
Closed and Open Sets. Aset C in a metric space is closed if whenever xn ∈ C and
d(xn, x) → 0 the limit x ∈ C.

Finite union of closed sets is closed. Arbitrary intersection of closed sets is closed. (an
infinite union of closed sets need no be closed.)

From xn ∈ (C1 ∪ C2 · · · ∪ Ck) for n ≥ 1 it follows that an infinite number of the sequence
must belong to some Ci. Since the subsequence converges to the sam limit x, x ∈ Ci and
therefore x ∈ (C1 ∪C2 · · · ∪Ck). For arbitrary intersections C = ∩αCα, since xn ∈ Cα for
each α the limit x ∈ Cα and thus x ∈ C = ∩αCα. Finally a single point in R is a closed
set. But the rationals, a countable union of single points is not closed.

Let (X, d) be a complete metric space. The metric d restricted to A ⊂ X is complete if
and only if A is closed. Cauchy sequences in (A, d) are Cauchy sequences in (X, d). They
converge in X because X is compete.Te question is do they converge in (A, d). Only if
x ∈ A. This happens for all sequences that converge in (X, d) if and only if A is closed.

An open set is the complement of a closed set. An intersection of a finite number of
open sets is open. Arbitrary union of open sets is open. These two facts are proved by
complementation.

D(x, ǫ) = {y : d(x, y) < ǫ} are open. If yn ∈ D(x, ǫ)c and yn → y, then d(x, yn) ≥ ǫ and
d(x, y) ≤ d(x, yn) + d(y, yn). Letting n → ∞ we get d(x, y) ≥ ǫ. A set G is open if and
only if around given any x ∈ G there in an ǫ = ǫx such that D(x, ǫ) ⊂ G. If so G is a union
of such discs and is a union of open sets. So it is open. If not there is an x such that for
any ǫ > 0, D(x, ǫ) ∩ Gc 6= ∅. This will provide a sequence from Gc that will converge to
x ∈ G, making Gc not closed. So G is not open.

A collection of open sets is a basis if any open set can be expressed as the union of a subset
of opens sets from the collection. Equivalently a collection {Uα}of open sets is basis if
given any open set G and an point x ∈ G, there some Uα such that x ∈ Uα ⊂ G. The
discs {d(x, ǫ)} as x and ǫ vary is a basis. The radii ǫ can be limited to a sequence ǫk → 0.
the centers {x} can be limited to a countable dense set. Given x ∈ G a point in an open
set there is an ǫ such that d(x, ǫ) ⊂ G. If {xk} is a dense set then there is a k such that
d(x, xk) <

ǫ
2
. Then x ∈ D(xk,

ǫ
2
) ⊂ D(x, ǫ) ⊂ G.

A metric space (X, d) is separable if there is a countable dense subset. This is equivalent
to having a countable basis of open sets. We saw that if {xi} is dense then D(xi,

1

k
) is

a basis. Conversely if {Ui} is any countable basis then if we choose any xi ∈ Ui, {xi} is
dense in X . Consider D(x, ǫ) for any x ∈ G and arbitrary small ǫ. Being open this is
union of some sub-collection of {Ui}. In particular it must contain some Ui. The point xi

chosen from that Ui is with in a distance ǫ from x.

If X is a separable metric space and A is any subset, any covering of A by open sets has a
countable sub-cover. Let ∪αGα be a cover and {Ui}, i ∈ I a countable basis. Each Gα is
a union of some Ui. Let Jα be the indices involved.Then A is covered by J = ∪αJα ⊂ I.
Since I is countable we can pick αi for each i ∈ J and it will give us a countable sub-cover.

If A ⊂ X is an subset then (A, d) is a metric space and its closed (or open) subsets are
precisely the closed (or open) subsets of (X, d) intersected with A. If C is closed in X ,
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then C ∩ A is closed in A. If xn ∈ C ∩ A and d(xn, x) → 0, and x ∈ A, since xn ∈ C and
xn → x and C is closed x ∈ C. Therefore x ∈ C ∩ A, making it closed. Conversely if C is
closed in A then C the closure of C in X is closed in X and C ∩A = C.

Compactness. A set A ⊂ X is compact if every sequence {xn} from A has a subsequence
that converges to a limit x ∈ A. A compact set is necessarily closed. A set is compact if
and only if every open covering has a finite subcover.

A compact metric space is separable. To see this for each k consider a maximal collection
Fk of points in X such that the discs {D(x, 1

k
)} centered at x ∈ F of radius 1

k
are disjoint.

It has to be finite for otherwise the sequence of their centers will not have a convergent
subsequence. The union ∪kFk is a countable set. We claim that ∪x∈Fk

D(x, 2

k
) is X . Any

missed point y will have the property that D(y, 1

k
) ∩D(x, 1

k
) = ∅ implying that Fk is not

maximal. Clearly ∪kFk is dense.

Since every open covering has a countable sub cover it is enough to show that any countable
cover has a finite subcover, Let ∪iGi be a cover but for any n, ∪n

i=1Gi is not. Let us pick
xn from [∪n

i=1Gi]
c = Cn. C1 ⊃ C2 · · ·Cn · · ·. For j ≥ n xj ∈ Cn and if a subsequene of xn

has a limi x then x ∈ Cn for every n contradicts X = ∪∞

i=1Gi being a cover.

