
If G ∈ X is an open subset of a complete metric space X , (G, d) is not complete unless
G is also closed. But we can change he metic so that (G, d1) and (G, d) have the same
open sets, i.e d(xn, x) → 0 if and only if d1(xn, x) → 0 provided xn, x ∈ G. But (G, d1) is
complete.

Define

d1(x, y) = d(x, y) +
∣

∣
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d(x,Gc)
−

1

d(y,Gc)

∣

∣

If xn, x ∈ G and xn → x d(xn, G
c) → d(x,Gc) and d(x,Gc) > 0 for x ∈ G. Therefore

d1(xn, x) → 0. d1 ≥ d. If we have a Cauchy sequence {xn}, in d1,
1

d(xn,Gc)
has a limit and

therefore bounded keeping d(xn, G
c) away from 0, forcing the limit x under d to be in G.

So every Cauchy sequence under d1 converges in d1 to a limit in G.

Metrization.

Let a space X and a collection T of subsets of X satisfying the properties below be given.

1. X and ∅ are in T

2. T is closed under arbitrary union and finite intersection.

We are looking for a metric d on X such that (X, d) is a separable metric space and T
is the collection of open sets in this metric. We denote by C the collection of sets that
are complements of sets in T and these will be the collection of closed sets. We make the
following assumptions on (X, T ) which are clearly necessay.

1. The set consisting of the single point x is closed for every x ∈ X .

2. T has a countable basis {Uj} such that every open set i.e. set in T is the union of a
sub collection from {Uj}.

3. Given two closed sets C1, C2 ∈ C with C1 ∩ C2 = ∅ there are sets G1, G2 ∈ T with
C1 ⊂ G1, C2 ⊂ G2 and G1 ∩G2 = ∅.

To see that 3 is valid in any metric space define for A ⊂ X

d(x,A) = inf
y∈A

d(x, y)

which is a continuous function of x for every A. If A is closed then d(x,A) = 0 ⇔ x ∈ A.

G1 = {x : d(x, C1) < d(x, C2)}, G2 = {x : d(x, C2) < d(x, C1)}

works.

Spaces with properties 1, and 3 are called Normal.

Lemma. Let (X, T ) be a Normal space. Let C0 ⊂ G1 with C0 closed and G1 open. Let
Q be the set of diadics t = i

2n
, 0 < t < 1. Then for t ∈ Q, there are open sets Gt such that

if s, t ∈ Q, 0 < s < t < 1,
C0 ⊂ Gs ⊂ Gs ⊂ Gt ⊂ G1
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Proof. First we will show that given a closed set C0 and an open set G1 ⊃ C0 there is an
open set G 1

2

such that

C0 ⊂ G 1

2

⊂ G 1

2

⊂ G1

Because the space is normal, and C0 and Gc
1, are disjoint closed sets there are disjoint open

sets G 1

2

and U with C0 ⊂ G 1

2

, Gc
1 ⊂ U , and G 1

2

⊂ U c ⊂ G1. Since U c is closed, we have

C0 ⊂ G 1

2

⊂ G 1

2

⊂ G1

We can now repeat the process and obtain

C0 ⊂ Gs ⊂ Gs ⊂ Gt ⊂ G1

for all diadics.

Lemma. The function
f(x) = {inf s : x ∈ Gs}

if x ∈ G1 and f(x) = 1 otherwise is continuous f(x) = 0 0n C0 and f(x) = 1 on Gc
1.

Proof.

{x : f(x) < a} = ∪t<aGt

are open and
{x : f(x) ≤ a} = ∩t>aGt = ∩s>aGs

are closed. f−1(a, b) = {x : f(x) < b} ∩ {x : f(x) > a} are open. Makes f continuous.

In a normal space given two disjoint closed sets C1, C2 there is a continuous function f(x),
0 ≤ f(x) ≤ 1 with f(x) = 0 on C1 and 1 on C2.

Urysohn Metrization Theorem. Let (X, T ) be Normal, with single points being closed
sets, and having a countable basis for T . Then there is a metric d(x, y) such that T are
precisely the open sets.

Proof. Let {Gi} be a basis. A pair Gi, Gj is admissible if Gi ⊂ Gj . For each such
pair Gi and Gc

j are disjoint closed sets and there is a continuous function f that satisfies
0 ≤ f(x) ≤ 1 and equals 0 and 1 on the two closed sets. We enumerate this countable
collection into a single sequence {fk}. Define

d(x, y) =
∞
∑

i=1

|fk(x)− fk(y)|

2k

Clearly d is a distance. Since fk are continuous and the series converges uniformly d(x, y) is
continuous and d(xn, x) → 0 if xn → x. We need to prove the converse. If fk(xn) → fk(x)
for some x, then xn → x.Given a neighborhood (open set) N we need to show that xn ∈ N

for n ≥ n0. We can find a Gi from the basis that contains x and is contained in N . The
point x is a closed set. There is an open set U such that

x ∈ U ⊂ U ⊂ Gi

We can replace U by some Gj from the basis so that

x ∈ Gj ⊂ Jj ⊂ Gi ⊂ N

We have a continuous function fk which is 1 on N c and 0 at x. if fk(xn) → 0 then xn

must leave N c for n ≥ n0.
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