Metric Spaces. (X, d) is a metric space if X is provided with a metric $d: X \times X \rightarrow R$ with the following properties.

1. $d(x, y)=d(y, x)$ for all $x, y \in X$
2. $d(x, y) \geq 0 d(x, y)=0$ if and only if $x=y$.
3. For $x, y, z \in X, d(x, z) \leq d(x, y)+d(y, z)$ (Triangle Inequality)

Definition. $x_{n} \rightarrow x$ in X if $d\left(x_{n}, x\right) \rightarrow 0$. i.e given any $\epsilon>0$ there is n_{0} such that $d\left(x_{n}, x\right)<\epsilon$ for $n>n_{0}$.

Definition $\left\{x_{n}\right\}$ is a Cauchy sequence if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. i.e given ϵ there is n_{0} such tat $d\left(x_{n}, x_{m}\right) \leq \epsilon$ for $n, m \geq n_{0}$.

A convergent sequence is Cauchy. $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n} x\right)+d\left(x_{m}, x\right)$.
If a subsequence $x_{n_{j}}$ of a Cauchy sequence of x_{n} converges to a limit x then the entire sequence converges to it.

$$
d\left(x_{n}, x\right) \leq d\left(x_{n_{j}}, x\right)+d\left(x_{n_{j}} \cdot x_{n}\right)
$$

X is complete if every Cauchy sequence converges to a limit.
Theorem. If (X, d) is not complete, there is a complete space (Y, D) such that there is an embedding $y=T x$ of X into Y such that $d\left(x_{1}, x_{2}\right)=D\left(T x_{1}, T x_{2}\right)$ and $T X$ is dense in Y. Such a (Y, D) is unique up to isometry, i.e. if $\left(Y_{1}, D_{1}\right),\left(Y_{2}, D_{2}\right)$ are two choices then there is a one to one map U from Y_{1} to Y_{2} that is onto and $D_{1}\left(y_{1}, y_{2}\right)=D_{2}\left(U y_{1}, U y_{2}\right)$. (Y, D) is called the completion of (X, d).
Proof. Consider the space \mathcal{Z} of all Cauchy sequences $\xi=\left\{x_{n}\right\}$ from (X, d). We define the distance

$$
D(\xi, \eta)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

It is easy to check using triangle inequality that $\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, x_{m}\right)+$ $d\left(y_{n}+y_{m}\right)$. Since R is complete the Cauchy sequence $d\left(x_{n}, y_{n}\right)$ has a limit. Note that this limit is also $\lim _{n, m \rightarrow \infty} d\left(x_{n}, y_{m}\right)$. It is possible that $D(\xi, \eta)=0$. In that case we say they belong to the same equivalence class. The triangle inequality provides transitivity and we have symmetry. \mathcal{Z} / \sim is taken as the completion of (Y, D) of $(X, d) . X$ is imbedded in Y by sending x to the equivalence class of all sequences that converge to x in particular the equivalence class containing $\xi_{x}=\{x, x, x, \ldots, x, \ldots\} . X$ is imbedded densely because if $\left\{x_{n}\right\}$ is a Cauchy sequence, the equivalence class of Cauchy sequences ξ_{n} that that converge to x_{n} converges to the equivalence class ξ containing $\left\{x_{n}\right\}$.

$$
\lim _{n \rightarrow \infty} D\left(\xi_{x_{n}}, \xi\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0
$$

Finally we need to prove that (Y, D) is complete. Let $\left\{\xi_{i}\right\}=\left\{x_{i, n}\right\}$ be a Cauchy sequence of Cauchy sequences with $D\left(\xi_{i}, \xi_{j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$.

$$
\lim _{i, j \rightarrow \infty} \lim _{n \rightarrow \infty} d\left(x_{i, n}, x_{j, n}\right)=0
$$

For each i we can choose n_{i} such that $d\left(x_{i, n}, x_{i, m}\right) \leq 2^{-i}$ for $n, m \geq n_{i}$. Consider the sequence $x_{i}=x_{i, n_{i}}$.

