
Metric Spaces. (X, d) is a metric space if X is provided with a metric d : X ×X → R
with the following properties.

1. d(x, y) = d(y, x) for all x, y ∈ X

2. d(x, y) ≥ 0 d(x, y) = 0 if and only if x = y.

3. For x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

Definition. xn → x in X if d(xn, x) → 0. i.e given any ǫ > 0 there is n0 such that
d(xn, x) < ǫ for n > n0.

Definition {xn} is a Cauchy sequence if limn,m→∞ d(xn, xm) = 0. i.e given ǫ there is n0

such tat d(xn, xm) ≤ ǫ for n,m ≥ n0.

A convergent sequence is Cauchy. d(xn, xm) ≤ d(xnx) + d(xm, x).

If a subsequence xnj
of a Cauchy sequence of xn converges to a limit x then the entire

sequence converges to it.

d(xn, x) ≤ d(xnj
, x) + d(xnj

.xn)

X is complete if every Cauchy sequence converges to a limit.

Theorem. If (X, d) is not complete, there is a complete space (Y,D) such that there is
an embedding y = Tx of X into Y such that d(x1, x2) = D(Tx1, Tx2) and TX is dense in
Y . Such a (Y,D) is unique up to isometry, i.e. if (Y1, D1), (Y2, D2) are two choices then
there is a one to one map U from Y1 to Y2 that is onto and D1(y1, y2) = D2(Uy1, Uy2).
(Y,D) is called the completion of (X, d).

Proof. Consider the space Z of all Cauchy sequences ξ = {xn} from (X, d). We define
the distance

D(ξ, η) = lim
n→∞

d(xn, yn)

It is easy to check using triangle inequality that |d(xn, yn) − d(xm, ym)| ≤ d(xn, xm) +
d(yn+ym). Since R is complete the Cauchy sequence d(xn, yn) has a limit. Note that this
limit is also limn,m→∞ d(xn, ym). It is possible that D(ξ, η) = 0. In that case we say they
belong to the same equivalence class. The triangle inequality provides transitivity and we
have symmetry. Z/ ∼ is taken as the completion of (Y,D) of (X, d). X is imbedded in Y
by sending x to the equivalence class of all sequences that converge to x in particular the
equivalence class containing ξx = {x, x, x, . . . , x, . . .}. X is imbedded densely because if
{xn} is a Cauchy sequence, the equivalence class of Cauchy sequences ξn that that converge
to xn converges to the equivalence class ξ containing {xn}.

lim
n→∞

D(ξxn
, ξ) = lim

n→∞
lim

m→∞
d(xn, xm) = 0

Finally we need to prove that (Y,D) is complete. Let {ξi} = {xi,n} be a Cauchy sequence
of Cauchy sequences with D(ξi, ξj) → 0 as i, j → ∞.

lim
i,j→∞

lim
n→∞

d(xi,n, xj,n) = 0
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For each i we can choose ni such that d(xi,n, xi,m) ≤ 2−i for n,m ≥ ni. Consider the
sequence xi = xi,ni

.

d(xi,ni
, xj,nj

) ≤ d(xi,ni
, xi,m) + d(xi,m, xj,m) + d(xj,m, xj,nj

)

We can let m → ∞.

d(xi,ni
, xj,nj

) ≤ d(xi,ni
, xi,m) + d(xi,m, xj,m) + d(xj,m, xj,nj

)

d(xi,ni
, xj,nj

) ≤ 2−i +D(ξi, ξj) + 2−j

Makes η = {xi,ni
} a Cauchy sequence. We now show that D(ξk, η) → 0. as k → ∞

D(ξi, η) = lim
k,ℓ→∞

d(xi,ℓ, xk,nk
) ≤ lim

k,ℓ→∞
D(ξi, ξk) + 2−i + 2−k

and
lim
i→∞

lim
k,ℓ→∞

d(xi,ℓ, xk,nk
) = 0

Examples of Metric spaces.

