ is said to be absolutely continuous with respect to a nonnegative measure $\mu(\lambda \ll \mu)$ if for every set with $\mu(A)=0$, we have $\lambda(A)=0$.

Radon-Nikodym-Theorem. λ has a representaion $\lambda(A)=\int_{A} f(x) d \mu$ with an integrable f if and only if it is absolutely continuous with respect to μ.
Proof. If $\mu(A)=0$ clearly $\int_{A} f d \mu=0$ for any integrable f. To prove the converse let us write $\lambda=\lambda^{+}-\lambda^{-}$supported on disjoint sets X^{+}and X^{-}. If $A \subset X^{+}$and $\mu(A)=0$ then $\lambda(A)=\lambda^{+}(A)=0$. So $\lambda^{+} \ll \mu$ Similarly $\lambda^{-} \ll \mu$. For proving the theorem we can assume that λ is nonnegative. We will try to find nonnegative functions f such that $\int_{A} f d \mu \leq \lambda(A)$ for all $A \in \Sigma$. Maximize $\int_{X} f d \mu$ among those. It is easy to see that there is a function f that achieves the maximum. If $\int_{A} f d \mu=\lambda_{1}(A)$ then $\lambda_{2}=\lambda-\lambda_{1} \geq 0$ and $\lambda_{2} \ll \mu$. There is now no nontrivial f with $\int_{A} f d \mu \leq \lambda_{2}(A)$. We can try with $\left(\lambda_{2}-\epsilon \mu\right)^{+}=\nu_{\epsilon}$ and ν_{ϵ} is supported on $X_{\epsilon}^{+} . \int_{A} \epsilon d \mu \leq \lambda_{2}(A)$ for $A \subset X_{\epsilon}^{+}, A \in \Sigma$. This has to be trivial or $\mu\left(X_{\epsilon}^{+}\right)=0$. But $\lambda_{2} \ll \mu$. Therefore $\lambda_{2}\left(X_{\epsilon}^{+}\right)=0$ and $\nu_{\epsilon}=0$. This implies $\lambda_{2}(A) \leq \epsilon \mu(A)$ for all A and $\epsilon>0$. This means $\lambda_{2}=0$. The function f such that $\int_{A} f d \mu=\lambda(A)$ for all $A \in \Sigma$ is called the RN derivative and is denoted by $f=\frac{d \lambda}{d \mu}$.
Lemma. If $\lambda \ll \mu, f=\frac{d \lambda}{d \mu}, g$ is integrable with respect to λ if and only if $g f$ is integrable with respect to μ and

$$
\int g d \lambda=\int f g d \mu
$$

Proof. True if g is the indicator of a set. True if g is simple. True for bounded g. True for nonnegative g by taking sup over bounded nonnegative functions below it. Finally deal with g^{+}and g^{-}.

Lemma. If $\lambda \ll \mu, \mu \ll \nu$ then $\lambda \ll \nu$ and $\frac{d \lambda}{d \nu}=\frac{d \lambda}{d \mu} \cdot \frac{d \mu}{d \nu}$
Proof. Let $\frac{d \lambda}{d \mu}=f$ and $\frac{d \mu}{d \nu}=g$. Then

$$
\int h d \lambda=\int h f d \mu=\int h f g d \nu
$$

This implies $\frac{d \lambda}{d \nu}=f g$.
Remark. The RN derivative is unique. $\int_{A} f d \mu=\int_{A} g d \mu$ for all $A \in \Sigma$ and f, g are Σ measurable then $f=g$ a.e. To see this note that $\int_{A}(f-g) d \mu=0$ and we can take for A the set $\{x: f(x)-g(x)>0\}$. Then $f-g \leq 0$ a.e. A similar argument shows $f-g \geq 0$ a.e.. Implies $f=g$ a.e. If $\lambda \ll \mu$ on Σ and $\mathcal{S} \subset \Sigma$ is a sub σ - field then $\lambda \ll \mu$ on \mathcal{S} and the RN derivative will exist as an \mathcal{S} measurable function that works only for $A \in \mathcal{S}$. Usually different from the RN derivative on Σ which is Σ measurable and works for $A \in \Sigma$.