$$
d\left(x_{i, n_{i}}, x_{j, n_{j}}\right) \leq d\left(x_{i, n_{i}}, x_{i, m}\right)+d\left(x_{i, m}, x_{j, m}\right)+d\left(x_{j, m}, x_{j, n_{j}}\right)
$$

We can let $m \rightarrow \infty$.

$$
\begin{gathered}
d\left(x_{i, n_{i}}, x_{j, n_{j}}\right) \leq d\left(x_{i, n_{i}}, x_{i, m}\right)+d\left(x_{i, m}, x_{j, m}\right)+d\left(x_{j, m}, x_{j, n_{j}}\right) \\
d\left(x_{i, n_{i}}, x_{j, n_{j}}\right) \leq 2^{-i}+D\left(\xi_{i}, \xi_{j}\right)+2^{-j}
\end{gathered}
$$

Makes $\eta=\left\{x_{i, n_{i}}\right\}$ a Cauchy sequence. We now show that $D\left(\xi_{k}, \eta\right) \rightarrow 0$. as $k \rightarrow \infty$

$$
D\left(\xi_{i}, \eta\right)=\lim _{k, \ell \rightarrow \infty} d\left(x_{i, \ell}, x_{k, n_{k}}\right) \leq \lim _{k, \ell \rightarrow \infty} D\left(\xi_{i}, \xi_{k}\right)+2^{-i}+2^{-k}
$$

and

$$
\lim _{i \rightarrow \infty} \lim _{k, \ell \rightarrow \infty} d\left(x_{i, \ell}, x_{k, n_{k}}\right)=0
$$

Examples of Metric spaces.

1. $X=R, d(x, y)=|x-y|$
2. $X=R^{n} \cdot d(x, y)=\sqrt{\sum\left(x_{i}-y_{i}\right)^{2}}$
3. $X=R^{n}$. $d(x, y)=\sum_{i}\left|x_{i}-y_{i}\right|$ or $d(x, y)=\sup _{i}\left|x_{i}-y_{i}\right|$
4. $X=L_{1}[0,1]$. Lebesgue integrable functions $f(\cdot)$ on $[0,1] . d(x, y)=\int_{0}^{1}|f(x)-g(x)| d x$
5. $X=C[0,1]$ Continuous functions $f(\cdot)$ on $[0,1] . d(x, y)=\int_{0}^{1}|f(x)-g(x)| d x$
6. $X=C[0,1]$ Continuous functions $f(\cdot)$ on $[0,1] . d(x, y)=\sup _{x}|f(x)-g(x)|$
7. Lebesgue mesurable functions $f(\cdot)$ on $[0,1]$ such that $|f(x)|^{p}$ is integrable. $(1 \leq p<\infty)$. $d(f, g)=\left[\int_{0}^{1}|f(x)-g(x)|^{p} d x\right]^{\frac{1}{p}}$
Triangle inequality for L_{p}. Minkowski Inequality. Holder Inequaity. If $\frac{1}{p}+\frac{1}{q}=1, p, q \geq 1$

$$
\begin{gathered}
\int|f(x) g(x)| d \mu \leq\left[\int|f(x)|^{p} d \mu\right]^{\frac{1}{p}}\left[\int|g(x)|^{q} d \mu\right]^{\frac{1}{q}} \\
\\
\left(\int|f(x)|^{p} d \mu\right)^{\frac{1}{p}}=\sup _{g: \int|g(x)|^{q} d \mu \leq 1}\left|\int f(x) g(x) d \mu\right| \\
\left(\int\left|f_{1}(x)+f_{2}(x)\right|^{p} d \mu\right)^{\frac{1}{p}}=\sup _{g: \int|g(x)|^{q} d \mu \leq 1}\left[\int\left|\left(f_{1}(x)+f_{2}(x)\right) g(x)\right| d \mu\right] \\
\leq \\
\sup _{g: \int|g(x)|^{q} d \mu \leq 1} \int\left|f_{1}(x) g(x)\right| d \mu+\sup _{g: \int|g(x)|^{q} d \mu \leq 1} \int\left|f_{2}(x) g(x)\right| d \mu \\
= \\
\left(\int\left|f_{1}(x)\right|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int\left|f_{2}(x)\right|^{p} d \mu\right)^{\frac{1}{p}}
\end{gathered}
$$

