If $G \in X$ is an open subset of a complete metric space $X,(G, d)$ is not complete unless G is also closed. But we can change he metic so that $\left(G, d_{1}\right)$ and (G, d) have the same open sets, i.e $d\left(x_{n}, x\right) \rightarrow 0$ if and only if $d_{1}\left(x_{n}, x\right) \rightarrow 0$ provided $x_{n}, x \in G$. But $\left(G, d_{1}\right)$ is complete.

Define

$$
d_{1}(x, y)=d(x, y)+\left|\frac{1}{d\left(x, G^{c}\right)}-\frac{1}{d\left(y, G^{c}\right)}\right|
$$

 $d_{1}\left(x_{n}, x\right) \rightarrow 0 . d_{1} \geq d$. If we have a Cauchy sequence $\left\{x_{n}\right\}$, in $d_{1}, \frac{1}{d\left(x_{n}, G^{c}\right)}$ has a limit and therefore bounded keeping $d\left(x_{n}, G^{c}\right)$ away from 0 , forcing the limit x under d to be in G. So every Cauchy sequence under d_{1} converges in d_{1} to a limit in G.

Metrization.

Let a space X and a collection \mathcal{T} of subsets of X satisfying the properties below be given.

1. X and \emptyset are in \mathcal{T}
2. \mathcal{T} is closed under arbitrary union and finite intersection.

We are looking for a metric d on X such that (X, d) is a separable metric space and \mathcal{T} is the collection of open sets in this metric. We denote by \mathcal{C} the collection of sets that are complements of sets in \mathcal{T} and these will be the collection of closed sets. We make the following assumptions on (X, \mathcal{T}) which are clearly necessay.

1. The set consisting of the single point x is closed for every $x \in X$.
2. \mathcal{T} has a countable basis $\left\{U_{j}\right\}$ such that every open set i.e. set in \mathcal{T} is the union of a sub collection from $\left\{U_{j}\right\}$.
3. Given two closed sets $C_{1}, C_{2} \in \mathcal{C}$ with $C_{1} \cap C_{2}=\emptyset$ there are sets $G_{1}, G_{2} \in \mathcal{T}$ with $C_{1} \subset G_{1}, C_{2} \subset G_{2}$ and $G_{1} \cap G_{2}=\emptyset$.
To see that $\mathbf{3}$ is valid in any metric space define for $A \subset X$

$$
d(x, A)=\inf _{y \in A} d(x, y)
$$

which is a continuous function of x for every A. If A is closed then $d(x, A)=0 \Leftrightarrow x \in A$.

$$
G_{1}=\left\{x: d\left(x, C_{1}\right)<d\left(x, C_{2}\right)\right\}, \quad G_{2}=\left\{x: d\left(x, C_{2}\right)<d\left(x, C_{1}\right)\right\}
$$

works.
Spaces with properties 1, and $\mathbf{3}$ are called Normal.
Lemma. Let (X, \mathcal{T}) be a Normal space. Let $C_{0} \subset G_{1}$ with C_{0} closed and G_{1} open. Let Q be the set of diadics $t=\frac{i}{2^{n}}, 0<t<1$. Then for $t \in Q$, there are open sets G_{t} such that if $s, t \in Q, 0<s<t<1$,

$$
C_{0} \subset G_{s} \subset \overline{G_{s}} \subset G_{t} \subset G_{1}
$$

Proof. First we will show that given a closed set C_{0} and an open set $G_{1} \supset C_{0}$ there is an open set $G_{\frac{1}{2}}$ such that

$$
C_{0} \subset G_{\frac{1}{2}} \subset \bar{G}_{\frac{1}{2}} \subset G_{1}
$$

Because the space is normal, and C_{0} and G_{1}^{c}, are disjoint closed sets there are disjoint open sets $G_{\frac{1}{2}}$ and U with $C_{0} \subset G_{\frac{1}{2}}, G_{1}^{c} \subset U$, and $G_{\frac{1}{2}} \subset U^{c} \subset G_{1}$. Since U^{c} is closed, we have

$$
C_{0} \subset G_{\frac{1}{2}} \subset \bar{G}_{\frac{1}{2}} \subset G_{1}
$$

We can now repeat the process and obtain

$$
C_{0} \subset G_{s} \subset \overline{G_{s}} \subset G_{t} \subset G_{1}
$$

for all diadics.
Lemma. The function

$$
f(x)=\left\{\inf s: x \in G_{s}\right\}
$$

if $x \in G_{1}$ and $f(x)=1$ otherwise is continuous $f(x)=00$ n C_{0} and $f(x)=1$ on G_{1}^{c}. Proof.

$$
\{x: f(x)<a\}=\cup_{t<a} G_{t}
$$

are open and

$$
\{x: f(x) \leq a\}=\cap_{t>a} G_{t}=\cap_{s>a} \bar{G}_{s}
$$

are closed. $f^{-1}(a, b)=\{x: f(x)<b\} \cap\{x: f(x)>a\}$ are open. Makes f continuous.
In a normal space given two disjoint closed sets C_{1}, C_{2} there is a continuous function $f(x)$, $0 \leq f(x) \leq 1$ with $f(x)=0$ on C_{1} and 1 on C_{2}.
Urysohn Metrization Theorem. Let (X, \mathcal{T}) be Normal, with single points being closed sets, and having a countable basis for \mathcal{T}. Then there is a metric $d(x, y)$ such that \mathcal{T} are precisely the open sets.
Proof. Let $\left\{G_{i}\right\}$ be a basis. A pair G_{i}, G_{j} is admissible if $\bar{G}_{i} \subset G_{j}$. For each such pair \bar{G}_{i} and G_{j}^{c} are disjoint closed sets and there is a continuous function f that satisfies $0 \leq f(x) \leq 1$ and equals 0 and 1 on the two closed sets. We enumerate this countable collection into a single sequence $\left\{f_{k}\right\}$. Define

$$
d(x, y)=\sum_{i=1}^{\infty} \frac{\left|f_{k}(x)-f_{k}(y)\right|}{2^{k}}
$$

Clearly d is a distance. Since f_{k} are continuous and the series converges uniformly $d(x, y)$ is continuous and $d\left(x_{n}, x\right) \rightarrow 0$ if $x_{n} \rightarrow x$. We need to prove the converse. If $f_{k}\left(x_{n}\right) \rightarrow f_{k}(x)$ for some x, then $x_{n} \rightarrow x$.Given a neighborhood (open set) N we need to show that $x_{n} \in N$ for $n \geq n_{0}$. We can find a G_{i} from the basis that contains x and is contained in N. The point x is a closed set. There is an open set U such that

$$
x \in U \subset \bar{U} \subset G_{i}
$$

We can replace U by some G_{j} from the basis so that

$$
x \in G_{j} \subset \bar{J}_{j} \subset G_{i} \subset N
$$

We have a continuous function f_{k} which is 1 on N^{c} and 0 at x. if $f_{k}\left(x_{n}\right) \rightarrow 0$ then x_{n} must leave N^{c} for $n \geq n_{0}$.