We can consider measures that are infinite for the whole space. We will restrict our selves to σ-finite measures, which have the property that the whole space is a countable union of sets with finite measure. We consider simple functions $\sum_{j=1}^{k} c_{j} \chi_{A_{J}}(x)$ where each A_{j} is set of finite measure. The simple function is nonzero only on a set of finite measure. Any bounded measurable function that is nonzero only on a set of finite measure can be
integrated as before. If all the functions are zero outside a fixed set of finite measure, bounded convergence theorem holds. For arbitrary nonnegative functions we define

$$
\int f d \mu=\sup _{\substack{g: 0 \leq g \leq f \\ \mu[x:|g(x)|>0]<\infty}} \int g d \mu
$$

It is easy to check that Fatou's lemma and the dominated convergence theorem hold good for σ-finite measures without any change.
A continuous function $F(x)$ on $(-\infty, \infty)$ is said to be of bounded variation if

$$
C=\sup _{k, a_{1}<a_{2}<\cdots<a_{k}} \sum_{i=1}^{k-1}\left|F\left(a_{j}\right)-F\left(a_{j-1}\right)\right|<\infty
$$

Theorem. If F is of bounded variation then F can be written as $F(x)=c+F_{1}(x)-$ $F_{2}(x)$ where F_{1} and F_{2} are bounded, nondecreasing, continuous functions with $F_{1}(-\infty)=$ $F_{2}(-\infty)=0$.

Proof. Given $\epsilon>0$ there is some $k, a=a_{1}<a_{2}<\cdots a_{k}=b$ such that

$$
\sum_{j=1}^{k-1}\left|F\left(a_{j+1}\right)-F\left(a_{j}\right)\right| \geq C-\epsilon
$$

This forces $|F(x)-F(y)|<\epsilon$ for $x<y<a$ or $b<x<y$. In particular $\lim _{x \rightarrow-\infty} F(x)=$ $F(-\infty)$ exists. We can take that as c. We can now assume that $F(-\infty)=0$. Define

$$
\begin{aligned}
& F_{1}(x)=\sup _{\substack{k, a_{1}<a_{2}<\ldots<a_{k} \\
\left\{a_{j}\right\} \leq x}} \sum_{j=1}^{k-1}\left(F\left(a_{j+1}\right)-F\left(a_{j}\right)\right)^{+} \\
& F_{2}(x)=\sup _{\substack{k, a_{1}<a_{2}<\ldots<a_{k} \\
\left\{a_{j}\right\} \leq x}} \sum_{j=1}^{k-1}\left(F\left(a_{j+1}\right)-F\left(a_{j}\right)\right)^{-}
\end{aligned}
$$

Since both x^{+}and x^{-}are subadditive we can assume that the partitions are the same for both and $a_{k}=x$ and a_{1} is close to $-\infty$ that $F_{i}\left(a_{1}\right) \leq \epsilon$. For $i=1,2$

$$
F_{i}(x)-\sum_{j=1}^{k-1}\left(F\left(a_{j+1}\right)-F\left(a_{j}\right)\right)^{ \pm} \leq \epsilon
$$

Taking the difference

$$
\left|F(x)-\left(F_{1}(x)-F_{2}(x)\right)\right| \leq F\left(a_{1}\right)+F_{1}\left(a_{1}\right)+F_{2}\left(a_{1}\right)
$$

is as small as we want.

If f is integrable on $(-\infty, \infty)$ and $F(x)=\int_{-\infty}^{x} f(y) d y$ is $F^{\prime}(x)=f(x)$? In Calculus it was proved for f continuous is it true in some sense for integrable f ?
To prove results that are special about measures on R we need to understand the special relation between Borel sets and open sets.

Lemma. For any measure μ on a σ-field Σ generated by a field \mathcal{F}, given any $A \in \Sigma$ and any $\epsilon>0$, there is a $B \in \mathcal{F}$ such that $\mu(A \Delta B)<\epsilon .\left(A \Delta B=\left(A \cap B^{c}\right) \cup\left(A^{c} \cup B\right)\right)$.
Proof. The class of A^{\prime} s for which this is true is a monotone class that contains the field.
Theorem. Given a set $A \in \mathcal{B}(R)$, a measure μ and $\epsilon>0$, there is an open set $G \supset A$ and a closed set $C \subset A$ such that $\mu(G \backslash A)<\epsilon, \mu(A \backslash C)<\epsilon$.