Step 1. Let x, y be nonnegative. $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}
$$

Proof. Calculate $\sup _{y}\left[x y-\frac{y^{q}}{q}\right]$. Setting the derivative with respect to y as $0, x=y^{q-1}$ or $y=x^{\frac{1}{q-1}}=x^{\frac{p}{q}}$ $\sup _{y}\left[x y-\frac{y^{q}}{q}\right]=x^{1+\frac{p}{q}}-\frac{x^{p}}{q}=x^{p}\left(1-\frac{1}{q}\right)=\frac{x^{p}}{p}$. Proves the inequality.
Step 2.

$$
\int|f(x) g(x)| d \mu \leq\left[\int|f(x)|^{p} d \mu\right]^{\frac{1}{p}}\left[\int|g(x)|^{q} d \mu\right]^{\frac{1}{q}}
$$

Proof. For any $\lambda>0$

$$
\begin{aligned}
\int|f(x) g(x)| d \mu & =\int\left|(\lambda f(x))\left(\frac{g(x)}{\lambda}\right)\right| d \mu \\
& \leq \int\left[\frac{\lambda^{p}|f(x)|^{p}}{p}+\frac{|g(x)|^{q}}{q \lambda^{q}}\right] d \mu
\end{aligned}
$$

Minimize over $\lambda>0 . \lambda=\left(\int|g(x)|^{q} d \mu\right)^{\frac{1}{p+q}}\left(\int|f(x)|^{p} d \mu\right)^{-\frac{1}{p+q}}$

$$
\lambda^{p} \int|f(x)|^{p} d \mu=\lambda^{-q} \int|g(x)|^{q} d \mu=\left(\int|f(x)|^{p} d \mu\right)^{\frac{1}{p}}\left(\int|g(x)|^{q} d \mu\right)^{\frac{1}{q}}
$$

and

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Step 3. Assume that $\int|f(x)|^{p} d \mu<\infty$. Clearly

$$
\left.\left(\int|f(x)|^{p} d \mu\right)^{\frac{1}{p}} \geq \sup _{g: \int|g(x)|^{q} d \mu \leq 1}\left|\int f(x) g(x)\right| d \mu \right\rvert\,
$$

Take $g(x)=c\left(\operatorname{sign}(f(x))|f(x)|^{p-1}\right.$ where

$$
\int|g(x)|^{q} d \mu=c^{q} \int|f(x)|^{p} d \mu=1
$$

Then

$$
c \int f(x) g(x) d \mu=c \int|f(x)|^{p} d \mu
$$

and

$$
c=\left(\int|f(x)|^{p} d \mu\right)^{-\frac{1}{q}}
$$

$$
c \int|f(x)|^{p} d \mu=\left(\int|f(x)|^{p} d \mu\right)^{1-\frac{1}{q}}=\left(\int|f(x)|^{p} d \mu\right)^{\frac{1}{p}}
$$

It then follows that

$$
\left(\int|f(x)+g(x)|^{p}\right)^{\frac{1}{p}} \leq\left(\int|f(x)|^{p}\right)^{\frac{1}{p}}+\left(\int|g(x)|^{p}\right)^{\frac{1}{p}}
$$

Step 4. Actually if for a measurable function f
where \mathcal{G} consists of functions g that are bounded and supported on some set E of finite measure on which f is bounded as well, then $\int|f|^{p} d \mu<\infty$ and the Step 3 is applicable. Replace f by $f \chi_{E}$ and and get a bound for $\int\left|f_{E}(x)\right|^{p} d \mu$ that is uniform in E.

