Metric Spaces. (X,d) is a metric space if X is provided with a metricd : X x X — R
with the following properties.

1. d(z,y) =d(y,x) for all x,y € X
2. d(z,y) > 0d(x,y) =0 if and only if x = y.
3. For z,y,z € X, d(x, z) < d(z,y) + d(y, z) (Triangle Inequality)

Definition. z,, — z in X if d(z,,z) — 0. i.e given any € > 0 there is ng such that
d(xp,x) < € for n > ny.

Definition {z,} is a Cauchy sequence if lim,, ;00 d(2y, ) = 0. i.e given € there is ng
such tat d(x,, ;) < € for n,m > ng.

A convergent sequence is Cauchy. d(x,,,z,,) < d(x,z) + d(xm, x).

If a subsequence z,; of a Cauchy sequence of x, converges to a limit x then the entire
sequence converges to it.

d(zn,x) < d(Tn,, ) + d(2y,.25)

X is complete if every Cauchy sequence converges to a limit.

Theorem. If (X, d) is not complete, there is a complete space (Y, D) such that there is
an embedding y = Tz of X into Y such that d(zq,x2) = D(Tx1,Tx2) and T X is dense in
Y. Such a (Y, D) is unique up to isometry, i.e. if (Y7, Dq),(Ya, D3) are two choices then
there is a one to one map U from Y; to Y5 that is onto and Dj(y1,y2) = D2(Uy1, Uys).
(Y, D) is called the completion of (X, d).

Proof. Consider the space Z of all Cauchy sequences ¢ = {z,} from (X,d). We define
the distance

It is easy to check using triangle inequality that |d(z,,yn) — d(Tm, Ym)| < d(Tn, Tm) +
d(Yn + Ym). Since R is complete the Cauchy sequence d(x,, y,) has a limit. Note that this
limit is also limy, ;—o0 d(Zn, Ym ). It is possible that D(£,n) = 0. In that case we say they
belong to the same equivalence class. The triangle inequality provides transitivity and we
have symmetry. Z/ ~ is taken as the completion of (Y, D) of (X,d). X is imbedded in Y
by sending = to the equivalence class of all sequences that converge to x in particular the
equivalence class containing &, = {x,z,z,...,z,...}. X is imbedded densely because if
{z, } is a Cauchy sequence, the equivalence class of Cauchy sequences &,, that that converge
to x,, converges to the equivalence class £ containing {x, }.

lim D(&;,,€) = lim lim d(z,,zm,) =0

n—oo n—oo m—0o0

Finally we need to prove that (Y, D) is complete. Let {{;} = {x;,} be a Cauchy sequence
of Cauchy sequences with D(&;,&;) — 0 as 4, — oo.

lim lim d(.’lﬁi,n,x]‘ n) =0
1,j—00 Nn—00 ’



For each i we can choose n; such that d(x; n,%;m) < 27% for n,m > n,. Consider the
sequence T; = Tj p, .

d(xi,ni ’ xj,nj) S d(xz,nz ’ xi,m) + d(xi,my xj,m) + d(xj,m: xj,nj>
We can let m — oo.

d(xi,ni ’ xj,nj) < d(xz,nz ) xi,m) + d(xi,my xj,m) + d(xj,m: xj,nj>

d(xi,niv xj,nj> S 2_i + D(Sl? Sj) + 2_J

Makes n = {x; », } a Cauchy sequence. We now show that D(&;,n) — 0. as k — oo

D(gm 77) = lim d(xi,bxk,nk) S lim D(fufk) + 2_i + 2_k

k,f— o0

k. — 00
and

lim lm d(z¢, Tkn,) =0
1—00 k,4— 00

Examples of Metric spaces.

X = C]0,1] Continuous functions f(-) on [0, 1]. d(m,y) = sup, \f( ) —g(x)|
Lebesgue mesurable functions f(-) on [0, 1] such that |f(x)|P is integrable. (1 < p < 00).

= [Jo 1/ (z) - g(@)IPdz]

Trlangle 1nequahty for L,. Minkowski Inequality. Holder Inequaity. If % + % =1,p,qg>1

/ F@)g(@)ldn < | / (@) P3| / g(a)|td)

f(@)[Pdp)r = f(z)g(x)d
([ 1@ e [ t@gt)du

1. X =R, d(x,y) = |z — vy

2. X =R". d(z,y) = V/>_(xi — yi)?

3. X = R" d(x,y) = 3_; [wi — il or d(z,y) = sup; |z; — yil

4. X = [4]0,1]. Lebesgue integrable functions f(-) on [O 1]. d fo |f(x (x)|dx
5. X = C0,1] Continuous functions f(-) on [0,1]. d fo |f )\daj

6.

7.

</|f1<x>+f2<x>|pdu>%= sup /|f1 )+ fol@))g(@)]dul

Ig(m)lqdu<1

< sup / | f1(z)g(x)|dp + sup / | f2(z)g()|dp

g [ lg(@)]2dp<1 g: [ lo(x)1dp<1

— ( / Fu(@)Pd)® + ( / o) Pdp)}



Step 1. Let =,y be nonnegative. 1 < p,q < oo and l + % = 1. Then

Pyl
Ty < — + =
p q
Proof. Calculate sup, [xy — —] Setting the derivative with respect to y as 0, z = y?=!
or y = qu 1 = 3;5
sup, [zy — %] = ' te — % =2P(1 — %) = %p. Proves the inequality.

Step 2.

[ 15@gt@ldn < ([ 1Pt [ lg)du

Proof. For any A > 0

[ 15@o@lan= [ 10 ED iy

_/[Ap\f(w)lerl g(x)|? ldu
p A

Minimize over A > 0. A = ([ |g(x)|%dp) 7+ ([ | f(z)[Pdp) ~#ia

v [1r@lrdn =1 [lg@ldn= ([ 1f@Pan? ([ lg@lran?

and

Step 3. Assume that [ |f(z)[Pdu < oo. Clearly

([ 1f@)Pdp)s > sup | [ fz)g(z)|dyl
/ g:flg(w)lqdu<1 /

Take g(z) = c(sign(f(z))|f(x)|P~! where

/Ig(w)l"du =1 / |f(2)|Pdp =1

¢ [ f@g@au=c [ |f@)Prau
e= ([ 15@lrdn)

Then

and



e [ |f@)Pdp= ([ |f(@)Pdu)' =5 = ([ |f(z)[Pdp)>
/ / /

It then follows that

([ 1@ +9@m)? <([17@F +([la@P)

Step 4. Actually if for a measurable function f

/f x)dp < oo
f\g\qw 1

wl»—‘

where G consists of functions g that are bounded and supported on some set E of finite
measure on which f is bounded as well, then [ |f \pd,u < oo and the Step 3 is applicable.
Replace f by fxg and and get a bound for [ |fg(x)[Pdu that is uniform in E.