Proof. Let us look at the collection of sets \mathcal{A} for which we can do it. If A is closed $G_{n}=\left\{x:|x-y|<\frac{1}{n}\right\}$ decreases to A. n large will do it. The class of sets is closed under finite unions. Take the unions of $G^{\prime} \mathrm{s}$ and C^{\prime} s. The errors just add up. Complement is automatic because the definition is symmetric. Only need to show it is a monotone class. Given A_{j} pick G_{j} and C_{j} so that $\mu\left(G_{j} \backslash A_{j}\right)<\epsilon 2^{-} j$ and $\mu\left(A_{j} \backslash C_{j}\right)<\epsilon 2^{-(j+1)}$. We can take $G \supset \cup_{j} A_{j} \supset C$ with $G=\cup_{j} G_{j}$ and $C=\cup_{j} C_{j}$. But C is not closed. We can however replace C by $\cup_{j=1}^{N} C_{j}$ with N large enough that $\mu\left(C \backslash C_{N}\right)<\frac{\epsilon}{2} . G \supset \cup_{j} A_{j} \supset C_{N}$ works.
Theorem. Given a bounded measurable function f, there is a sequence $\left\{f_{n}\right\}$ of continuous functions such that $f_{n} \rightarrow f$ in measure.

Proof. Approximate it first by simple functions. It is enough to show that for any $A \in \Sigma$, $\chi_{A}(x)$ can be approximated by a continuous function such that $\mu\left[\left\{x: f(x) \neq \chi_{A}(x)\right\}\right]<\epsilon$ Given ϵ find an open set G and a closed set C such that $G \supset A \supset C$ and $\mu(G \backslash C)<\epsilon . C$ and G^{c} are disjoint closed sets and we can construct a continuous function $g(x), 0 \leq g(x) \leq 1$, $g(x)=1$ on C and 0 on G^{c}.

$$
g(x)=\frac{d\left(x, G^{c}\right)}{d\left(x, G^{c}\right)+d(x, C)}
$$

where $d(x, B)=\inf _{y \in B}|x-y|$
Theorem. Let $f \geq 0$ be integrable with respect to Lebesgue measure on R. Let

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

Then F is nondecreasing, and with

$$
f_{h}(x)=\frac{F(x+h)-F(x)}{h}
$$

$f_{h}(x) \rightarrow f(x)$ as $h \rightarrow 0$ for almost all x, and $\lim _{h \rightarrow 0} \int_{-\infty}^{\infty}\left|f_{h}(x)-f(x)\right| d x=0$.
Proof. Given $\epsilon>0$, there is a function g, continuous and 0 outside a bounded interval $[a, b]$ such that $f(y)=g(y)+k(y)$ and

$$
\int_{-\infty}^{\infty}|k(y)| d y<\epsilon
$$

and

$$
f_{h}(x)=g_{h}(x)+k_{h}(x)
$$

It is clear that $g_{h}(x)$ converges uniformly to $g(x)$ and is 0 outside a fixed finite interval. We can estimate for $h>0$,

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|k_{h}(x)\right| d x & \leq \frac{1}{h} \int_{-\infty}^{\infty}\left[\int_{x}^{x+h}|k(y)| d y\right] d x \\
& =\frac{1}{h} \int_{-\infty}^{\infty}\left[\int_{y-h}^{y} d x\right]|k(y)| d y \\
& =\int_{-\infty}^{\infty}|k(y)| d y \\
& <\epsilon
\end{aligned}
$$

Finally to prove convergence a.e. we need a lemma.

Vitali Covering Lemma. A collection of intervals \mathcal{I} is said be a Vitali cover for a measurable set E, if given any $x \in E$, and $\epsilon>0$, there is an $I \in \mathcal{I}$ such that $x \in I$ and $l(I) \leq \epsilon$

Lemma. Given a Vitali covering \mathcal{I} of a set E of finite measure, and $\epsilon>0$ there are disjoint intervals $I_{1}, \ldots, I_{N} \in \mathcal{I}$ such that $\mu\left[E \cap\left(\cup_{j=1}^{N} I_{j}\right)^{c}\right]<\epsilon$.