1. X = R, d(x, y) = |x− y|

2. X = Rn. d(x, y) =
√

∑

(xi − yi)2

3. X = Rn. d(x, y) =
∑

i |xi − yi| or d(x, y) = supi |xi − yi|

4. X = L1[0, 1]. Lebesgue integrable functions f(·) on [0, 1]. d(x, y) =
∫ 1

0
|f(x)− g(x)|dx

5. X = C[0, 1] Continuous functions f(·) on [0, 1]. d(x, y) =
∫ 1

0
|f(x)− g(x)|dx

6. X = C[0, 1] Continuous functions f(·) on [0, 1]. d(x, y) = supx |f(x)− g(x)|

7. Lebesgue mesurable functions f(·) on [0, 1] such that |f(x)|p is integrable. (1 ≤ p < ∞).

d(f, g) =
[ ∫ 1

0
|f(x)− g(x)|pdx

]
1
p

Triangle inequality for Lp. Minkowski Inequality. Holder Inequaity. If 1
p
+ 1

q
= 1, p, q ≥ 1

∫

|f(x)g(x)|dµ ≤ [

∫

|f(x)|pdµ]
1
p [

∫

|g(x)|qdµ]
1
q

(

∫

|f(x)|pdµ)
1
p = sup

g:
∫

|g(x)|qdµ≤1

|

∫

f(x)g(x)dµ|

(

∫

|f1(x) + f2(x)|
pdµ)

1
p = sup

g:
∫

|g(x)|qdµ≤1

[

∫

|(f1(x) + f2(x))g(x)|dµ]

≤ sup
g:
∫

|g(x)|qdµ≤1

∫

|f1(x)g(x)|dµ+ sup
g:
∫

|g(x)|qdµ≤1

∫

|f2(x)g(x)|dµ

= (

∫

|f1(x)|
pdµ)

1
p + (

∫

|f2(x)|
pdµ)

1
p
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Step 1. Let x, y be nonnegative. 1 ≤ p, q ≤ ∞ and 1
p
+ 1

q
= 1. Then

xy ≤
xp

p
+

yq

q

Proof. Calculate supy[xy − yq

q
]. Setting the derivative with respect to y as 0, x = yq−1

or y = x
1

q−1 = x
p

q

supy[xy −
yq

q
] = x1+p

q − xp

q
= xp(1− 1

q
) = xp

p
. Proves the inequality.

Step 2.
∫

|f(x)g(x)|dµ ≤ [

∫

|f(x)|pdµ]
1
p [

∫

|g(x)|qdµ]
1
q

Proof. For any λ > 0

∫

|f(x)g(x)|dµ =

∫

|(λf(x))(
g(x)

λ
)|dµ

≤

∫

[
λp|f(x)|p

p
+

|g(x)|q

qλq
]dµ

Minimize over λ > 0. λ = (
∫

|g(x)|qdµ)
1

p+q (
∫

|f(x)|pdµ)−
1

p+q

λp

∫

|f(x)|pdµ = λ−q

∫

|g(x)|qdµ = (

∫

|f(x)|pdµ)
1
p (

∫

|g(x)|qdµ)
1
q

and
1

p
+

1

q
= 1

Step 3. Assume that
∫

|f(x)|pdµ < ∞. Clearly

(

∫

|f(x)|pdµ)
1
p ≥ sup

g:
∫

|g(x)|qdµ≤1

|

∫

f(x)g(x)|dµ|

Take g(x) = c(sign(f(x))|f(x)|p−1 where

∫

|g(x)|qdµ = cq
∫

|f(x)|pdµ = 1

Then

c

∫

f(x)g(x)dµ = c

∫

|f(x)|pdµ

and

c = (

∫

|f(x)|pdµ)−
1
q
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c

∫

|f(x)|pdµ = (

∫

|f(x)|pdµ)1−
1
q = (

∫

|f(x)|pdµ)
1
p

It then follows that

(

∫

|f(x) + g(x)|p)
1
p ≤ (

∫

|f(x)|p)
1
p + (

∫

|g(x)|p)
1
p

Step 4. Actually if for a measurable function f

sup
g:

∫

|g|qdµ=1

g∈G

∫

f(x)g(x)dµ < ∞

where G consists of functions g that are bounded and supported on some set E of finite
measure on which f is bounded as well, then

∫

|f |pdµ < ∞ and the Step 3 is applicable.
Replace f by fχE and and get a bound for

∫

|fE(x)|
pdµ that is uniform in E.
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