A limit point of a sequence is a point x such that every neighborhood D(x, ǫ) contains
an infinite number of members of the sequence. Then a subsequence will converge to x.
Conversely if a subsequence converges to x then every neighborhood D(x, ǫ) contains an
infinite number of members of the sequence. If X has a sequence with no limit points,
every point x ∈ X will have a disc D(x, ǫx) that contains only a finite number of members
from the sequence, As x varies over X is a cover. Take a finite subcover. It contains only
a finite number of members from the sequence. Contradiction.

Finite intersection property. In a compact space if a family of closed sets have the property
that every finite intersection is nonempty then the whole intersection is nonempty. Just
by taking complements seen as the same as the open covering property.

A ⊂ X is compact if the metric restricted to A makes A compact. This means every
sequence from A must have a subsequence converging to a point in A. In particular A has
to be closed. Any closed subset of a compact metric space is compact. A compact metric
space is complete.

Baire Category Theorem. If X is a complete metric space and it is a countable union
of closed sets {Ci} at least one of them must have an interior, i.e. an open set U ⊂ Ci.
[Interior is the largest open set contained in a set. i.e. complement of the closure of the
complement.] Equivalently the intersection A = ∩Gi of a countable set of dense open sets
is dense.

Proof. Suppose it is not. Then there is a disc D(x, ǫ) that does not intersect A. Since G1

is dense there is an x1 from G1 inside D(x, ǫ). Since G1 is open there is ǫ1 > 0 such that
D(x1, ǫ1) ⊂ D(x1, ǫ1) ⊂ G1. Proceeding inductively we have a sequence of discs D(xn, ǫn)
such that ǫn → 0, D(xn, ǫn) ⊂ Gn and

D(xn, ǫn) ⊂ D(xn, ǫn) ⊂ D(xn−1, ǫn−1)
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It is easy to see that the sequence {xn} is a Cauchy sequence. If n > m, d(xn, xm) < ǫm.
It has a limit. xn ∈ D(xj , ǫj) for n ≥ j and so must the limit x of xn. But

D(xj+1, ǫj+1) ⊂ D(xj , ǫj) ⊂ Gj

x ∈ Gi for every i, x ∈ A. There is no open set disjoint from A. Makes A dense.

Continuous Functions.

(X, d) and (Y,D) are two metric spaces. A map or a function y = F (x) is continuous at x
if the following equivalent things are true.

1. If d(xn, x) → 0, then D(F (xn), F (x)) → 0.

2. Given any ǫ > 0 there is a δ > 0 such that D(F (y), F (x)) < ǫ if d(x, y) < δ

3. If U is any open set containing F (x), then F−1(U) = {x : F (x) ∈ U} contains an open
set that contains x.

A continuous function is one continuous at every point. In that case (3.) can be replaced
by

3a The inverse image F−1(U) of every open set U in Y is open in X

3a The inverse image F−1(U) of every open set in Y is open in X 3b The inverse image
F−1(C) of every closed set C in Y is closed in X

Proof. Let (1) hold. If (2) does not hold, there is a positive ǫ0 for which there is no δ.
For any δ > 0 there is a y such that d(x, y) < δ but D(F (y), F (x)) ≥ ǫ0. This produces a
sequence with d(xn, x) → 0 but D(F (y), F (x)) ≥ ǫ0 contradicting (1).

(2) can be restated as F−1(D(F (x), ǫ) ⊃ D(x, δ) for some δ > 0. U will contain some disc
D(F (x), ǫ) and F−1(U) ⊃ D(x, δ) for some δ > 0. This is (3).

If (3) holds, for any ǫ > 0, F−1D(x, ǫ) contains D(x, δ) for some δ > 0. If d(xn, x) → 0,
then xn ∈ D(x, δ) for large n, and this implies xn ∈ F−1D(F (x), ǫ) orD(F (xn), F (x)) → 0.

(3a) is just (3) at every x and (3b.) is just the same (3a) expressed for complements.

Continuous function of a continuous function is continuous.

A continuous image of a compact set is compact. A ⊂ X is compact. F : X → Y is a
continuous map. B = F (A) is a compact subset of Y . If yn ∈ B then yn = F (xn) for some
xn ∈ A. Since A is compact there is a subsequence {xnj

} that converges to a limit x in A.
F (xnj

) will converge to F (x) ∈ B.

In particular a continuous real valued function on a compact space is bounded.

Product space. X = X1 ×X2.

dX((x1, x2), (y1, y2)) = dX1
(x1, y1) + dX2

(x2, y2)

defines a metric. If X1, X2 are complete so is X . If X1, X2 are compact so is X .
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Convergence does not need a metric. Needs only the collection T of open sets, closed under
arbitrary unions and finite intersections, that contains X and ∅.

A neighborhood of x is an open set U containing x. xn → x if given any such U , xn ∈ U

for n large enough. U replaces the disc. We are interested in determining if there is a
metric on X under which T are precisely the open sets.
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