Proof. Take an open set G that contains E and has finite measure. We can assume that every $I \in \mathcal{I}$ is contained in G. We choose sequentially intervals $I_{1}, \ldots, I_{n}, \ldots$. Unless $E \subset \cup_{j=1}^{n} I_{j}$, after I_{n}, I_{n+1} is chosen so that its length is at least $\frac{k_{n}}{2}$ where k_{n} is the supremum of the lengths of all the intervals in \mathcal{I} that do not meet I_{1}, \ldots, I_{n}. Since $\left\{I_{j}\right\}$ are disjoint and contained in $G, \sum_{j} l\left(I_{j}\right)<\infty$ and we can find N such that $\sum_{j=N+1}^{\infty} l\left(I_{j}\right)<\frac{\epsilon}{5}$. Let $R=E \cap\left(\cup_{j=1}^{N} I_{j}\right)^{c}$. Let $x \in R$. There is an interval I with $l(I)$ small enough containing x and disjoint from $\cup_{j=1}^{N} I_{j}$. If $I \cap I_{n}=\emptyset$, then $l(I) \leq k_{n} \leq 2 l\left(I_{n+1}\right)$. Since $l\left(I_{n+1}\right) \rightarrow 0$. I must meet one of the intervals $\left\{I_{j}\right\}$ say I_{n}. The distance from x to the mid point of I_{n} is $l(I)+\frac{1}{2} l\left(I_{n}\right) \leq \frac{5}{2} l\left(I_{n}\right)$. If we blow up I_{n} by a factor of 5 keeping the center and call the interval $J_{n}, R \subset \cup_{n=N+1}^{\infty} J_{n}$ and $\mu(R) \leq \epsilon$.
We define for any nondecreasing bounded function $f(x)$ on $[a, b]$ the derivatives

$$
\begin{aligned}
& \left(D_{+}^{+} f\right)(x)=\limsup _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(x+h)-f(x)}{h} \\
& \left(D_{+}^{-} f\right)(x)=\liminf _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(x+h)-f(x)}{h} \\
& \left(D_{-}^{+} f\right)(x)=\limsup _{\substack{h \rightarrow 0 \\
h<0}} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
\left(D_{-}^{-} f\right)(x)=\liminf _{\substack{h \rightarrow 0 \\ h<0}} \frac{f(x+h)-f(x)}{h}
$$

are defined on (a, b).
Theorem. For almost all x the four derivatives are finite and equal. The derivative g is nonnegative, integrable and

$$
f(b)-f(a) \geq \int_{a}^{b} g(x) d x
$$

Proof. It is enough to show that for any two rationals $u<v$

$$
\mu\left[x:\left(D_{+}^{+} f\right)(x)<u<v<\left(D_{-}^{+} f\right)(x)\right]=0
$$

Let $E=E_{u, v}$ be the set in question. Assume $\mu(E)=s>0$. Find an open set $G \supset E$ with $\mu[G \backslash E]<\epsilon$. For each $x \in E$ we can find h as small as we please such that the intervals are contained in the open set G and $f(x+h)-f(x)<u h$. By Vitali covering lemma we can find disjoint intervals $I_{r}=\left[x_{r}, x_{r}+h_{r}\right]$ such that their union A covers E to within ϵ. Each $x \in A$ is the end point of $[x-k, x]$ with $f(x)-f(x-k)>v k$ and contained in some I_{r}. We can find intervals $J_{i}=\left[y_{i}-k_{i}, y_{i}\right]$ with $f\left(y_{i}-k_{i}-\right) f\left(y_{i}\right)>v k$ their union covers A to within measure ϵ. Each J_{i} is contained in some I_{r}. Since f is increasing the sum over the J_{i} must be less than the sum over I_{r}.

$$
(s-2 \epsilon) v \leq(s+\epsilon) u
$$

Contradicts $u<v$. Fatou's lemma shows

$$
\begin{aligned}
\int_{a}^{b} g(x) d x & \leq \liminf _{n \rightarrow \infty} n \int_{a}^{b}\left[f\left(x+\frac{1}{n}\right)-f(x)\right] d x \\
& =\liminf _{n \rightarrow \infty}\left[n \int_{b}^{b+\frac{1}{n}} f(x) d x-n \int_{a}^{a+\frac{1}{n}} f(x) d x\right] \\
& \leq f(b)-f(a)
\end{aligned}
$$

Given $F(x)$ that is continuous and nondecreasing on $[0,1]$ we know $F^{\prime}(x)=f(x)$ exists a.e and is integrable with $\int_{0}^{1} f(x) d x \leq F(1)-F(0)$. When does equality hold?

Equivalently when does the measure λ corresponding to F absolutely continuous with respect to Lebesgue measure.

A continuous and nondecreasing function $F(x)$ is absolutely continuous if for any $\epsilon>0$ there is a $\delta>0$ such that when ever $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta$, where $\left\{\left(a_{i}, b_{i}\right)\right\}$ are any finite collection of disjoint intervals in $[0,1]$ we have $\sum_{i=1}^{n}\left(F\left(b_{i}\right)-F\left(a_{i}\right)\right)<\epsilon$.

What we need to show if for any $\epsilon>0$ there is a $\delta>0$ such that for any set $A \in \mathcal{F}$ with $\mu(A)<\delta$ we have $\lambda(A)<\epsilon$, then $\lambda \ll \mu$ on Σ generated by \mathcal{F}. We can choose A_{n} from \mathcal{F} approximating A under both λ and μ. Eventually $\mu(A)$ will get smaller than any δ forcing $\lambda(A)$ to be small and eventually 0 .

Absolutely continuous functions are the indefinite integrals of Lebesgue integable functions.

Product Measures and Fubini's Theorem.

Let $\left(X_{i}, \Sigma_{i}, \mu_{i}\right)$ for $i=1,2$ be two measure spaces and we define (X, Σ, μ), the product of the two as follows.
$X=X_{1} \times X_{2}$ is the cartesian product. Sets of the form $A_{1} \times A_{2}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in\right.$ $A_{1}, x_{2} \in A_{2}$ with $A_{i} \in \Sigma_{i}$ are called rectangles and they form a semiring. Finite disjoint unions form a field and the σ-field generated by it is $\Sigma=\Sigma_{1} \times \Sigma_{2}$. We define the product measure by $\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \cdot \mu_{2}\left(A_{2}\right)$ and show that it extends uniquely as a countably additive measure on $\Sigma_{1} \times \Sigma_{2}$. We need to show that if R_{j} are disjoint rectangles $A_{j}^{1} \times A_{j}^{2}$ and their union is a rectangle $A^{1} \times A^{2}$ then

$$
\mu_{1}\left(A^{1}\right) \cdot \mu_{2}\left(A^{2}\right)=\sum_{j=1}^{\infty} \mu_{1}\left(A_{j}^{1}\right) \cdot \mu_{2}\left(A_{j}^{2}\right)
$$

What we have is

$$
\chi_{A^{1}}\left(x_{1}\right) \chi_{A^{2}}\left(x_{2}\right)=\sum_{j=1}^{\infty} \chi_{A_{j}^{1}}\left(x_{1}\right) \chi_{A_{j}^{2}}\left(x_{2}\right)
$$

We can integrate x_{2} term by term with respect to μ_{2}. Using the Bounded convergence theorem we have for each x_{1}

$$
\chi_{A^{1}}\left(x_{1}\right) \mu_{2}\left(A^{2}\right)=\sum_{j=1}^{\infty} \chi_{A_{j}^{1}}\left(x_{1}\right) \mu_{2}\left(A_{j}^{2}\right)
$$

Now integrate x_{1} with respect to μ_{1} and we have what we need.
We denote by $\mu=\mu_{1} \times \mu_{2}$ the product measure. Fubini's Theorem asserts that if $f\left(x_{1}, x_{2}\right)$ is integrable with respect to μ then for almost all x_{1} with respect to μ_{1} it is integrable in x_{2} with respect to μ_{2} and the integral $g_{1}\left(x_{1}\right)$ is integrable with respect to μ_{1}. Moreover

$$
\int_{X} f\left(x_{1}, x_{2}\right) d \mu=\int_{X_{1}}\left[\int_{X_{2}} f\left(x_{1}, x_{2}\right) d \mu_{2}\right] d \mu_{1}=\int_{X_{2}}\left[\int_{X_{1}} f\left(x_{1}, x_{2}\right) d \mu_{1}\right] d \mu_{2}
$$

True for indicator rectangles. True for indicators of sets in \mathcal{F}. True for indicators of sets in Σ. True for simple functions. True for bounded measurable functions. True for nonnegative functions and finally integrable functions.

Warning. Measurability in X is important. (joint measurability). There are crazy examples of sets in X such that for the indicator f

$$
1=\int_{X_{1}}\left[\int_{X_{2}} f\left(x_{1}, x_{2}\right) d \mu_{2}\right] d \mu_{1} \neq \int_{X_{2}}\left[\int_{X_{1}} f\left(x_{1}, x_{2}\right) d \mu_{1}\right] d \mu_{2}=0
$$

For nonnegative jointly measurable functions if any of the repeated integrals is finite then the double integral is finite as well.

